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Abstract

One of the key processes in living organisms is mass transport occurring from blood vessels to 

tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse 

direction - transport of waste products of cell metabolism to blood vessels. The mass exchange 

from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process 

has been investigated experimentally over centuries, and also in the last decades by the use of 

computational methods. Due to geometrical and functional complexity and heterogeneity of 

capillary systems, it is however not feasible to model in silico individual capillaries (including 

transport through the walls and coupling to tissue) within whole organ models. Hence, there is a 

need for simplified and robust computational models that address mass transport in capillary-tissue 

systems. We here introduce a smeared modeling concept for gradient-driven mass transport and 

formulate a new composite smeared finite element (CSFE). The transport from capillary system is 

first smeared to continuous mass sources within tissue, under the assumption of uniform 

concentration within capillaries. Here, the fundamental relation between capillary surface area and 

volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, 

we formulate the CSFE which relies on the transformation of the one-dimensional (1D) 
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constitutive relations (for transport within capillaries) into the continuum form expressed by 

Darcy’s and diffusion tensors. The introduced CSFE is composed of two volumetric parts - 

capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and 

concentration for each of the two domains. The domains are coupled by connectivity elements at 

each node. The fictitious connectivity elements take into account the surface area of capillary 

walls which belongs to each node, as well as the wall material properties (permeability and 

partitioning). The overall FE model contains geometrical and material characteristics of the entire 

capillary-tissue system, with physiologically measurable parameters assigned to each FE node 

within the model. The smeared concept is implemented into our implicit-iterative FE scheme and 

into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the 

liver and pancreas models demonstrate robustness of the introduced methodology and its 

applicability to real physiological conditions.

Keywords

diffusion; convection; partitioning; biological tissue; capillary system; smeared model; composite 
smeared finite element

1. Introduction

Delivery of nutrients, oxygen, drugs, and immune cells to tissues in the body from the blood 

circulation happens through mass transport across blood vessel walls into tissues. This 

problem of mass transport through systemic circulation, and its applicability to drug delivery 

and nanomedicine, is studied in the field of transport oncophysics [1–3]. From a physics 

perspective, transport of particulates within fluids is determined by gradients. In particular, 

two processes dominate gradient-driven transport through blood circulation: convection, 

driven by a pressure gradient, and diffusion, driven by a concentration gradient. According 

to the physical and chemical properties of moieties and particles in circulation, one of the 

two may play a dominant role [4, 5]. The subject of our study is the gradient-driven transport 

as governed by the laws of physics. In this section we give a broad introduction of the 

characteristics of blood vessel/tissue systems in order to highlight complexity of transport 

within a biological system. We also emphasize the importance of developing simplified and 

robust computational approaches that adequately incorporate the main parameters of 

transport processes.

Blood represents the main fluid in living organisms, being the medium that transports 

oxygen and nutrients to cells. In the reverse direction, blood supports the function of the 

lymphatic system of clearing waste and other products of metabolism. In the blood vessel 

network, two parts are distinct: arterial - for transport toward the tissue, and venous – for 

transport in the reverse direction. The vessels contain blood which represents the fluid 

domain. Tissue is composed of cells and extracellular space and can be considered as a 

porous solid. Both cells and extracellular space are filled with biological fluid. The blood 

and tissue domains are separated by vessel walls.

Transport of particles and molecules from the blood to tissue and from tissue back to blood 

is a complex process. We here refer to basic data about capillary vessels and models for flow 
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within blood vessels and tissue. Regarding transport within vessels, some simplifications are 

necessary to develop models suitable for general applications. First, blood flow in large 

vessels may be taken as flow of a homogenous incompressible fluid with certain viscosity 

properties [6]. There, particle and molecule transport is governed by convection and 

diffusion within the fluid. In small vessels such as capillaries (diameter size of order of 10 

micrometers for human [7]), the presence of cells, first of all red blood cells (RBCs), may 

affect transport [8]. However, in a simplified analysis, blood may still be considered as a 

homogenous fluid, where the effect of RBC is accounted for through viscosity [9, 10]. The 

dependence of the viscosity coefficient on the hematocrit (RBC volumetric content) and 

capillary diameter (known as the Fahraeus-Linquist effect) has been investigated numerically 

and in numerous experiments [11–13], Fig. 1.

Transport within tumors has additional complexities due to irregular blood vessel branching 

and variability of vessel diameters and lengths [14, 15]. Experimental investigations of flow 

within tumor vasculature showed that blood flow depends on several parameters such 

geometric resistance [16] (a measure of network irregularities), viscous resistance [17], and 

RBC mechanical properties [18]. A summary of basic characteristics for blood flow within 

tumor vasculature is presented in [19], whereas in [20] are given data about capillary wall 

transport parameters: vascular permeability, hydraulic conductivity, and reflection 

coefficient.

Transport within tissue has also been the subject of extensive study over the past decades 

(e.g. within brain tissue [21]). A porous medium is a good representation of organ tissue, 

which is composed of dispersed cells embedded in the extracellular matrix where nutrients 

or drugs can penetrate to reach cells within the tissue. Transport within the extravascular 

space is governed by both convection and diffusion. According to experimental in vitro and 

in vivo data [22], tissue glycosaminoglycan content and drug molecular weight are important 

parameters which determine whether extravascular transport is governed by diffusion or 

convection. A review of models used for convection and diffusion (including also heat 

transfer) is presented in [23], while diffusivity of dextran molecules in tumor interstitium is 

experimentally evaluated in [24, 25].

The overall transport from blood to tissue and vice-versa is conditioned by the blood vessel 

properties. These properties include hydraulic and diffusive components. In order to gain 

insight into the [blood vessel]-[vessel wall]-[tissue] system, Fig. 2 shows cross-sectional 

area, velocity, pressure and blood volume distributions in the blood vessel system of a dog 

[26]. It can be seen that there are differences of order of magnitude in the distribution of 

cross-sectional area, blood velocities, pressure and volumetric fraction, in the three main 

domains of the cardiovascular system (arteries, veins and capillaries). These physical 

characteristics are fundamental for transport within the cardiovascular system. When 

studying transport through vessel walls, the striking fact is that practically the entire blood 

vessel wall surface area belongs to capillaries. This follows form Fig. 2a: for a straight 

circular vessel, the wall surface area is proportional to the cross-sectional area, with 

coefficient of proportionality of 4/d (d being the vessel diameter) [26]. Therefore, in 

studying supply of nutrients or drugs to cells within tissues, it is essential to achieve the 

desired transport through capillary walls, as they constitute a major biological barrier to 
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gradient-driven transport. This aspect of mass transport will be further addressed in detail 

later in the text.

Regarding computational methods and models for blood flow within networks of vessels, the 

most commonly used is the “network” method [27], where the network is represented by 

blood vessel segments with common edges (nodes). Pressure change along segments is 

governed by the Hagen-Poiseuille law [28], while pressure is equal for all segments at the 

common node, and the total flux at interior nodes is equal to zero. Particle diffusion is 

modeled according to Fick’s law within moving fluid in pipe conditions. A short review of 

the basic equations is given in Section 2.1.

For mass transport within tissue as a porous continuum filled with fluid, the governing laws 

are the Darcy velocity-pressure relationship for convection and Fick’s law for diffusion [29]. 

For tissue as an inhomogeneous composite medium, the equivalent material parameters for 

modeling need to be determined experimentally or numerically. Some of the numerical 

procedures will be outlined further in the text.

Finally, in this overview of the basic data relevant for the gradient-driven transport within 

vasculature and tissue, Figure 3 illustrates the complexity of capillary beds [14, 30]. It is 

obvious that, only for small regions, is it feasible to include each capillary in a 

computational model. The number of capillaries is enormous (total number of capillaries in 

the body is ~ billions [31]), and their morphology is complex and variable over space and 

samples.

We here introduce a smeared modeling approach for large domains which can effectively be 

used for transport in the capillary system and tissue. In Section 2 are summarized the basic 

concepts and equations for finite element (FE) modeling of capillary-tissue system. These 

equations are used in Section 3, where the smeared modeling concept for capillary network 

and further composite smeared finite element are introduced. Subsequently, Section 4 

presents numerical results where accuracy of smeared modeling is investigated. Later, 

smeared models are applied to simulate and investigate transport within liver and pancreas. 

Section 5 is devoted to a summary of the developed methodology and concluding remarks 

on the smeared models applicability.

2. Basic equations for modeling transport in blood vessels and tissue

Here, we summarize the methodology which will be further used as the basis for the 

development of the smeared models. This methodology relies mainly on our previous 

publications.

2.1 Large vessels

When considering blood as a homogenous viscous incompressible fluid, the flow in large 

vessels can be described by the Navier-Stokes equations of balance of linear momentum, 

and by incompressibility equation as the mass balance equation. These equations can be 

further transformed into FE balance equations [29]. But, for practical applications in 

modeling a blood vessel system coupled with tissue, a simplification from 3D to 1D flow 
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can be adopted. Then the pipe Hagen-Poiseuille law can be used and the corresponding one-

dimensional FE equations of balance can be derived [28], [33]. For a current time step of 

size Δt and iteration i, and in case of deformable vessel walls, these equations can be written 

as

(1)

where the matrix components (corresponding to iteration (i−1)) are:

(2)

Here,  and  are coefficients depending on material properties of fluid and 

solid wall, pipe cross-sectional diameter and thickness, and the current fluid flux and 

velocity within the element; kp is the pipe conductance coefficient[28]; the cross-sectional 

area is A and the element length is L; P is vector of nodal pressures, Q is the nodal flux 

vector which includes external and flux from other elements, and NI are the interpolation 

functions. In case of rigid walls, equation (1) reduces to a linear incremental form,

(3)

The matrix components are

(4)

where

(5)

and d and μ are the pipe internal diameter and viscosity coefficient, respectively. Therefore, 

for given boundary conditions, the above equations provide solutions for nodal pressures 

(and consequently for fluxes and velocities). With the assumption that deformation of pipe 

does not affect the flow, except thorough change of the radius due to pressure, equation (3) 

can be used for deformable pipe wall, but with change of the radius according to the relation 

[28]:
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(6)

where R0 is the initial radius of the cross-section, δ is the wall thickness (taken to be 

constant), E is Young’s modulus, ν is Poisson’s ratio, and p is fluid pressure. This relation is 

applicable when wall thickness is small with respect to the radius (the wall can be 

considered as a cylindrical thin membrane), when axial deformation is negligible 

(physiologically verified condition for blood vessels) and the wall material is elastic. 

Equations (1) and (3) are applicable to pipe network in 2D and 3D space, with any 

branching within the network, and are computationally efficient since the nodal unknowns 

are the pressures only [28].

One-dimensional particle convective-diffusion transport is governed by the balance equation

(7)

where c is concentration, v is fluid velocity, and q is a source term. Diffusion coefficient Dp 

may be constant or may be concentration-dependent. The corresponding FE balance 

equation is

(8)

where C is the nodal concentration vector,  is the external flux, and matrices and the 

source vector  (evaluated at end of time step) are:

(9)
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Note that the fluid velocity follows from solving fluid transport equations (1) or (3).

2.2 Tissue modeling

Convective and diffusive transport within tissue, which is considered as a porous continuum, 

can be described by incremental-iterative FE systems of equations, which rely on Darcy’s 

and Fick’s laws. The final balance equations for fluid flow can be written in the form (3) in 

terms of the fluid pressure, where the matrix Kp is

(10)

and kDi are the Darcy coefficients.

When complex composition of tissue is considered with cells and extracellular space, the 

equivalent Darcy coefficients can be obtained numerically by our developed homogenization 

procedure for mass transport [34]. Then, a reference domain can be selected and a detailed 

FE model generated (as in Fig. 4), so that the equivalent Darcy coefficient k ̅Dx in a direction 

x can be expressed as

(11)

where Qx is the flux through the model surface A, Pin and Pout are the inlet and the outlet 

pressures, and Lx is the model (reference volume RV) length. It was shown that the 

equivalent Darcy coefficient does not depend on the model size and values of the inlet and 

outlet pressures and that it, therefore, represents the material parameter for the given tissue 

microstructural composition.

Diffusive transport in tissue can be described by using the Fick law as for 1D, and mass 

balance equation. The balance equation (7) now is [29]

(12)

where vi are the velocity components and Di are diffusion coefficients for the coordinate 

directions. The balance FE equations have the form (8), with the matrices:
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(13)

In case of diffusive transport through complex porous media, we have introduced mass 

release curves as the constitutive curves for diffusion [34, 35]. These curves can be 

determined experimentally or numerically. For a given gradient, the diffusion coefficient for 

a direction xi can be determined from the curve, as

(14)

where m(t) is mass per unit area of surface with normal xi, and dc/dxi = tanα is the tangent 

to the curve (Fig. 4(c)). The role of the mass release curves in modeling diffusion within 

porous media with any microstructural geometry, and with including physico-chemical 

interaction between transported particles (molecules) and surface of the microstructure, has 

been employed in [36] [37] [38] [34]; while in [35] this role has been investigated in detail. 

The example shown in Fig. 4 demonstrates practical calculation of the equivalent diffusion 

coefficient according to [35] in case of a complex microstructure, nonlinear diffusion 

coefficient for free diffusion within the extracellular space, and surface interactions 

according to the scaling functions in Fig. 4 (b) [36].

2.3 Transport through capillary walls

In the transport from fluid to solid domain, i.e. from blood vessels to tissue (and in the 

reverse direction), it is necessary to properly model transport through blood vessel walls. To 

achieve that, connectivity or fictitious elements were introduced in [33]. A schematic of the 

connectivity elements is shown in Fig. 5. Pipe is modeled by 1D, and continuum by 2D or 

3D finite elements. The connectivity 1D element has two nodes at the same spatial position, 

A – pipe node, and B – continuum node.

The balance equation for convective (hydraulic-fluid) flow for the fictitious element has the 

form (3),

(15)

where

(16)
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Here, kh is the hydraulic permeability coefficient, and Ap is the surface area of the pipe 

internal surface belonging to the connectivity element node (in case of a straight pipe as 

shown in Fig. 4, Ap = Lπd where L is the length of pipe element - assuming the same 

element lengths on both sides of the node, and d is pipe internal diameter).

Considering the diffusive transport through the wall, a 1D approximation for radial diffusion 

can be used, since the vessel wall is small with respect to the vessel radius. Then, we use 

equation (7) and obtain the FE balance equation of the form (8), where, with linear 

interpolation along the element, the matrices are:

(17)

Here, Dwall is the diffusive wall transport coefficient, h is the wall thickness; and P1 and P2 

are pressures in the pipe and tissue, respectively. Note that the Dwall represents the overall 

transport coefficient of the wall (with pores, fenestrations, etc.); it can be related to the 

diffusion coefficient of the wall porous material coefficient Dmaterial as Dwall = h Dmaterial. 

Also, if the thickness is small with respect to the pipe diameter, as it is the case for 

capillaries, the transient terms can be neglected, and therefore the matrix Mc discarded.

Partitioning, as a frequent measure of hydrophobicity in case of molecule redistribution 

between water and oil phases, can be included in the connectivity element, according to the 

FE formulation in [35]. Then, the corresponding factorization of the matrices (17) by the 

partitioning coefficient has to be implemented, enabling simulations of mass distribution 

against classical Fickian gradients; such situations are quite common in drug and cell 

transport.

3. Formulation of the smeared finite element

Generally, smeared procedures have been applied for crack distribution within materials in 

fracture mechanics studies, or for material properties of complex materials (e.g. [40, 41]). 

Following that smeared approach, we adopt here that the basic requirement of the smeared 

concept for modeling transport within the capillary-tissue system, is that the transport 

characteristics of the system should appropriately be preserved in the smeared model. A 

specific case is considered first, where it is assumed that concentration within capillaries is 

uniform and changes over time. Subsequently, we present a formulation of a composed 

smeared finite element (CSFE) for general cases of fluid and particle transport.

Kojic et al. Page 9

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1 Smeared model for a uniform concentration within capillaries

Here, we assume that concentration within capillaries is uniform and given as the systemic 

concentration Csys(t) function of time. This assumption can be taken as a reasonable 

approximation when considering a small tissue domain, e.g. a tumor, because convection 

within capillaries is much faster process than the convection-diffusion within tissue.

Let us consider diffusion through a capillary wall (neglecting convection through the wall, 

which in reality is small) as schematically shown in Fig. 6. First, the elementary area of the 

surface of the internal wall dAcap can be related to the elementary volume dVcap and further 

to the elementary total volume dV, as follows:

(18)

where rAV is the capillary area-to volume ratio (called further surface ratio), and rV is the 

capillary volumetric ratio within tissue, or capillary density; the volume of tissue is 

(1−rv)dV. Note that in case of a straight capillary, the surface ratio is

(19)

where dcap is the capillary internal diameter; in case of complex geometries rAV can be 

different. We emphasize that the capillary density is the ratio between the volume occupied 

by the fluid (blood) and total volume. The above ratios are parameters of the capillary bed. 

The expression (18) can be considered as the most fundamental in our smeared models, 

where the discrete wall surface is smeared over volume of the continuum.

Next, we adopt that the mass concentration is linearly distributed through the wall thickness 

(between points 1 and 2 in Fig. 6), which is acceptable for thin capillary walls; this is in 

accordance with equations (7) and (8). Then, the flux through the wall at point 2, 

corresponding to the elementary surface dAcap, can be expressed as

(20)

where

(21)
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and Csys, , Ctissue,  are the systemic (capillary) and tissue concentrations at the end 

and start of time step, respectively. As mentioned in Section 2, for small thickness (which is 

the case of capillary walls), the terms corresponding to transient effects (the matrix M) can 

be neglected. Note that the elementary flux is expressed in terms of the elementary volume 

of the continuum dV.

As a result, we have now the tissue continuum within which capillaries are distributed and 

are producing the source of the mass according to (20). Therefore, the nodal fluxes of a 

continuum finite element are

(22)

where terms within the parenthesis (…) follow from (20) and (21), and NI are the continuum 

interpolation functions of the element with the volume V. When evaluating the integral (22), 

concentration Ctissue is the current concentration within tissue at an integration point. Note 

that the factor (1−rV) is used since the volume of tissue is reduced due to presence of 

capillaries.

In case when partitioning phenomenon is present at the wall surfaces, the elementary mass 

flux can be expressed as

(23)

where P1 and P2 are the partitioning coefficients at the internal and external capillary wall 

surfaces.

Instead of using source terms at FE integration points, fictitious elements can be assigned at 

each continuum node. Then, the balance equation for the fictitious element at continuum 

node I can be written as

(24)

where
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(25)

and CI and  are concentrations at node I at end and start of time step, respectively. Also, 

P1 and P2 are partitioning coefficients as in (23); D(wall)I is the wall diffusion coefficient, hI 

is the wall thickness at node I; and AcapI is the wall surface area belonging to the node I, 
which is

(26)

with (rV)I, (rAV)I and VI being the volumetric ratio, the area coefficient and the volume of 

the continuum which belongs to the node, respectively. The volume VI can be numerically 

evaluated as

(27)

where summation includes all elements containing the node I. Note that using eq. (24) we 

have included transport from capillaries to the tissue via addition of the equation (24) to the 

system of equations without increasing number of equations of the system. We found that 

convergence was improved by applying the concept of these fictitious elements instead of 

continuously distributed source terms.

In summary, it can be concluded that diffusive transport between capillaries and tissue can 

be performed by discretizing the continuum (tissue) only. The parameters of the model, 

assigned to each continuum node I include geometrical data (the volumetric ratio of 

capillaries (rV)I, the surface ratio (rAV)I, the wall thickness hI) and material data of 

capillaries consisting of wall diffusion coefficient (Dwall)I and partition coefficients P1I and 

P2I at the capillary surfaces. This way of specifying the modal data offers a possibility of 

modeling heterogeneous properties of the domain, which is important for practical 

applications. Accuracy of this smeared model will be demonstrated in the next section 

(Example 1).

3.2 Composite Smeared Finite Element (CSFE)

As in the above case, we have two domains – capillary and tissue, but now a general case is 

considered when pressure (and velocity) and concentration within capillaries are not 

uniform. The elementary volumes occupied by the domains within the finite element at a 

considered (integration) point are: rVdV for the capillary and (1−rV)dV for the tissue 

domain. There are four physical fields within the element: pressure and concentration in 
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capillaries, and pressure and concentration within tissue; these fields are mutually 

dependent. Schematics of a finite element with elementary volumes and nodal variables are 

show in Fig. 7.

Consider first the pressure field within capillaries. The first step is to transform the Hagen-

Poiseuille 1D constitutive relationship into the Darcy law of the continuum. To achieve this, 

we consider fluxes at a branching point P of capillaries (pipes), Fig. 8. Then, the flux in the 

pipe K due to pressure gradients in the coordinate directions, ∂p/∂xi, is

(28)

kpK is the pipe conductance coefficient according to (5), dK is the pipe diameter ℓKj is the 

directional cosine of the pipe axis with respect to the coordinate axis j; and the components 

of the flux QKi are

(29)

We further can calculate the total fluxes coming from all pipes within the considered 

volume, and find the flux per unit area, so that the smeared continuum coefficients of the 

Darcy tensor can be expressed as

(30)

where

(31)

is the total cross-sectional internal area of capillaries. Note that the area Atot corresponds to 

the fluid volume occupied by capillaries which is equal to rVV. Also, we note that the pipes 

do not need to have the branching point within the considered volume – they are pipes 

within an elementary volume surrounding a point P of the continuum. This Darcy tensor 

represents the constitutive tensor for fluid flow within the continuum finite element 

according to the Dracy law, and the standard isoparametric formulation described in Section 

2 is applicable. Boundary conditions for the smeared capillary domain continuum are those 

applicable for the capillaries. Also, in practical implementation we assign the Darcy tensor 

coefficients to nodal points of the FE mesh and interpolate them to integration points during 

time steps of the FE solution process.
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Following the above derivation of the Darcy tensor, the 1D convective-diffusive transport 

within capillary network can be “smeared” to the continuum volume rVV, but now using the 

1D pipe Fick’s law,

(32)

where DpipeK is diffusion coefficient within the pipe K, and xK is coordinate along the pipe 

axis. In analogy with (30), we have now the coefficients of the diffusion tensor Dij as

(33)

Here, also, boundary conditions for the diffusion within capillaries are to be satisfied for the 

capillary smeared domain. In case of the convective-diffusion transport within the capillary 

domain, fluid velocities can be determined according to the pressure gradients and Darcy’s 

coefficients (30), and then included into the governing continuum balance equations 

(presented in Section 2).

In the tissue domain, there is no change in the governing equations for the fluid flow and 

convective-diffusive transport of particles with respect the above summarized in Section 2, 

except that the volume of the continuum is now (1−rv)V.

Connection between the capillary and tissue domains is achieved through the connectivity 

(fictitious) finite elements generated at each node. The cross-sectional area of the 

connectivity element at a node J is schematically shown in Fig. 7 and is calculated according 

to eq. (26). The introduced connectivity element does not require additional nodes or 

additional nodal variables. Partitioning of the from (23) can be included at each node, so that 

the flux through the capillary wall between the capillary and tissue domain for a node J can 

be expressed as

(34)

The incremental form for the balance equation of the fictitious element follows from this 

expression for flux and has the form (24).

The above introduced finite element can be considered as a composite continuum element 

(termed as composite smeared finite element, CSFE): it contains two domains – capillary 

and tissue, and connectivity element. It is also important that in this composite finite 

element, capillary bed characteristics are included (geometrical and material parameters) as 
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in Section 3.1. To emphasize the generality of the formulation we have listed input 

parameters at the nodes of these composite elements in Fig. 7. This finite element has been 

built in our general-purpose FE package PAK [42] for 2D and 3D conditions.

Finally, the continuum elements with smeared capillary network can be connected to the 

pipe elements of large vessels using the connectivity elements as in Section 2. Here, 

connectivity elements contain pipe nodal pressures and concentrations on one side (nodes 1), 

and capillary domain pressures and concentrations on the other side (nodes 2).

The presented general smeared finite element CSFE can be used to model large tissue 

domains (such as an entire tumor or body organ) containing smeared capillary bed 

representation. Steady and unsteady conditions can be modeled, with appropriate boundary 

and initial conditions. These tissue domains can also be connected to large (pipe) vessels to 

have a complete solution for large transport problems. When the overall solution is obtained, 

detailed models of subdomains can be considered.

4. Examples

In the first three examples we investigate accuracy of the smeared models with respect to 

models - here called true models - which contain 1D elements only, or are coupled with 

continuum. The last two examples illustrate applicability of the smeared models to transport 

within two organs, liver and pancreas.

4.1 Circular domain with given concentration within capillaries

In this example we implement the smeared model described in Section 3.1, where 

concentration within capillaries are considered known (prescribed). A circular 2D 

continuum domain with regular capillary mesh is shown in Fig. 9a. The domain is isolated at 

the boundary, and the concentration in capillaries is a constant, while the initial 

concentration in continuum (tissue) is equal to zero. Data used are as follows:

Diameter of tissue domain: 140 µm

Concentration in capillaries, constant: 1 M

Capillary diameter: 4 µm, Capillary wall thickness: 0.4 µm

Diffusion coefficient of wall: Dwall = 10 µm2/s

Diffusion coefficient in tissue Dtissue = 1000 µm2/s

Volumetric fraction of capillaries rV =29.854 %

Time steps: 20 × 0.05s

Mass is transported due to diffusion through capillary walls and is modeled according to 

equations (20) and (23). Concentration fields at time t=0.1s are shown in Figs. 9b,c for true 

and smeared models; concentration field is uniform due to uniformity of the capillary 

network and boundary conditions. It can be seen that concentration in tissue is practically 

the same for true and smeared models. Change of concentration within tissue over time is 

shown in Fig. 10, in case without partitioning and with partitioning at the blood-capillary 

wall surface (partitioning coefficient P=10). The concentration in tissue ultimately reaches 

the value in capillaries - when there is no partitioning; while in case of partitioning, the 

ultimate concentration in tissue is equal to Ccapillary/P.
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4.2 Uniform 3D capillary mesh

In this example we consider convective-diffusive transport within a cube with uniform 

capillary mesh. The mesh is composed of capillaries aligned with coordinate axes and in the 

diagonal direction. The aim of this example is to verify applicability of the expressions for 

the Darcy coefficients (30) and for diffusion tensor (33), as well the accuracy of the 

introduced CSFE. Two basic, physiologically realistic, conditions are considered: a) 

transport due to pressure and concentration differences at the domain boundaries, or b) 

transport from the boundary toward the domain interior.

a) Transport from capillaries with pressure and concentration gradients to the 
isolated tissue—A cube domain (10×10×10 mm) with capillaries and tissue is shown in 

Fig. 11, with boundary conditions which include constant capillary pressures and 

concentrations at the surfaces with normals in x-direction, while the tissue has impermeable 

walls at the boundary. Diagonal capillaries lie in the x,y plane. The following data are used:

Volume fraction, rV = Vcapillary/Vtotal = 0.131708

Capillary diameter dcapillary = 0.10 mm, Wall thickness δcapillary = 0.1mm

Diffusion coefficient in capillaries (1D pipe elements) Dcapillary = 1000 mm2/s

Diffusion coefficient in pipe wall Dwall = 0.05 mm2/s

Diffusion coefficient in tissue Dtissue = 0.1 mm2/s

Hydraulic coefficient for the capillary wall kh = 0.05 mm2/ (Pa s)

Time steps: 20 × 0.1 s

Boundary conditions for the true model include: pressures Pin=1 and Pout=0, concentrations 

Cin=1 and Cout=0 at the capillary nodes; while tissue boundary is with the flux equal to zero 

for fluid and for diffusion. In case of the smeared model, the capillary boundary conditions 

are imposed for the capillary domain (“degrees of freedom” 1 and 3 at the FE nodes, see Fig. 

7), while the tissue domain is isolated as in the true model. Therefore, we have fluid flow 

and convective-diffusive mass transport within capillaries, walls and tissue.

The concentration field within the tissue obtained by using the true model (capillaries as 1D 

elements, connectivity elements between 1D elements and 3D FEs for tissue) and the 

smeared model - with the 3D CSFEs - are shown in Fig. 12a,b. It can be seen that the 

concentration fields are practically the same, oblique with respect to the x-axis. The mean 

concentration evolution within capillaries (or in capillary domain for smeared model) and 

within tissue is shown in Fig. 12c; solutions are the same for true and smeared model. It can 

be seen that evolution curve for tissue is displaced to the right with respect to that of 

capillaries due to the resistance to transport through the capillary walls; the resistance is 

larger in case of partitioning, here expressed by partitioning coefficient P=2.

b) Transport from the boundary—Here, constant concentration C=1 is imposed at all 

external surfaces, with material parameters the same as in case a).

As in Fig. 12c, there is a delay in mass transport in the tissue with respect to capillaries.
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4.3 Capillary bed model

The goal of this example is to demonstrate applicability of the smeared model to a simplified 

capillary bed, schematically shown in Fig. 14. The model consists of larger arterial and vein 

vessels (arteriole and venule) and capillary network. We have selected a tissue domain which 

is considered isolated, with no fluxes through boundaries. The following data are used:

Domain parameters:

  Dimension of domain: 420 × 420 µm

  Volume fraction: 0.11

  Capillary average diameter: 4 µm; average thickness: 0.4 µm

  Diameters of arteriola/venula: 26 – 30 µm; diameters of capillaries out of domain: 6 – 16 µm

  Diffusion coefficient in tissue: 1000 µm2/s

  Diffusion coefficient within blood vessels: 10000 µm2/s

  Diffusion coefficient of capillary wall: 0.1 µm2/s

  Hydraulic coefficient: 0.001 µm/(mmHg s)

  Viscosity coefficient 7.5 ×10−6 mmHg s

  Darcy coefficient for tissue 0.001 µm2/(mmHg s)

Prescribed values:

  Concentrations: C = 1 M at arteriole inlet and outlet; C = 0 M at inlet and outlet of venule

  Pressures: P=25mmHg at arteriole inlet; P=24mm Hg at the venule inlet

  Velocities: v=5mm/s at arteriole outlet; v=0.1mm/s at venule outlet

  Time steps: 20 × 50 s

Boundary conditions for fluid and mass transport are imposed at the inlet and outlet blood 

vessels. The true model consists of 1D pipe elements for all blood vessels, 2D elements for 

tissue continuum, and connectivity elements between capillaries and tissue within the tissue 

domain. The smeared model includes 1D elements for blood vessels outside the tissue 

domain, and composite smeared elements for the bounded domain; common nodes of the 

CSFE elements at the boundary (capillary “degrees of freedom” 1 and 3) and blood vessels 

have the same pressures and concentrations, while the capillary domain is considered 

isolated, as it is the tissue domain. Darcy and diffusion tensor coefficients are calculated at 

the cross-sectional points and at the middle of capillaries and then the values are mapped to 

the continuum mesh of the smeared model.

Fig. 15 shows pressure fields for the true model and for smeared model. It can be seen that 

pressure distribution within capillaries and within capillary domain (Figs. 15a and 15b) is 

similar, while solution for smeared model tissue domain shows an average, almost uniform 

field (Fig. 15c) when compared the true solution.

Solutions for concentrations are shown in Fig. 16. It can be seen that smeared model gives a 

reasonable agreement when compared concentration fields in capillaries and capillary 

domain (Figs. 16a and 16b) and within tissue (Figs. 16a and 16c). Also, the mean 

concentration evolution within tissue (Fig. 16d) is in a good agreement when calculated by 

using true and smeared models. Some differences are expected due to the conditions at the 

boundary between blood vessels and tissue domain (transport is conditioned through just 

few points: connected directly to capillaries – true model, and to continuum in case of 
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smeared model). Also, the capillary network is very inhomogeneous and occupies part of the 

selected continuum domain. Although it is not tested here, inhomogeneous distribution of 

capillary densities is feasible without any change to our FE model.

4.4 Liver model

In this example, gradient-driven transport is studied in the liver, for its fundamental role as a 

biological barrier in nanomedicine. In fact, the liver is one of the organs that play a major 

role in uptake of nanoparticles, thus significantly reducing nanoparticles reach of their final 

destination [43–45]. This is particularly critical for tumor treatments, where nanoparticles 

have shown great potential [3, 46].

Geometry of liver and blood vessel network is generated at R&D Center for Bioengineering 

BIOIRC from micro-CT scan of a mouse liver, obtained following a previously published 

procedure [47]. Briefly, blood was washed out from the vasculature via ex-vivo transcardial 

perfusion first with Heparine sodium salt [AAA1619803, Alfa Aesar] in 0.9% NaCl [72101, 

Ricca Chemical Company], then with the contrast agent Microfil [MV-120, Flow Tech Inc.]. 

After perfusion, Microfil was allowed to solidify for a few hours before moving the liver into 

4% Paraformaldehyde for preservation. Micro computed tomography (micro-CT) was then 

used to scan the vascular structure by the Preclinical Imaging Core at the Houston Methodist 

Research Institute. The geometry of the model can be seen in Fig. 17a. The model consists 

of 1D pipe FEs for larger vessels (7736 elements), 3D composite smeared elements (39640 

elements), and connectivity elements (726 elements) for connecting large vessels with 

continuum nodes (capillary domain DOF) of smeared FEs. Number of nodes is 54042. Data 

for this example are:

Prescribed conditions in larger vessels (at input/output nodes of 1D pipe elements mesh)

  Inlet Pressure 3999.7 Pa (30 mmHg)

  Outlet Pressure 1333.2 Pa (10 mmHg)

  Inlet Concentration Bolus - C(t) (Fig. 19 dashed line)

  Outlet Concentration 0 molar

Characteristics of fluid/diffusion flow through blood vessels (large vessels and capillaries)

  Viscosity 10−3 Pa s

  Diffusion coefficient 1000 mm2/s

Characteristics of blood vessel walls:

  Hydraulic permeability coefficient 10−12 mm / (Pa s)

  Diffusion coefficient 0.1 mm2 /s

  Thickness 10% of vessel diameter

Characteristics of tissue

  Diffusion coefficient 0.1 mm2/s

  Darcy coefficient 10−12 mm2 /(Pa s)

Smeared model:

  Average capillary diameter 0.025 mm

  Capillary wall thickness 0.0025 mm

  Volume fraction 10%

  Diffusion coefficient of capillary wall: 10−6 mm2 / s

  Hydraulic permeability of capillary wall: 10−12 mm / (Pa s)
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Time steps: 40 × 10 s

The concentration field within large vessels, within capillaries (capillary domain), and tissue 

domain is shown in Fig. 17 at the end of first time step. It is noticeable that concentrations 

have the largest values in blood vessels (practically the same due to convection and large 

diffusion coefficient in fluid), followed by capillaries and then tissue. Concentration fields in 

a vertical plane, for three time steps, are shown in Fig. 18, with the same characteristics 

regarding the mass transport delay between capillary and tissue domains as in Fig. 17.

Evolution of the mean concentration within capillaries (capillary domain) and tissue is 

shown in graphs of Fig. 18. It is interesting to note that the model gives insight into the 

process of transport of particles and molecules within the organ. In the first period, when the 

entering mass is increasing, concentration within capillaries and tissue is increasing. The 

maximum concentration within capillaries has a delay with respect to the maximum of C(t). 

Further, transport continues from capillaries to tissue, as long as the concentration within 

capillaries is larger than in tissue. When concentration in the tissue becomes larger then 

concentration within capillaries, transport reverses, going from tissue to capillaries. This 

process corresponds to clearance of molecules or particles from the organ. Ultimately, 

transport occurs from capillaries to large vessels, when concentration in capillaries becomes 

larger than in large vessels. The mean concentration within tissue reaches the maximum with 

a delay with respect to capillary maximum, after which the clearance process starts toward 

the capillaries.

Finally, to gain insight into pressure distribution, Fig. 20 shows pressure field, for the outer 

surface of 3D smeared elements, a dotted representation of large vessels and continuum, and 

cross-section. As in the case of concentrations, there is a reduction in pressures – from large 

vessels to capillaries and to tissue.

4.5 Pancreas model

With a 2 year survival rate of only 10%, pancreatic cancer is one of the deadliest cancers in 

the US [48]. Its usually late diagnosis, rapid advancement, and frequent recurrence 

contribute to a generally poor prognosis and low rate of therapeutic success. Furthermore, 

the majority of patients with pancreatic cancer are normally treated with systemic 

chemotherapy [49], but the development of chemoresistance results in an overall low 

response rate [50–52]. For this reason, the understanding of drug transport in pancreas is of 

great interest to discover potential strategies for enhancing therapeutic efficacy of 

conventional drugs or chemotherapeutics. This model was also selected since the geometry, 

blood vessel size and capillary volumetric fraction are different from other tissues; and with 

the aim to help in the insight into drug delivery for pancreatic cancer. Material 

characteristics are taken to be the same as for the liver model, as well as the entering 

concentration bolus. The model is generated at R&D Center BIOIRC from CT imaging data 

recorded at MD Anderson Cancer Institute, Houston under an approved Institutional Review 

Board protocol (PA14-0646). Geometry of the model is shown in Fig. 21(a). As in the case 

of the previous example, the model consists of 1D pipe FEs for larger vessels (1602 

elements), 3D composite smeared elements (104884 elements), and connectivity elements 
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(312 elements) for connecting large vessels with continuum nodes (capillary domain DOF) 

of smeared FEs. Number of nodes is 127783. Data for this example are:

Prescribed conditions in larger vessels (at input/output nodes of 1D pipe elements mesh)

  Inlet Pressure 3999.7 Pa (30 mmHg)

  Outlet Pressure 2666.4 Pa (10 mmHg)

  Inlet Concentration (as for liver model) Bolus - C(t) (Fig. 23 dashed line)

  Outlet Concentration 0 molar

Smeared model:

  Average capillary diameter 0.005 mm

  Capillary wall thickness 0.0005 mm

  Volume fraction 2%

Time steps: 40 × 10 s

Other material characteristics are the same as for the liver model.

Figure 21 shows concentration fields at the end of the first time step (t=40s), for large 

vessels, within capillary and tissue domain. Due to a smaller capillary volumetric fraction, 

now the difference between concentration in capillaries and in tissue is larger than for the 

liver (Fig. 17). Concentration fields in a vertical plane, for three time steps, are shown in Fig. 

22, with the same characteristics as in the liver model (Fig. 18), but now more pronounced.

Change of the mean concentration in capillaries (capillary domain) and in tissue is shown in 

Fig. 23. The curves representing mean concentrations have the same character as in case of 

liver (Fig. 19), but now, due to smaller volumetric fraction of capillaries (2% with respect to 

10% for liver), the curves are closer. The transport process also has the same character as in 

the liver.

Pressure field in pancreas is shown in Fig. 24, indicating a pronounced pressure gradient in 

capillaries due to the organ shape (when compared to the liver).

5. Summary and conclusions

This study introduces a smeared modeling concept which simplifies numerical modeling of 

mass transport (convection and diffusion) within capillary network and tissues. It is first 

assumed that the concentration within capillaries is uniform and can change over time. Then, 

transport through capillary walls, considered as discrete physical objects within the 

continuum, is transformed (smeared) to a distributed continuum mass sources within tissue. 

The basis of this transformation is the relation between the surface of the capillary wall and 

the volume of the continuum. Further, the corresponding continuum FE formulation includes 

physical parameters of the capillary-tissue system, such as: capillary volumetric fraction, 

diffusion coefficient through the capillary wall and partitioning (hydrophobicity) at the wall 

surface.

Following the basic development within the described special conditions, a new continuum 

composed smeared finite element (CSFE) is introduced. This smeared finite element 

approach relies on the following three basic steps in the element formulation. In the first 

step, a transformation of the fluid flow and convection-diffusion 1D constitutive relations to 
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the continuum constitutive relations is performed. This is achieved by a straightforward 

derivation of the Darcy and diffusion tensor for general 3D conditions, starting from the 

Hagen-Poiseuille relation for flow in pipes and 1D Fick’s law for diffusion within pipes. In 

the second step, two domains of the finite element are introduced: capillary and tissue 

domain. The first domain occupies the space corresponding to the volume of capillaries, and 

the remaining volume represents the tissue domain. Each domain has its own “degrees of 

freedom” – pressure and concentration, hence the FE nodes have 4 DOFs. In the capillary 

domain, fluid flow is described using the continuum pressure gradient-driven formulation 

with the Darcy smeared tensor, while the convective-diffusive transport includes the Darcy 

velocities and Fick’s diffusion with the smeared diffusion tensor. Transport within the tissue 

domain relies on the standard formulation for porous media, with appropriate Darcy and 

diffusion coefficients. Boundary conditions for the smeared element refer to each DOF. 

Finally, in the third step, the connectivity (fictitious) 1D finite elements are introduced at 

each element node to couple the two domains. The connectivity elements contain the 

transport properties of the capillary walls (diffusivity and partitioning) and geometrical 

characteristics of the capillary network.

The formulated smeared methodology is tested with respect to accuracy on characteristic 

simple examples, while robustness and applicability to the real physiological conditions is 

illustrated on two whole organ examples (liver and pancreas). The later two models are 

generated using the geometrical structure of capillaries as imaged with ex-vivo micro 

computed tomography (micro-CT) scans of organs perfused with a contrast agent.

The smeared model introduced here offers a superior methodology to simulate in silico the 

transport of molecules and particles used in biomedical applications in order to improve 

drug delivery of therapeutics. While this approach is based on gradient-driven transports 

(convection and diffusion) making it ideal to study biodistribution of nanotherapeutics and 

molecules in complex capillary systems of organs, the incorporation of the partitioning 

phenomenon inside CSFE enables the simulations and studies of immune and other cells 

transport. In the latter case, partitioning can phenomenologically model cell accumulation in 

tumor tissues against cell concentration gradients. The introduced smeared modeling can 

also be used for simulating the accumulation of drugs in specific tissues domains governed 

by molecular hydrophobicity (partitioning) or drug binding. Another strength of the CSFE 

element is that it relies on the use of measurable parameters, such as capillary density and 

other characteristics of capillaries and tissues. It was validated that CSFE can be employed 

to adequately model realistic physiological conditions and thus can be further applied to a 

wide range of biomedical investigations. Although the CSFE model was validated on 

complex biological systems, it can be directly applied to study transport in other complex 

non-biological systems, such as, for example, soils.
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Highlights

• We introduce a new smeared concept for modeling mass transport in blood 

vessels networks and tissue.

• A relation which connects the blood vessel internal surface and volumetric 

ratio of capillary network is derived as a one of the basic expressions in the 

smeared approach.

• The derived relation further enables to smeared diffusive transport from 

capillary system to tissue - as mass source distributed within continuum finite 

model. Here, it is assumed that concentration within capillaries is uniform and 

variable with time.

• The pipe 1D Hagen-Poisseulle law is transformed into continuum Darcy law 

with the corresponding Darcy tensor. In the analogous way the pipe 1D 

diffusion constitutive relation is transformed into continuum diffusion tensor. 

These transformations are the basic relations for introducing smeared 

continuum finite element.

• A composite smeared finite element (CSFE) is formulated. The element has 

two domains – capillary (which occupies capillary volume) and tissue 

domain, each having its DOFs – pressure and concentration. The physical 

fields within the domains are connected at element nodes by the connectivity 

(fictitious) 1D elements; these elements include geometric and material 

characteristics of capillary walls, as hydraulic conductivity, diffusivity and 

partitioning.

• The introduced CSFE provides a robust and easy modeling of particle/drug 

convective-diffusive transport within complex capillary-tissue systems and 

enables in silico simulations of large domains like entire tumors or organs. 

The models rely on measurable parameters as capillary volumetric density, 

capillary diameters, wall diffusivity, partitioning at the wall surface.

• Selected examples illustrate accuracy of the introduced smeared model and of 

the CSFE element, and also applicability to two large systems (liver and 

pancreas).
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Fig. 1. 
Dependence of apparent relative viscosity (relative to blood plasma) on microvessel 

diameter; solid line is for blood vessels in vivo measurement on rat mesentery, dashed line is 

for glass tube. Figure is taken from [13].
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Fig. 2. 
Characteristics of cardiovascular system of a 13kg dog. a) Cross-sectional area of blood 

vessel for arteries, veins and capillaries; b) Velocity distribution; c) Pressure distribution; d) 

Blood volume in arteries, veins and capillaries. Figure taken from [26].
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Fig. 3. 
Capillary bed geometry for cancerous tissue, according to [30] and [32].
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Fig. 4. 
Evaluation of equivalent diffusion coefficient for tissue by numerical homogenization. (a) 

Extracellular fibrous space of skin [39] and simplified model of reference volume (RV) used 

for computational model; (b) Scaling function for doxorubicin molecule interacting with 

tissue; (c) Mass release curve used as the constitutive curve for diffusive transport; (d) 

Concentration distribution along a line (aligned with the flux direction) of the RV at a time 

t=0.1s, for the detailed (true) and equivalent model; (e) Diffusion coefficient for free 

diffusion in the liquid (Dbulk) and equivalent diffusion coefficient in terms of concentration.
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Fig. 5. 
Schematics of the connection (fictitious) elements between pipe (blood vessel) and 

continuum (tissue). (a) Capillary with plasma domain and porous wall, and surrounding 

tissue; (b) Pipe node A belongs to pipe and B belongs to tissue, while occupying the same 

spatial position.
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Fig. 6. 
Diffusion from capillary to tissue through elementary capillary wall surface dAcap which 

corresponds to the capillary volume dVcap and total volume dV; dVtissue is the volume 

occupied by tissue.
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Fig. 7. 
Continuum composite smeared finite element (CSFE). Input nodal data (left); elementary 

volumes within the element and nodal variables – pressures and concentrations in capillary 

and tissue domains; and connectivity element (right).
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Fig. 8. 
Fluxes through capillaries (pipes) at a branching point
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Fig. 9. 
Diffusion from capillary net into isolated circular tissue domain. (a) Geometry of capillary 

network and circular continuum; (b) Concentration field in capillaries and tissue calculated 

by the true model (left) and the smeared model (right, FE mesh shown), at time t=0.1s; no 

partitioning; (c) Concentration field as in b), in case of partitioning at the bloodcapillary 

wall, P=10 - concentration in tissue notable smaller than in b) due to partitioning.
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Fig. 10. 
Change of concentration in tissue for circular domain, true and smeared models. The 

ultimate concentration in tissue is ten times smaller (P=10) with partitioning.
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Fig. 11. 
Geometry and boundary conditions of the cube tissue domain with capillary net
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Fig. 12. 
Solutions for concentrations in 3D model. Concentration field within tissue for t=2s: (a) true 

model, (b) smeared model; (c) Mean concentration evolution within capillaries (or in 

capillary domain) and tissue, true and smeared model; solutions for the case without and 

with hydrophobicity, expressed by partitioning coefficient P=1 and P=2, respectively.
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Fig. 13. 
Transport from the boundaries to the region. Concentration at time t=1s, mid-plane z=5mm, 

in case of true model (a) and smeared model (b); (c) Evolution of mean concentration in 

capillaries (capillary domain) and in tissue-solutions are the same for true and smeared 

model.
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Fig. 14. 
A simplified model of capillary bed. Geometry of capillaries and tissue domain.
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Fig. 15. 
Pressure field for capillary bed (pressure in Pa). (a) True model, pressure within blood 

vessels and tissue; (b) Smeared model, with pressures within capillary domain; (c) Smeared 

model, with pressures within tissue domain
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Fig. 16. 
Concentrations in capillary bed. Concentration fields at time t = 1000s (last step of 

simulation): (a) true model, distribution within blood vessels and tissue; smeared model: 

capillary domain (b), and tissue domain (c); (d) mean concentration evolution within 

capillary and tissue domains.
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Fig. 17. 
Liver model, concentration at time t = 40s. (a) Geometry and concentration within large 

vessels; (b) capillary domain; (c) tissue domain
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Fig. 18. 
Concentration field within vertical plane for capillary and tissue domains, for three time 

steps.
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Fig. 19. 
Mean concentration evolution for capillaries and tissue of the liver.
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Fig. 20. 
Pressure field in liver. From the left to the right: outer surface of 3D smeared elements, 

dotted representation of pressure in large vessels and continuum, and pressure in a vertical 

cross-section.
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Fig. 21. 
Pancreas model, concentration at time t = 40s. (a) Geometry and concentration within large 

vessels; (b) capillary domain; (c) tissue domain
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Fig. 22. 
Pancreas model. Concentration field within vertical plane for capillary and tissue domains, 

for three time steps.
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Fig. 23. 
Pancreas model: change of mean concentration in capillaries and tissue with time
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Fig. 24. 
Pressure field in pancreas. From the left to the right: outer surface of 3D smeared elements, 

dotted representation of pressure in large vessels and continuum, and pressure in a vertical 

cross-section.
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