

Submit a Manuscript: http://www.f6publishing.com

World J Gastroenterol 2017 November 21; 23(43): 7791-7806

DOI: 10.3748/wjg.v23.i43.7791

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

META-ANALYSIS

Laparoscopic VS open hepatectomy for hepatolithiasis: An updated systematic review and meta-analysis

Hui Li, Jun Zheng, Jian-Ye Cai, Shi-Hui Li, Jun-Bin Zhang, Xiao-Ming Wang, Gui-Hua Chen, Yang Yang, Gen-Shu Wang

Hui Li, Jun Zheng, Jian-Ye Cai, Shi-Hui Li, Jun-Bin Zhang, Gui-Hua Chen, Yang Yang, Gen-Shu Wang, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangzhou 510630, Guangdong Province, China

Hui Li, Jun Zheng, Jian-Ye Cai, Shi-Hui Li, Jun-Bin Zhang, Gui-Hua Chen, Yang Yang, Gen-Shu Wang, Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China

Xiao-Ming Wang, Department of Hepatobiliary Surgery, Yijishan Hospital affiliated to Wannan Medical College, Wuhu 241001, Anhui Province, China

Author contributions: Yang Y and Wang GS takes responsibility for the integrity of the data and the accuracy of the data analysis. Li H, Yang Y and Wang GS designed the study, drafted the manuscript and provided administrative support and supervision; Zheng J, Cai JY and Li SH acquired the data; Li H, Zheng J and Cai JY analyzed and interpreted the data; Wang XM, Chen GH, Yang Y and Wang GS corrected the manuscript for controversial content; Zhang JB performed statistical analysis. Li H, Zheng J and Cai JY contributed equally to this work.

Supported by National Natural Science Foundation of China, No. 81372243, No. 81570593 and No. 81370575; Key Scientific and Technological Projects of Guangdong Province, No. 2014B020228003 and No. 2014B030301041; Natural Science Foundation of Guangdong Province, No. 2015A030312013; Science and Technology Planning Project of Guangzhou, No. 201400000001-3, No. 201508020262 and No. 2014J4100128; Science and Technology Planning Project of Guangdong Province, No. 2017A020215178.

Conflict-of-interest statement: The authors declare that there are no conflicts of interest related to this report.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Gen-Shu Wang, MD, PhD, Professor, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou 510630, Guangdong Province, China. wgsh168@163.com Telephone: +86-20-85252177 Fax: +86-20-85252276

Received: June 17, 2017 Peer-review started: July 10, 2017 First decision: July 28, 2017 Revised: July 31, 2017 Accepted: August 15, 2017 Article in press: August 15, 2017 Published online: November 21, 2017

Abstract

AIM

To perform a meta-analysis on laparoscopic hepatectomy VS conventional liver resection for treating hepatolithiasis.

METHODS

We conducted a systematic literature search on PubMed, Embase, Web of Science and Cochrane Library, and undertook a meta-analysis to compare the efficacy and safety of laparoscopic hepatectomy *VS* conventional open liver resection for local hepatolithiasis in the left or right lobe. Intraoperative and postoperative outcomes (time, estimated blood loss, blood transfusion rate, postoperative intestinal function recovery time, length of hospital stay, postoperative complication rate, initial residual stone, final residual stone and stone recurrence) were analyzed systematically.

RESULTS

A comprehensive literature search retrieved 16 publications with a total of 1329 cases. Meta-analysis of these studies showed that the laparoscopic approach for hepatolithiasis was associated with significantly less intraoperative estimated blood loss [weighted mean difference (WMD): 61.56, 95% confidence interval (CI): 14.91-108.20, P = 0.01], lower blood transfusion rate [odds ratio (OR): 0.41, 95%CI: 0.22-0.79, P = 0.008], shorter intestinal function recovery time (WMD: 0.98, 95%CI: 0.47-1.48, P = 0.01), lower total postoperative complication rate (OR: 0.52, 95%CI: 0.39-0.70, P < 0.0001) and shorter stay in hospital (WMD: 3.32, 95%CI: 2.32-4.32, P < 0.00001). In addition, our results showed no significant differences between the two groups in operative time (WMD: 21.49, 95%CI: 0.27-43.24, P = 0.05), residual stones (OR: 0.79, 95%CI: 0.50-1.25, P = 0.31) and stone recurrence (OR: 0.34, 95%CI: 0.11-1.08, P = 0.07). Furthermore, with subgroups analysis, our results proved that the laparoscopic approach for hepatolithiasis in the left lateral lobe and left side could achieve satisfactory therapeutic effects.

CONCLUSION

The laparoscopic approach is safe and effective, with less intraoperative estimated blood loss, fewer postoperative complications, reduced length of hospital stay and shorter intestinal function recovery time than with conventional approaches.

Key words: Hepatolithiasis; Laparoscopic hepatectomy; Conventional liver resection; Systematic review; Metaanalysis

© **The Author(s) 2017.** Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Application of the laparoscopic approach in symptomatic hepatolithiasis has gradually attracted more attention. However, its advantages over the open approach are still unclear. We analyzed 16 articles, comprising 1329 patients, to compare the two techniques for treating hepatolithiasis. We concluded that the laparoscopic approach is safe, effective and feasible for liver resection, with less intraoperative estimated blood loss, fewer postoperative complications, reduced length of hospital stay and shorter intestinal function recovery time than with conventional approaches.

Li H, Zhang J, Cai JY, Li SH, Zhang JB, Wang XM, Chen GH, Yang Y, Wang GS. Laparoscopic VS open hepatectomy for hepatolithiasis: An updated systematic review and meta-analysis. *World J Gastroenterol* 2017; 23(43): 7791-7806 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i43/7791.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i43.7791

INTRODUCTION

Hepatolithiasis is a gallstone disorder that involves the intrahepatic biliary duct (IHD), which may occur alone or accompanying extrahepatic gallstones. IHD stones may occur in any segments of the liver, and are particularly prevalent in the left lateral segment^[1]. A recent report has shown that only 0.6%-1.3% of patients have intrahepatic stones in western countries, being more prevalent in eastern countries, especially Southeast Asia^[2]. Hepatolithiasis over a long period of time may cause secondary cholangitis-originated cirrhosis and even cholangiocarcinoma^[1,3], which can seriously affect the health and quality of life of patients.

There are many approaches to treat this disease, including percutaneous transhepatic cholangioscopic lithotripsy, IHD exploration and hepatectomy^[4-7]. Among these treatment methods, hepatectomy is considered the most radical option for hepatolithiasis. In the past, open hepatectomy was preferred, with bile duct exploration and stone removal^[8,9]. In recent years, with the development of laparoscopic technology and refinement of laparoscopic instruments, laparoscopic hepatectomy is now identified as a safe and flexible technique for hepatolithiasis.

However, few meta-analyses have evaluated the efficacy and safety of the laparoscopic approaches and open surgery that are routinely used in hepatolithiasis. It is unclear whether laparoscopic hepatectomy can be performed as effectively and safely as conventional hepatectomy or is superior to it in treating hepatolithiasis in the left or right hepatic lobes. Here, we performed a meta-analysis to assess the safety and efficacy of laparoscopic hepatectomy for treating intrahepatic bile duct stones. Furthermore, we evaluated left lateral sectionectomy and left hemihepatectomy by performing subgroups analysis.

MATERIALS AND METHODS

Search strategy and criteria

This meta-analysis was performed to compare laparoscopic hepatectomy and conventional open hepatectomy for hepatolithiasis. In January 2017, PubMed, Embase, Web of Science and Cochrane Library were searched for studies comparing laparoscopic hepatectomy with open liver resection for hepatolithiasis. There were no restrictions on

publication date, type or language. Search terms were confined to Title/Abstract: "hepatolithiasis" OR "intrahepatic stone" AND "laparoscopic" OR "laparoendoscopic". The reference lists of all selected articles were manually searched to determine if they should be included. Two reviewers browsed the titles and abstracts independently. Articles were included if they: (1) compared the outcomes of laparoscopic and open approaches for hepatolithiasis; and (2) reported at least some of the outcomes that we were interested in. Articles were excluded if they were submitted by the same authors or they reported duplicate data, to avoid duplication of patient populations. Editorials, case reports, conference abstracts and animal studies were excluded.

Data management

Data from the included studies were summarized by two of the authors independently. They were blinded to journals of publication, authors and study institutions of all available articles. Any disagreements between the reviewers were settled by the senior author. Perioperative outcomes were compared, including operative time, estimated blood loss (EBL), intraoperative transfusion, length of hospital stay (LOS), time to oral intake and postoperative complications. Outcomes regarding residual rate of intrahepatic stones containing initial residual, final residual and stone recurrence were also analyzed.

Quality assessment and statistical analysis

The level of evidence of these articles was estimated using the UK Cochrane Centre of Evidence $(2009)^{[10]}$. The methodological quality of randomized controlled trials (RCTs) was assessed by the Cochrane Risk of Bias Tool^[11]. The modified Newcastle-Ottawa scale was used to assess the quality of retrospective studies, which consists of three factors: patient selection, comparability of the study groups, and assessment of outcome^[12-14]. The maximum total score on this scale was 9, and studies with scores \geq 7 were defined as high quality^[12].

All data were pooled with the Cochrane Collaboration' s Review Manager 5.3 (Cochrane Collaboration, Oxford, United Kingdom). Mean differences and 95% confidence intervals (CIs) were calculated to pool functional outcomes. Statistical heterogeneity among studies was assessed using the χ^2 test with significance set at P < 0.1, and heterogeneity was quantified using the I^2 statistic. A fixed-effects model was used routinely only if there was obvious heterogeneity among the included literature^[15].

Subgroups and publication bias

Intrahepatic duct stones were located in different liver segments. Patients were subgrouped by type of operation, including left lateral sectionectomy (LLS), left hemihepatectomy (LH) and right hepatectomy (RH). Subgroup analysis was performed to compare outcomes resulting from different excision extension. Funnel plots were used to signify the publication bias. If outcomes were associated with significant heterogeneity, a random-effects model was used to minimize bias.

RESULTS

Characteristics of selected articles

The literature search identified 515 articles, 115 from PubMed, 187 from Embase and 213 from Web of Science; no studies were available in Cochrane Library (Figure 1). Of the 515 identified articles, 203 were duplications, 194 did not focus on hepatolithiasis, 40 were not comparative studies, 35 were case reports, 4 were conference abstracts and 2 were editorials. The full text of the remaining 36 articles was carefully reviewed. Twenty more were excluded, including 2 case reports, 5 that were not comparative studies and 13 that had no data of interest. Finally, 16 articles were included in our meta-analysis^[16-31]. The characteristics of the selected articles are shown in Table 1.

Of the 1329 patients included in the 16 articles, 624 were treated with the laparoscopic approach and 705 with the open approach (Table 2). All 16 studies were retrospective except for 1 RCT (level of evidence: 2b)^[17]. Among the remaining 15 studies, 3 compared contemporary series of patients (level of evidence: 3a)^[20,25,30], 11 were retrospective case-control studies (level of evidence: 3b)^[16,19,21-24,26-29,31], and 1 was a retrospective study using historical series as controls (level of evidence: 4)^[18] (Table 3).

Duration of operation in the 15 studies^[16-21,23-31] was similar between the two groups [weighted mean difference (WMD): 21.49, 95%CI: -0.27 to 43.24, P = 0.05] (Figure 2A). EBL was analyzed among 1221 patients from 13 studies^[16-20,23-26,28-31], and less EBL was found in the laparoscopic group (WMD: -61.56, 95% CI: -108.2 to -14.91, P = 0.01) (Figure 2B). Intraoperative transfusion was analyzed in 9 articles^[19,21,24-26,28-31], showing lower transfusion rate in the laparoscopic group [odds ratio (OR): 0.41, 95%CI: 0.22-0.79, P = 0.008) (Figure 2C). All 16 articles^[16-31] were analyzed for postoperative complications, indicating that the rate was significantly lower in the laparoscopic group (OR: 0.52, 95%CI: 0.39-0.70, P < 0.001) (Figure 2D). Seven articles^[16,22-25,27,31] reported time to oral intake, with a significantly shorter time for recovery of bowel movement in the laparoscopic group (WMD: -0.98, 95%CI: -1.48 to -0.47, P < 0.001) (Figure 3A). Fifteen studies^[16,17,19-31], including 1294 patients, evaluated LOS, which was significantly shorter in the laparoscopic group (WMD: -3.32, 95% CI: -4.32 to -2.32, P < 0.001) (Figure 3B). No significant difference was found in initial and final

Table 1 Characteristics of included studies											
Ref.	Level of evidence	Design	Patier LH	nt No. OH	Location of stone	F/U, mo LH/OH	Matching	Quality score			
Cai <i>et al</i> ^[16] , 2007	3b	Re	29	22	L+R	16.1/16.1	1,2,3,4,5	7			
Ding <i>et al</i> ^[17] , 2015	2b	RCT	49	49	L	Perioperative	1,2,3,5	RCT			
Li, H et al ^[18] , 2008	4	Re	14	20	L+R	Perioperative	1,2	5			
Jin <i>et al</i> ^[19] , 2015	3b	Re	96	105	L	18-90	1,2,3,6,7	5			
Kim <i>et al</i> ^[20] , 2015	3a	Re	17	17	R	35/35	1,3,4,5	7			
Lee et al ^[21] , 2014	3b	Re	7	9	L	12.1/11.1	1,2,4,6	6			
Li, J et al ^[22] , 2014	3b	Re	35	40	L+R	41/41	1,2,3	6			
Li, Y et al ^[23] , 2015	3b	Re	23	22	L+R	15-51	1,2,3,6	5			
Namgoong et al ^[24] , 2014	3b	Re	37	112	L	NA	1,2,3,4	7			
Peng et al ^[25] , 2016	3a	Re	36	39	L	18.9/20	1,2,3,4	7			
Shin <i>et al</i> ^[26] , 2015	3b	Re	40	54	L	46.8/75.7	1,2,6	5			
Song <i>et al</i> ^[27] , 2010	3b	Re	7	10	L	Perioperative	1,2,3,4,5	7			
Tian <i>et al</i> ^[28] , 2013	3b	Re	116	78	L+R	29/29	1,2,4	6			
Tu et al ^[29] , 2010	3b	Re	28	33	L	17/17	1,2,3,4	7			
Ye et al ^[30] , 2015	3a	Re	46	51	L	33/33	1,2,3,4	7			
Zhou <i>et al</i> ^[31] , 2013	3b	Re	44	44	L+R	24/24	1,2,3,4,5,6,7	7			

1: Age; 2: Sex; 3: Liver function; 4: Previous upper surgery history; 5: Surgeon experience; 6: Body mass index; 7: American Society of Anesthesiologists score. F/U: Follow-up, mean or median or range, month; L: Left intrahepatic; LH: Laparoscopic hepatectomy; NA: Not available; OH: Open hepatectomy; R: Right intrahepatic; RCT: Randomized controlled trail; Re: Retrospective.

Table 2 Results of meta-analysis in laparoscopic hepatectomy vs open hepatectomy													
Outcomes of interest	Study, <i>n</i>	LH <i>, n</i>	ОН, п	WMD/OR (95%CI)	Р	Stud	y heteroger	leity	Р				
						χ^2	df	<i>I</i> ² , %					
Operative time, min	15	589	665	21.49 (-0.27, 43.24)	0.05	227.54	14	94	< 0.001				
Estimated blood loss, mL	13	575	646	-61.56 (-108.2, -14.91)	0.01	124.6	12	90	< 0.001				
Intraoperative transfusion	9	450	525	0.41 (0.22, 0.79)	0.008	13.36	8	40	0.10				
Length of hospital stay, d	15	609	685	-3.32 (-4.32, -2.32)	< 0.001	75.37	14	81	< 0.001				
Postoperative complications	16	624	705	0.52 (0.39, 0.70)	< 0.001	10.10	15	0	0.81				
Time to oral intake, d	7	210	289	-0.98 (-1.48, -0.47)	< 0.001	188.28	6	97	< 0.001				
Initial residual stone	12	517	604	0.79 (0.50, 1.25)	0.31	3.96	11	0	0.97				
Final residual stone	5	136	146	0.34 (0.11, 1.08)	0,07	2.92	4	0	0.57				
Stone recurrence	12	530	604	0.63 (0.34, 1.16)	0.14	4.08	11	0	0.97				

df: Degrees of freedom; LH: Laparoscopic hepatectomy; OH: Open hepatectomy; WMD/OR: Weight mean difference/odds ratio.

Figure 1 Flow chart showing study retrieval and selection process.

Baishideng®

Α													
	LA			OA				Mean difference		Μ	ean differe	ence	
Study or subgroup	Mean [min]	SD [min]	Total	Mean [min]	SD [min]	Total	Weight	IV, random, 95%CI [m	in]	IV, rar	dom, 95%	CI [min]	
Cai 2007	236	135	29	220	61	22	5.4%	16.00 (-39.65, 71.35))	_			
Ding 2015	67.1	8.36	49	97.1	9.82	49	8.2%	-30.00 (-33.61, -26.39))	-	.		
Jin 2015	207	81	96	206	53	105	7.7%	1.00 (-18.11, 20.11)			+		
Kim 2015	432	158	17	335	85	17	3.6%	97.00 (11.71, 182.29)		—		
Lee 2014	212	66	7	229	66	9	4.7%	-17.00 (-82.19, 48.19)		•		
Li 2008	259	134	14	178	58	20	4.2%	81.00 (6.35, 155.65))		—	•	_
Li 2015	171.3	42.46	23	149.55	35.89	22	7.5%	21.75 (-1.19, 44.69)					
Namgoong 2014	257	50.4	37	237	75.5	112	7.6%	20.00 (-1.43, 41.43)					
Peng 2016	206.3	52.1	36	187.6	40.6	39	7.6%	18.70 (-2.56, 39.96)					
Shin 2015	174.2	56.6	40	210.4	51.6	54	7.6%	-36.20 (-58.50, -13.90))	_	-		
Song 2009	316.43	64.47	7	262	42.11	10	5.4%	54.43 (0.00, 108.86))				
Tian 2013	323.3	103	116	272.8	66.8	78	7.5%	50.50 (26.60, 74.40))		-		
Tu 2010	158	43	28	132	39	33	7.6%	26.00 (5.25, 46.75)			_		
Ye 2015	254	52	46	236	50.75	51	7.7%	18.00 (-2.49, 38.49)			+		
Zhou 2013	277.5	55	44	212.5	43.75	44	7.6%	65.00 (44.23, 85.77))		-	-	
Total (95%CI)			589			665	100.0%	21.49 (-0.27, 43.24)			•		
Heterogeneity: Tau	² = 1499.21;	$Chi^2 = 227$.54, df	= 14 (<i>P</i> < 0.0	0001); I ² =	= 94%				100		100	
Test for overall effe	ct: Z = 1.94 ((P = 0.05)							-200	-100	U	100	200
										Favours	LA Favo	urs OA	

В									
_	LA			OA				Mean difference	Mean difference
Study or subgroup	Mean [mL]	SD [mL]	Total	Mean [mL]	SD [mL]	Total	Weight	IV, random, 95%CI [mL]	IV, random, 95%CI [mL]
Cai 2007	603	525	29	655	569	22	2.0%	-52.00 (-357.03, 253.03) -	
Ding 2015	380	24.7	49	500	22.3	49	12.4%	-120.00 (-129.32, -110.68)	•
Jin 2015	383	281	96	554	517	105	7.1%	-171.00 (-284.75, -57.25)	
Kim 2015	988	929	17	879	942	17	0.5%	109.00 (-519.92, 737.92) ←	
Li 2008	454.5	314.2	14	550.9	348.1	20	3.2%	-96.40 (-320.82, 128.02)	
Li 2015	214.57	42.58	23	216.36	50.74	22	11.9%	-1.79 (-29.22, 25.64)	-
Namgoong 2014	280	96.9	37	347	285.5	112	10.2%	-67.00 (-128.40, -5.60)	
Peng 2016	215.8	75.8	36	298.7	158.9	39	10.6%	-82.90 (-138.58, -27.22)	_ - _
Shin 2015	263.3	166.3	40	378.4	432.9	54	6.5%	-115.10 (-241.54, 11.34)	
Tian 2013	479.2	402.1	116	505.8	396.9	78	7.1%	-26.60 (-141.11, 87.91)	
Tu 2010	180	56	28	184	50	33	11.9%	-4.00 (-30.86, 22.86)	-
Ye 2015	332	166.75	46	369	193.75	51	9.6%	-37.00 (-108.76, 34.76)	
Zhou 2013	367.5	262.5	44	392.5	300	44	6.9%	-25.00 (-142.79, 92.79)	
Total (95%CI)	2 - 4FE7 701 (² - 124	575	- 12 (8 < 0.0	0001\. <i>t</i> ²	646	100.0%	-61.56 (-108.20, -14.91)	
Test for overall offer	= 4557.70; (ct: 7 = 2 E0 ($J_{III} = 124.$	ou, ar	= 12 (P < 0.0	,0001); <i>1</i> =	= 90%	1		-200 -100 0 100 200
rest for overall effect	u: z = 2.59 (r = 0.010)	1						Favours LA Favours OA

С										
	LA		OA			Odds ratio		Odds	ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95%C	I	M-H, rando	m, 95%CI	
Jin 2015	8	96	32	105	21.0%	0.21 (0.09, 0.48)				
Lee 2014	0	7	5	9	3.8%	0.05 (0.00, 1.24)				
Namgoong 2014	0	37	10	112	4.4%	0.13 (0.01, 2.28)	_		_	
Peng 2016	2	36	9	39	10.8%	0.20 (0.04, 0.98)				
Shin 2015	3	40	4	54	11.3%	1.01 (0.21, 4.80)				
Tian 2013	21	116	14	78	22.6%	1.01 (0.48, 2.13)		-+	_	
Tu 2010	0	28	1	33	3.6%	0.38 (0.01, 9.70)				
Ye 2015	1	46	4	51	6.7%	0.26 (0.03, 2.43)			_	
Zhou 2013	6	44	8	44	15.9%	0.71 (0.22, 2.25)			_	
Total (95%CI)		450		525	100.0%	0.41 (0.22, 0.79)		•		
Total events	41		87					•		
Heterogeneity: Tau ²	= 0.34; Chi	$^{2} = 13.36$,	df = 8 (P =	0.10); I ²	= 40%			1	I	I
Test for overall effect	t: Z = 2.67	(P = 0.008)	3)				0.002	0.1 1	10	500
								Favours LA	Favours OA	

Baishideng® WJG www.wjgnet.com

_	LA		OA			Odds ratio	Odds ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI	M-H, fixed, 95%	%CI
Cai 2007	2	29	4	22	3.4%	0.33 (0.06, 2.01)		
Ding 2015	3	49	2	49	1.5%	1.53 (0.24, 9.60)		
Jin 2015	16	96	26	105	16.4%	0.61 (0.30, 1.22)	_ _ +	
Kim 2015	5	17	11	17	6.2%	0.23 (0.05, 0.96)	-	
Lee 2014	1	7	3	9	1.8%	0.33 (0.03, 4.19)		_
Li 2008	1	14	4	20	2.4%	0.31 (0.03, 3.10)		
Li 2014	1	35	6	40	4.3%	0.17 (0.02, 1.46)		
Li 2015	1	23	1	22	0.8%	0.95 (0.06, 16.27)		
Namgoong 2014	4	37	20	112	7.0%	0.56 (0.18, 1.75)		
Peng 2016	5	36	14	39	9.2%	0.29 (0.09,0.91)		
Shin 2015	7	40	22	54	12.3%	0.31 (0.12, 0.82)		
Song 2009	2	7	6	10	2.8%	0.27 (0.03, 2.12)		
Tian 2013	23	116	17	78	13.0%	0.89 (0.44, 1.80)		
Tu 2010	4	28	5	33	3.1%	0.93 (0.22, 3.87)		_
Ye 2015	6	46	11	51	7.2%	0.55 (0.18, 1.62)		
Zhou 2013	10	44	14	44	8.6%	0.63 (0.24, 1.63)		
Total (95%CI)		624		705	100.0%	0.52 (0.39, 0.70)	•	
Total events	91		166				•	
Heterogeneity: Chi ²	= 10.10, df	⁼ = 15 (<i>P</i> =	0.81 ; $I^2 = 0$)%				
Test for overall effect	ct: Z = 4.30	(<i>P</i> < 0.001	l)				0.02 0.1 1	10 50
							Favours I A Favo	urs OA

Figure 2 Forest plots comparing operative outcomes between laparoscopic and open liver resection for hepatolithiasis. A: Operative time; B: Intraoperative blood loss; C: Intraoperative transfusion; D: Postoperative complications.

residual rate (P = 0.31 and 0.07, respectively) (Figure 3C and D). Twelve studies^[16,19-22,24-26,28-31] reported stone recurrence rate, with no significant difference between the two groups (OR: 0.63, 95%CI: 0.34-1.16, P = 0.14) (Figure 3E).

Subgroup analysis

D

Operative time, EBL, LOS, intraoperative transfusion, postoperative complications, initial residual stone and stone recurrence were included in subgroup analysis. In the subgroup assessment of operative time, 8 studies^[17,19,20,23-26,30] with 793 patients were included. Pooled data of 5 studies^[17,19,23,25,26] showed no significant difference in operating time in patients who underwent LLS by laparoscopic and open approach (WMD: -3.04, 95%CI: -28.19 to 22.11, P = 0.81) (Figure 4A). Pooled analysis of 4 studies^[24-26,30] evaluating patients who underwent left hemihepatectomy showed no significant difference between the two groups (WMD: 6.72, 95% CI: -14.64 to 28.09, P = 0.54). In contrast, patients who underwent right hepatectomy tended to have a shorter operating time in the laparoscopic group (WMD: 97.00, 95%CI: 11.71-182.29, P = 0.03)^[20].

Five studies^[17,19,23,25,26] compared estimated blood loss for LLS, and showed significantly less blood loss for laparoscopic hepatectomy compared to open liver resection (WMD: -76.30, 95%CI: -144.45 to -8.15, P = 0.03) (Figure 4B). Four studies^[24-26,30] comparing EBL for left hemihepatectomy found significantly less blood loss in the laparoscopic group (WMD: -72.86, 95%CI: -116.03 to -28.69, P = 0.001). One study^[20] analyzed EBL for right hepatectomy, and indicated no significant difference between the two groups (WMD: 109.0, 95%CI: -519.92 to 737.92, P = 0.73).

Intraoperative transfusion was analyzed in 3 studies^[19,25,26] of left lateral sectionectomy, and showed a lower transfusion rate for the laparoscopic approach (OR: 0.25, 95%CI: 0.12-0.52, P < 0.001) (Figure 4C). Similarly, 4 studies^[24-26,30] comparing left hemihepatectomy indicated a lower transfusion rate for the laparoscopic approach (OR: 0.28, 95%CI: 0.08-0.90, P = 0.03).

Postoperative complication rate was analyzed in 8 studies^[17,19,20,23-26,30], of which 5 involved LLS, 4 left hemihepatectomy^[24-26,30] and 1 right liver resection^[20] (Figure 4D). It revealed that the laparoscopic approach resulted in fewer postoperative complications than LLS and RH (P = 0.02 and 0.04, respectively). However, it suggested no significant difference between the two groups for left hemihepatectomy (OR: 0.55, 95%CI: 0.29-1.06, P = 0.07).

Eight studies^[17,19,20,23-26,30] were included in the subgroup analysis of LOS. Five^[17,19,23,25,26] evaluated LLS, showing shorter LOS in the laparoscopic group (WMD: -2.03, 95%CI: -2.44 to -1.62, P < 0.001) (Figure 4E). Four studies^[24-26, 30] revealed that patients in the laparoscopic left hemihepatectomy group spent less time in hospital (WMD: -3.47, 95%CI: -4.33 to -2.61, P < 0.001). One article^[20] suggested no significant difference between the two operative approaches for right hepatectomy (WMD: 4.0, 95%CI: -8.40 to 16.40, P = 0.53).

As for initial residual stone and stone recurrence, subgroup analysis suggested no significant difference

Baishideng®

WJG www.wjgnet.com

Δ									
	LA			OA	۱			Mean difference	Mean difference
Study or subgroup	Mean [d]	SD [d]	Total	Mean [d]	SD [d]	Total	Weight	IV, random, 95%CI [d]	IV, random, 95%CI [d]
Cai 2007	1.1	0.6	29	2	1	22	13.8%	-0.90 (-1.37, -0.43)	
Li 2014	2.4	0.5	35	4	0.7	40	15.0%	-1.60 (-1.87, -1.33)	
Li 2015	0.8	0.18	23	1	0.26	22	15.5%	-0.20 (-0.33, -0.07)	-
Namgoong 2014	2.2	0.48	37	2.8	0.46	112	15.4%	-0.60 (-0.78, -0.42)	+
Peng 2016	2.3	0.8	36	3	1	39	14.2%	-0.70 (-1.11, -0.29)	_ —
Song 2009	3.29	0.49	7	4.8	1.32	10	10.5%	-1.51 (-2.41, -0.61)	
Zhou 2013	2.5	0.5	43	4	0.25	44	15.4%	-1.50 (-1.67, -1.33)	-
Total (95%CI)			210			289	100.0%	-0.98 (-1.48, -0.47)	•
Heterogeneity: Tau ²	= 0.42; Chi ²	= 188.28	, df = 6	(P < 0.0000	1); $I^2 = 97$	7%			
Test for overall effect	ct: Z = 3.79 (P = 0.000	1)						-2 -1 0 1 2
	·								Favours LA Favours OA

	LA			OA				Mean difference	Mean difference
Study or subgroup	Mean [d]	SD [d]	Total	Mean [d]	SD [d]	Total	Weight	IV, random, 95%CI [d]	IV, random, 95%CI [d]
Zhou 2013	9.5	10.75	43	13.5	13.25	44	2.8%	-4.00 (-9.06, 1.06)	
Ye 2015	11	3.25	46	12	3.75	51	8.9%	-1.00 (-2.39, 0.39)	
Tu 2010	6.8	2.8	28	10.2	3.4	33	8.5%	-3.40 (-4.96,-1.84)	
Tian 2013	13.1	5.6	116	16.5	8.3	78	7.3%	-3.40 (-5.51, -1.29)	
Song 2009	10.14	2.41	7	19.1	6.52	10	3.5%	-8.96 (-13.38, -4.54)	<u> </u>
Shin 2015	7.9	2.6	40	14.3	5.5	54	8.2%	-6.40 (-8.07, -4.73)	—
Peng 2016	7.7	2.2	36	10.9	3.3	39	9.2%	-3.20 (-4.46, -1.94)	-
Namgoong 2014	8.8	4.1	37	14.1	4.98	112	8.4%	-5.30 (-6.91, -3.69)	
Li 2015	10.7	0.82	23	13	1.2	22	10.3%	-2.30 (-2.90, -1.70)	+
Li 2014	12.3	2.6	35	15.6	4.3	40	8.4%	-3.30 (-4.89, -1.71)	
Lee 2014	10.9	4.7	7	22	9	9	1.8%	-11.10 (-17.93, -4.27) —	
Kim 2015	16	22	17	12	14	17	0.6%	4.00 (-8.40, 16.40)	
Jin 2015	10.8	5.3	96	11.1	7.1	105	8.1%	-0.30 (-2.02, 1.42)	<u> </u>
Ding 2015	4.5	2	49	5.8	1.5	49	10.2%	-1.30 (-2.00, -0.60)	+
Cai 2007	8.8	4.4	29	13	9.2	22	3.7%	-4.20 (-8.36, -0.04)	
Total (95%CI)			609			685	100.0%	-3.32 (-4.32, -2.32)	•
Heterogeneity: Tau ²	= 2.41; Chi ²	= 75.37,	df = 14	(P < 0.00001); $I^2 = 81^{\circ}$	%			
Test for overall effect	ct: Z = 6.52 (P < 0.000	01)						-10 -5 0 5 10
									Favours I A Favours OA

4	٢	•	ı.
•	Ļ		ı

В

	LA		OA			Odds ratio		Odds ratio		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI	Μ	-H, fixed, 95%CI		
Cai 2007	3	29	3	22	7.2%	0.73 (0.13, 4.02)				
Jin 2015	3	96	4	105	8.7%	0.81 (0.18, 3.74)				
Kim 2015	2	17	3	17	6.2%	0.62 (0.09, 4.29)				
Lee 2014	1	7	2	9	3.5%	0.58 (0.04, 8.15)			-	
Li 2014	3	35	4	40	8.1%	0.84 (0.18, 4.06)				
Namgoong 2014	0	37	4	112	5.3%	0.32 (0.02, 6.11)		<u> </u>		
Peng 2016	1	36	0	39	1.1%	3.34 (0.13, 84.60)		<u> </u>		
Shin 2015	5	40	13	54	22.9%	0.45 (0.15, 1.39)		•		
Tian 2013	5	103	6	78	15.3%	0.61 (0.18, 2.08)				
Tu 2010	5	28	4	33	7.1%	1.58 (0.38, 6.55)				
Ye 2015	3	46	3	51	6.3%	1.12 (0.21, 5.83)	_	_		
Zhou 2013	5	43	4	44	8.2%	1.32 (0.33, 5.27)	-	-		
Total (95%CI)		517		604	100.0%	0.79 (0.50, 1.25)		•		
Total events	36		50							
Heterogeneity: Chi ² :	= 3.96, df =	11 ($P = 0$.	97); $I^2 = 0\%$							
Test for overall effect	t: Z = 1.01 (<i>P</i> = 0.31)					0.02 0.1 Favour	1 s LA Favours O،	10 A	50

D											
0	LA		OA			Odds ratio		Oc	dds ratio		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI		M-H, f	ixed, 95%	6CI	
Cai 2007	0	29	1	22	15.1%	0.24 (0.01 6.26)					
Kim 2015	0	17	3	17	30.8%	0.12 (0.01, 2.48)		-	\rightarrow		
Lee 2014	0	7	2	9	18.9%	0.20 (0.01, 4.91)			<u> </u>	_	
Shin 2015	0	40	3	54	26.7%	0.18 (0.01, 3.62)			<u> </u>		
Zhou 2013	2	43	1	44	8.5%	2.10 (0.18, 24.02)					
Total (95%CI)		136		146	100.0%	0.34 (0.11, 1.08)					
Total events	2		10								
Heterogeneity: Chi ²	= 2.92, df =	4(P = 0.5)	7); $I^2 = 0\%$					1		1	L
Test for overall effec	t: Z = 1.83 (<i>P</i> = 0.07)					0.005	0.1 Favours L	1 A Favo	10 ours OA	200

Ε

	LA		OA			Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI	M-H, fixed, 95%CI
Cai 2007	0	29	1	22	6.3%	0.24 (0.01, 6.26)	
Jin 2015	1	96	0	105	1.8%	3.31 (0.13, 82.33)	
Kim 2015	0	17	4	17	16.5%	0.09 (0.00, 1.73)	
Lee 2014	0	7	1	9	4.7%	0.38 (0.01, 10.74)	
Li 2014	2	35	2	40	6.6%	1.15 (0.15, 8.63)	
Namgoong 2014	0	37	2	112	4.7%	0.59 (0.03, 12.55)	
Peng 2016	2	36	3	39	10.3%	0.71 (0.11, 4.49)	
Shin 2015	1	40	3	54	9.4%	0.44 (0.04, 4.35)	
Tian 2013	3	116	2	78	8.8%	1.01 (0.16, 6.18)	
Tu 2010	1	28	1	33	3.3%	1.19 (0.07, 19.86)	
Ye 2015	2	46	3	51	10.3%	0.73 (0.12 4.56)	
Zhou 2013	3	43	5	44	17.3%	0.58 (0.13, 2.62)	
Total (95%CI)		530		604	100.0%	0.63 (0.34, 1.16)	•
Total events	15		27				
Heterogeneity: Chi ²	= 4.08, df =	= 11 (<i>P</i> = 0	0.97); <i>I</i> ² = 0%	6			
Test for overall effect	ct: Z = 1.49	(<i>P</i> = 0.14)					0.005 0.1 1 10 200 Favours LA Favours OA

Figure 3 Forest plots comparing postoperative outcomes between laparoscopic and open liver resection for hepatolithiasis. A: Time to oral intake; B: Length of postoperative hospital stay.

Table 3 Quality of cohort studies evaluated by modified Newcastle-Ottawa scale

Ref.		Selection	1		Compa	rability	Outco	omes	Quality
	Definition of cases	Representativeness	Selection of controls	Definition of controls	Comparable for 1, 2, 3, 4	Comparable for 5, 6, 7	Assessment of outcomes	Integrity of follow-up	score
Cai <i>et al</i> ^[16] , 2007	Yes	No	No	Yes	Yes	5	Yes	Yes	7
Li, H et al ^[18] , 2008	Yes	No	No	Yes	1, 2	5	Yes	Yes	5
Jin <i>et al</i> ^[19] , 2015	Yes	No	No	Yes	1, 2, 3	No	Yes	Yes	5
Kim et al ^[20] , 2015	Yes	Yes	No	Yes	1, 3, 4	6,7	Yes	Yes	7
Lee <i>et al</i> ^[21] , 2014	Yes	No	No	Yes	1, 2, 4	5	Yes	Yes	6
Li, J et al ^[22] , 2014	Yes	No	No	Yes	1, 2, 3	6	Yes	Yes	6
Li, Y et al ^[23] , 2015	Yes	No	No	Yes	1, 2, 3	No	Yes	Yes	5
Namgoong et al ^[24] , 2014	Yes	No	No	Yes	Yes	6	Yes	Yes	7
Peng et al ^[25] , 2016	Yes	Yes	No	Yes	Yes	No	Yes	Yes	7
Shin <i>et al</i> ^[26] , 2015	Yes	No	No	Yes	1, 2	No	Yes	Yes	5
Song <i>et al</i> ^[27] , 2010	Yes	No	No	Yes	Yes	6	Yes	Yes	7
Tian <i>et al</i> ^[28] , 2013	Yes	No	No	Yes	1, 2, 4	5	Yes	Yes	6
Tu et al ^[29] , 2010	Yes	Yes	No	Yes	Yes	No	Yes	Yes	7
Ye <i>et al</i> ^[30] , 2015	Yes	Yes	No	Yes	Yes	No	Yes	Yes	7

1: Age; 2: Sex; 3: Liver function; 4: Previous upper surgery history; 5: Surgeon experience; 6: Body mass index; 7: American Society of Anesthesiologists score.

between the two approaches. P value for initial residual rate in the different subgroups was 0.09, 0.99 and 0.63, respectively (Figure 5). P value for postoperative stone recurrence rate in the different subgroups was 0.99, 0.53 and 0.11, respectively.

Sensitivity analysis and publication bias

The RCT and 8 retrospective studies that scored seven stars or more on the modified Newcastle-Ottawa scale were included in sensitivity analysis (Table 4). No significant changes were found in any of the outcomes. The degree of between-study heterogeneity decreased for operative time, EBL, intraoperative transfusion, LOS and time to oral intake. The degree of between-study heterogeneity remained significant for operating time, EBL, LOS and time to oral intake. The funnel plot of postoperative complications showed that all articles included in this meta-analysis lay inside the 95% CIs and were symmetrically distributed around the center line, indicating a lack of obvious publication bias (Figure 6).

DISCUSSION

Treatment for symptomatic hepatolithiasis is still an intractable clinical problem. With appropriate therapy, a variety of complications would be avoided, including cholangitis, biliary stricture, recurrent stones, cirrhosis and even cholangiocarcinoma^[32]. Traditionally, open hepatectomy was identified as the best method for this disease^[33,34]. However, as laparoscopic approaches have been increasingly used in abdominal surgery

Gaishideng®

Α									
		LA			OA			Mean difference	Mean difference
Study or subgroup	Mean [min]	SD [min]	Total	Mean [min]	SD [min]	Total	Weight	IV, random, 95% CI [min]	IV, random, 95% CI [min]
2.1.1 LLS									
Ding 2015	67.1	8.36	49	97.1	9.82	49	12.7%	-30.00 (-33.61, -26.39)	•
Jin 2015	207	81	96	206	53	105	11.5%	1.00 (-18.11, 20.11)	+
Li 2015	171.3	42.46	23	149.55	35.89	22	11.0%	21.75 (-1.19, 44.69)	
Peng 2016	199	56	21	172.2	32.6	23	10.4%	26.80 (-0.61, 54.21)	
Shin 2015	175.1	57.2	33	203.8	43	30	10.7%	-28.70 (-53.55, -3.85)	
Subtotal (95%CI)			222			229	56.2%	-3.04 (-28.19, 22.11)	•
Heterogeneity: Tau ²	² = 710.69;	$Chi^{2} = 43$.07, df	r = 4 (P < 0.	00001); I ²	= 91	%		
Test for overall effect	ct: Z = 0.24	(P = 0.8)	1)						
2.1.2 LH									
Namgoong 2014	257	50.4	37	237	75.5	112	11.2%	20.00 (-1.43, 41.43)	
Peng 2016	216.5	45.9	15	209.9	41.4	16	9.9%	6.60 (-24.24, 37.44)	_
Shin 2015	170.1	58.1	7	218.5	50.7	24	7.5%	-48.40 (-95.98, -0.82)	
Ye 2015	254	52	46	236	50.75	51	11.3%	18.00 (-2.49, 38.49)	
Subtotal (95%CI)			105			203	39.8%	6.72 (-14.64, 28.09)	•
Heterogeneity: Tau ²	² = 263.83;	$Chi^2 = 7.1$	17, df :	= 3 (<i>P</i> = 0.0	7); $I^2 = 58$	3%			ľ.
Test for overall effect	ct: Z = 0.62	(P = 0.5)	4)						
2.1.3 RH									
Kim 2015	432	158	17	335	85	17	3.9%	97.00 (11.71, 182.29)	
Subtotal (95%CI)			17			17	3.9%	97.00 (11.71, 182.29)	
Heterogeneity: Not	applicable						0.070	5/100 (220/27/202025)	
Test for overall effer	$rt \cdot 7 = 2.23$	(P = 0.0)	3)						
	CC. 2 2.25	0.0	5)						
Total (95%CI)			344			449	100.0%	3 49 (-16 86 23 84)	
Heterogeneity: Tau ²	$^{2} = 844.88$	$Chi^2 = 90$	65 d	f = 9 (P < 0)	00001)• <i>t</i>	$^{2} = 90^{\circ}$	%	5.15 (10.00, 25.01)	
Test for overall effer	-011.00, ct·7 = 0.34	P = 0.7	4)		00001), 1	- 50	70		-100 -50 0 50 100
Test for subaroun di	ifference: C	$hi^2 = 4.87$	') 7 df –	2(P - 0.00)	$1 \cdot I^2 - 50$	00%			Favours LA Favours OA
	inerence. c	III – 1 .07	, ui –	2 (7 - 0.09)	<i>, i</i> = <i>55</i> .	0 /0			
В									
_		LA			OA			Mean difference	Mean difference
Study or subgroup	Mean [mL]	LA SD [mL]	Total	Mean [mL]	OA SD [mL]	Total	Weight	Mean difference IV, random, 95%CI [mL]	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS	Mean [mL]	LA SD [mL]	Total	Mean [mL]	OA SD [mL]	Total	Weight	Mean difference IV, random, 95%CI [mL]	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015	Mean [mL] 380	LA SD [mL] 24.7	Total 49	Mean [mL] 500	OA SD [mL] 22.3	Total 49	Weight 15.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015	Mean [mL] 380 383	LA SD [mL] 24.7 281	Total 49 96	Mean [mL] 500 554	OA SD [mL] 22.3 517	Total 49 105	Weight 15.7% 8.5%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015	Mean [mL] 380 383 214.57	LA SD [mL] 24.7 281 42.58	Total 49 96 23	Mean [mL] 500 554 216.36	OA SD [mL] 22.3 517 50.74	Total 49 105 22	Weight 15.7% 8.5% 15.0%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1,79 (-29.22, 25.64)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016	Mean [mL] 380 383 214.57 186.7	LA SD [mL] 24.7 281 42.58 54.2	Total 49 96 23 21	Mean [mL] 500 554 216.36 235.2	OA SD [mL] 22.3 517 50.74 94.7	Total 49 105 22 23	Weight 15.7% 8.5% 15.0% 13.9%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016	Mean [mL] 380 383 214.57 186.7 268.5	LA SD [mL] 24.7 281 42.58 54.2 170.8	Total 49 96 23 21 33	Mean [mL] 500 554 216.36 235.2 340	OA SD [mL] 22.3 517 50.74 94.7 221.6	Total 49 105 22 23 30	Weight 15.7% 8.5% 15.0% 13.9% 9.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CT)	Mean [mL] 380 383 214.57 186.7 268.5	LA SD [mL] 24.7 281 42.58 54.2 170.8	Total 49 96 23 21 33 222	Mean [mL] 500 554 216.36 235.2 340	OA SD [mL] 22.3 517 50.74 94.7 221.6	Total 49 105 22 23 30 229	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45 - 8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Hetergoengeity: Tau ²	Mean [mL] 380 383 214.57 186.7 268.5 ² = 4983 84	LA SD [mL] 24.7 281 42.58 54.2 170.8	Total 49 96 23 21 33 222 208	Mean [mL] 500 554 216.36 235.2 340	OA SD [mL] 22.3 517 50.74 94.7 221.6	Total 49 105 22 23 30 229 $T^2 = 9$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effer	Mean [mL] 380 383 214.57 186.7 268.5 ² = 4983.84 ct: 7 = 2.19	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7	Total 49 96 23 21 33 222 2.08, 0	Mean [mL] 500 554 216.36 235.2 340 df = 4 (<i>P</i> < 0	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001);	Total 49 105 22 23 30 229 $I^2 = 9^4$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect	Mean [mL] 380 383 214.57 186.7 268.5 ² = 4983.84 ct: Z = 2.19	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 (<i>P</i> = 0.0	Total 49 96 23 21 33 222 2.08, 0 3)	Mean [mL] 500 554 216.36 235.2 340 df = 4 (<i>P</i> < 0	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001);	Total 49 105 22 23 30 229 $I^2 = 9^4$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $^{2} = 4983.84$ $\text{ct: } Z = 2.19$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 (P = 0.0)	Total 49 96 23 21 33 222 2.08, 0 3)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 (P < 0)$	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001);	Total 49 105 22 23 30 229 $I^2 = 9^4$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $^{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 0 3)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 (P < 0)$ 347	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001);	Total 49 105 22 23 30 229 $I^2 = 9^4$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Page 2016	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7	LA <u>SD [mL]</u> 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 24.7	Total 49 96 23 21 33 222 2.08, 0 3) 37	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 (P < 0)$ 347 204.7	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5	Total 49 105 22 23 30 229 $I^2 = 9^4$ 112	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) 128.00 (-282.22, -27.62)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016	Mean [mL] 380 383 214.57 186.7 268.5 ² = 4983.84 ct: Z = 2.19 280 256.7 241 2	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 170.4	Total 49 96 23 21 33 222 2.08, 0 3) 37 15	Mean [mL] 500 554 216.36 235.2 340 df = 4 (P < 0) 347 394.7 227	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2	Total 49 105 22 23 30 229 $I^2 = 9^4$ 112 18 24	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ $\frac{280}{256.7}$ $\frac{244.3}{256.7}$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 (P = 0.0) 96.9 84.5 159.4	Total 49 96 23 21 33 222 2.08, 0 3) 37 15 7	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 22.2	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591	Total 49 105 22 23 30 229 $I^2 = 9^2$ 112 18 24 57	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 2.8%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-411.69, 86.89)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ $\frac{280}{256.7}$ $\frac{244.3}{332}$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75	Total 49 96 23 21 33 222 2.08, 6 3) 37 15 7 46	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75	Total 49 105 22 23 30 229 $I^2 = 9^2$ 112 18 24 51 20	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI)	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ $\frac{280}{256.7}$ $\frac{244.3}{332}$ $\frac{244.3}{332}$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 7	Total 49 96 23 21 33 222 2.08, 1 3) 37 15 7 46 105	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369 246 - 2.2	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 O. K. C.	Total 49 105 22 30 229 $l^2 = 9$ 1112 18 24 51 203	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -138.00 (-238.32, -87.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ²	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2	Total 49 96 23 21 33 222 2.08, 6 3) 37 15 7 46 105 21, df	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$	Total 49 105 22 30 229 2^2 112 18 24 51 203 %	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 6 3) 37 15 7 46 105 21, df 01)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369 $= 3 \ (P = 0.3)$	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$	Total 49 105 22 30 229 $I^2 = 9$ 112 18 24 51 203 %	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 6 3) 37 15 7 46 105 21, df 01)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369 $= 3 \ (P = 0.3)$	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$	Total 49 105 22 30 229 $I^2 = 9^2$ 112 18 24 51 203 %	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; $Chi^2 = 7$ (P = 0.0) 96.9 84.5 159.4 166.75 $Chi^2 = 3.3$; $(P = 0.0)$	Total 49 96 23 21 33 222 2.08, 6 3) 37 15 7 46 105 21, df 01)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$	Total 49 105 22 23 30 229 $I^2 = 9$ 112 18 24 51 203 %	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $2^{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $2^{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, (3) 37 15 7 46 105 21, df 01) 17	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6).00001); 285.5 185.2 591 193.75 6); $I^2 = 7$	Total 49 105 22 23 30 229 2 ² = 9 ² 112 18 24 51 203 %	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI)	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ $\frac{280}{256.7}$ $\frac{244.3}{332}$ $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 6 33 37 15 7 46 105 21, df 01) 17 17 17	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942	Total 49 105 22 30 229 229 $l^2 = 9$ 112 18 24 51 203 % 17 17 17	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -76.30 (-144.45, -8.15) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, (3) 37 15 7 46 105 21, df 01) 17 17 17	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942	Total 49 105 22 23 30 229 229 2 ² = 9 ² 112 18 24 51 203 % 17 17	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -76.30 (-144.45, -8.15) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effec 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not Test for overall effec	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $2^{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $2^{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable $\text{ct: } Z = 0.34$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 4 33) 37 15 7 46 105 21, df 101) 17 17 3)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942	Total 49 105 22 23 30 229 2 ² 2 ² = 9 ² 112 18 24 51 203 % 17 17 17	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not Test for overall effect	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable $\text{ct: } Z = 0.34$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ($P = 0.0$ 929 4 ($P = 0.7$	Total 49 96 23 21 33 222 2.08, - 33) 37 15 7 46 105 221, df 105 21, df 01) 17 17 33)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942	Total 49 105 22 30 229 272 112 18 24 51 203 % 17 17	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not Test for overall effect	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable $\text{ct: } Z = 0.34$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$ 929 P = 0.7	Total 49 96 23 21 33 222 2.08, - 33) 37 15 7 46 105 21, df 105 21, df 01) 17 17 33) 344	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 df = 4 ($P < 0$ 347 394.7 421.7 369 = 3 ($P = 0.3$ 879	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942	Total 49 105 22 30 229 12 18 24 51 203 % 17 17 449	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6% 100.0%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not Test for overall effect Total (95%CI) Heterogeneity: Tau ²	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $\frac{2}{2} = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $\frac{2}{2} = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable $\text{ct: } Z = 0.34$ $\frac{2}{2} = 3973.52$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 ($P = 0.0$ 96.9 84.5 159.4 166.75 Chi ² = 3.2 ; ($P = 0.0$ 929 ; ($P = 0.7$; Chi ² = 7 ; Chi ² = 7 ; ($P = 0.0$	Total 49 96 23 21 33 222 2.08, 6 33 37 15 7 46 105 21, df 01) 17 17 33 344 8.15, 6	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369 $= 3 \ (P = 0.3)$ 879 $df = 9 \ (P < 0)$	OA SD [mL] 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942 0.00001);	Total 49 105 22 30 229 $l^2 = 9$ 112 18 24 51 203 % 17 17 449 $l^2 = 8i$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6% 0.6% 100.0% 8%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29) -77.53 (-126.55, -28.51)	Mean difference IV, random, 95%CI [mL]
Study or subgroup 2.3.1 LLS Ding 2015 Jin 2015 Li 2015 Peng 2016 Shin 2016 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.2 LH Namgoong 2014 Peng 2016 Shin 2015 Subtotal (95%CI) Heterogeneity: Tau ² Test for overall effect 2.3.3 RH Kim 2015 Subtotal (95%CI) Heterogeneity: Not Test for overall effect Total (95%CI) Heterogeneity: Tau ² Test for overall effect	$\frac{\text{Mean [mL]}}{380}$ $\frac{383}{214.57}$ 186.7 268.5 $2 = 4983.84$ $\text{ct: } Z = 2.19$ 280 256.7 244.3 332 $2 = 151.10;$ $\text{ct: } Z = 3.23$ 988 applicable $\text{ct: } Z = 0.34$ $2 = 3973.52$ $\text{ct: } Z = 3.10$	LA SD [mL] 24.7 281 42.58 54.2 170.8 ; Chi ² = 7 P = 0.0 96.9 84.5 159.4 166.75 Chi ² = 3.2 P = 0.0 929 P = 0.7 ; Chi ² = 7 P = 0.0	Total 49 96 23 21 33 222 2.08, (3) 37 15 7 46 105 21, df 105 21, df 107 17 3) 344 8.15, (02)	$\frac{\text{Mean [mL]}}{500}$ 554 216.36 235.2 340 $df = 4 \ (P < 0)$ 347 394.7 421.7 369 $= 3 \ (P = 0.3)$ 879 $df = 9 \ (P < 0)$	OA <u>SD [mL]</u> 22.3 517 50.74 94.7 221.6 0.00001); 285.5 185.2 591 193.75 6); $I^2 = 7$ 942 0.00001);	Total 49 105 22 30 229 $l^2 = 9$ 112 18 24 51 203 % 17 17 17 449 $l^2 = 8$	Weight 15.7% 8.5% 15.0% 13.9% 9.6% 62.7% 4% 12.6% 9.5% 2.8% 11.8% 36.7% 0.6% 0.6% 0.6% 100.0%	Mean difference IV, random, 95%CI [mL] -120.00 (-129.32, -110.68) -171.00 (-284.75, -57.25) -1.79 (-29.22, 25.64) -48.50 (-93.61, -3.39) -71.50 (-169.91, 26.91) -76.30 (-144.45, -8.15) -67.00 (-128.40, -5.60) -138.00 (-238.32, -37.68) -177.40 (-441.69, 86.89) -37.00 (-108.76, 34.76) -72.86 (-117.03, -28.69) 109.00 (-519.92, 737.29) 109.00 (-519.92, 737.29) -77.53 (-126.55, -28.51)	Mean difference IV, random, 95%CI [mL]

Conishideng® WJG | www.wjgnet.com

с											
-	L	A	0	A		Odds ratio			Odds rati	0	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI		M-I	H, fixed, 9	5%CI	
2.5.1 LLS											
Jin 2015	8	96	32	105	59.3%	0.21 (0.09, 0.48)			-		
Peng 2016	1	21	5	23	9.6%	0.18 (0.02, 1.69)	_		<u> </u>		
Shin 2015	2	33	1	30	2.1%	1.87 (0.16, 21.75)			<u> </u>		
Subtotal (95%CI)		150		158	71.0%	0.25 (0.12, 0.52)					
Total events	11		38								
Heterogeneity: Chi ²	= 2.86, df =	= 2 (<i>P</i> = 0.)	24); I ² = 30 ⁰	%							
Test for overall effect	t: Z = 3.77	(<i>P</i> = 0.000	2)								
2.5.2 LH											
Namgoong 2014	0	37	10	112	11.0%	0.13 (0.01, 2.28)			-+		
Peng 2016	1	15	4	16	7.6%	0.21 (0.02, 2.19)	-		\rightarrow		
Shin 2015	1	7	3	24	2.5%	1.17 (0.10, 13.36)					
Ye 2015	1	46	4	51	7.9%	0.26 (0.03, 2.43)			\rightarrow		
Subtotal (95%CI)		105		203	29.0%	0.28 (0.08, 0.90)					
Total events	3		21								
Heterogeneity: Chi ²	= 1.66, df =	= 3 (<i>P</i> = 0.	65); $I^2 = 0\%$)							
Test for overall effect	t: Z = 2.13	(<i>P</i> = 0.03)									
Total (95%CI)		225		361	100.0%	0.26 (0.14, 0.48)		-			
Total events	14		59								
Heterogeneity: Chi ²	= 4.58, df =	= 6 (<i>P</i> = 0.	60); $I^2 = 0\%$	1			1	I		I	L
Test for overall effect	t: Z = 4.30	(P < 0.000)	1)				0.005	0.1	1	10	200
Test for subaroup dif	fference: Ch	$i^2 = 0.02,$	df = 1 (<i>P</i> = 0	$(0.90); I^2 =$	0%			Favour	s LA Fav	ours OA	

D

	LA	4	0	A		Odds ratio			Odds ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI		M-H	, fixed, 95%CI	
2.4.1 LLS										
Ding 2015	3	49	2	49	2.7%	1.53 (0.24, 9.60)				
Jin 2015	16	96	26	105	29.7%	0.61 (0.30, 1.22)			-	
Li 2015	1	23	1	22	1.4%	0.95 (0.06, 16.27)				
Peng 2016	2	21	6	23	7.4%	0.30 (0.05, 1.68)			_	
Shin 2015	1	33	7	30	10.2%	0.10 (0.01, 0.89)				
Subtotal (95%CI)		222		229	51.4%	0.52 (0.30, 0.90)		•		
Total events	23		42							
Heterogeneity: Chi ²	= 4.26, df	r = 4 (P)	= 0.37); I	$^{2} = 6\%$						
Test for overall effect	t: Z = 2.3	1 (P = 0)).02)							
2.4.2 LH										
Namgoong 2014	4	37	20	112	12.7%	0.56 (0.18, 1.75)			_	
Peng 2016	3	15	8	16	8.9%	0.25 (0.05, 1.24)			-	
Shin 2015	3	7	8	24	3.0%	1.50 (0.27, 8.38)				
Ye 2015	6	46	11	51	13.0%	0.55 (0.18, 1.62)			_	
Subtotal (95%CI)		105		203	37.5%	0.55 (0.29, 1.06)		-		
Total events	16		47					•		
Heterogeneity: Chi ²	= 2.24, df	² = 3 (<i>P</i>	= 0.52); I	² = 0%						
Test for overall effect	t: Z = 1.7	8 (<i>P</i> = 0	0.07)							
2.4.3 RH										
Kim 2015	5	17	11	17	11.1%	0.23 (0.05, 0.96)				
Subtotal (95%CI)		17		17	11.1%	0.23 (0.05, 0.96)				
Total events	5		11							
Heterogeneity: Not a	applicable									
Test for overall effect	t: Z = 2.0	1 (P = 0)).04)							
Total (95%CI)		344		449	100.0%	0.50 (0.33, 0.75)		•		
Total events	44		100					•		
Heterogeneity: Chi ²	= 7.83 df	= 9 (<i>P</i> =	= 0.55); <i>I</i> ²	= 0%			L	1	 I	
Test for overall effect	t: Z = 0.3	6 (<i>P</i> = 0	.0008)				0.01	0.1	10 100	
Test for subaroup dif	ference: ($Chi^2 = 1$.27, df = 2	P = 0.	53); <i>I</i> ² = 0%	6		Favours LA	Favours OA	

Conishideng® WJG | www.wjgnet.com

L									
		LA			OA			Mean difference	Mean difference
Study or subgroup	Mean [d]	SD [d]	Total	Mean [d]	SD [d]	Total	Weight	IV, random, 95%CI [days]	IV, random, 95%CI [d]
2.2.1 LLS									
Ding 2015	4.5	2	49	5.8	1.5	49	28.2%	-1.30 (-2.00, -0.60)	+
Jin 2015	10.8	5.3	96	11.1	7.1	105	4.6%	-0.30 (-2.02, 1.42)	-
Li 2015	10.7	0.82	23	13	1.2	22	37.9%	-2.30 (-2.90, -1.70)	•
Peng 2016	6.8	1.4	21	9.6	2.9	23	7.8%	-2.80 (-4.13, -1.47)	-
Shin 2015	8	2.7	33	14.7	5.8	38	2.7%	-6.70 (-8.97, -4.43)	
Subtotal (95%CI)			222			229	81.2%	-2.03 (-2.44, -1.62)	•
Heterogeneity: Chi ²	= 26.36, df	= 4 (P < 0	0.0001)	; <i>I</i> ² = 85%					
Test for overall effe	ct: Z = 9.66	(<i>P</i> < 0.000	001)						
2.2.2 LH									
Namgoong 2014	8.8	4.1	37	14.1	4.98	112	5.3%	-5.30 (-6.91, -3.69)	<u> </u>
Peng 2016	8.9	2.4	15	12.8	2.9	16	3.9%	-3.90 (-5.77, -2.03)	
Shin 2015	7.6	1.9	7	13.7	5	24	2.3%	-6.10 (-8.55, -3.85)	
Ye 2015	11	3.25	46	12	3.75	51	7.1%	-1.00 (-2.39, 0.39)	
Subtotal (95%CI)			105			203	18.7%	-3.47 (-4.33, -2.61)	•
Heterogeneity: Chi ²	= 21.67, df	= 3 (<i>P</i> < 0	0.0001)	$I^2 = 86\%$					
Test for overall effe	ct: Z = 7.90	(<i>P</i> < 0.000	001)						
2.2.3 RH									
Kim 2015	16	22	17	12	14	17	0.1%	4.00 (-8.40, 16.40)	
Subtotal (95%CI)			17			17	0.1%	4.00 (-8.40, 16.40)	
Heterogeneity: Not	applicable								
Test for overall effe	ct: Z = 0.63	(P = 0.53))						
Total (95%CI)			344			449	100.0%	-2.29 (-2.67, -1.92)	•
Heterogeneity: Chi ²	= 57.73 df =	= 9 (<i>P</i> < 0	.00001)	; $I^2 = 84\%$					
Test for overall effe	ct: Z = 12.11	1 (<i>P</i> < 0.00)001)						-10 -5 0 5 10
Test for subaroup d	ifference: Ch	$ni^2 = 9.69$	df = 2	(P = 0.008);	$I^2 = 79.49$	%			Favours LA Favours OA

Figure 4 Forest plots and subgroup meta-analysis of operative time (A), blood loss during operation (B), intraoperative transfusion rate (C), postoperative complication rate (D) and length of hospital stay (E). IV: Inverse variance method; LA: Laparoscopic approach; LH: Left hemihepatectomy; LLS: Left lateral sectionectomy; OA: Open approach; RH: Right hemihepatectomy; SD: Standard deviation.

Table 4 Sensitivity analysis	s in laparoso	opic hepa	tectomy v.	s open hepatectomy					
Outcomes of interest	Study, n	LH <i>, n</i>	ОН, п	WMD/OR (95%CI)	Р	Stud	y heterogei	neity	Р
						χ^2	df	<i>I</i> ², %	
Operative time, min	11	416	464	26.58 (-1.78, 54.94)	0.07	201.48	10	95	< 0.001
Estimated blood loss, mL	9	402	445	-56.21 (-108.00, -4.43)	0.03	73.92	9	88	< 0.001
Intraoperative transfusion	7	314	366	0.47 (0.23, 0.97)	0.04	8.03	6	25	0.24
Length of hospital stay, d	12	450	504	-3.47 (-4.67, -2.27)	< 0.001	47.8	11	77	< 0.001
Postoperative complications	12	451	504	0.55 (0.38, 0.78)	< 0.001	8.33	11	0	0.68
Time to oral intake, d	6	187	267	-1.12 (-1.56, -0.68)	< 0.001	70.78	5	93	< 0.001
Initial residual stone	10	381	445	0.90 (0.53, 1.53)	0.71	2.74	9	0	0.97
Final residual stone	5	136	146	0.34 (0.11, 1.08)	0,07	2.92	4	0	0.57
Stone recurrence	10	394	445	0.59 (0.31, 1.15)	0.12	3.01	9	0	0.96

df: Degrees of freedom; LH: Laparoscopic hepatectomy; OH: Open hepatectomy; WMD/OR: Weight mean difference/odds ratio.

over the past two decades, laparoscopic hepatectomy for hepatolithiasis has been considered as standard practice for appropriate cases. Yet, laparoscopic hepatectomy for hepatolithiasis still has not been widely accepted, mainly due to the lack of convincing evidence by adequate comparison of surgical outcomes and longterm quality of life. Nevertheless, numerous studies^[16,35] have reported the efficacy, safety and flexibility of laparoscopic hepatectomy for hepatolithiasis. In the current study, we aimed to conduct an extensive worldwide review and meta-analysis to evaluate whether laparoscopic liver surgery can replace open traditional approaches for symptomatic hepatolithiasis.

An earlier meta-analysis performed by Peng *et al*^[36] in 2016 focused on left-sided hepatectomy for hepatolithiasis. It included studies of patients with hepatolithiasis in the left lobe and left lateral lobe that underwent laparoscopic or open hepatectomy. It included 8 studies, 1 RCT and 7 non-randomized trials. The conclusion was that the laparoscopic approach was a safe procedure for patients with hepatolithiasis. However, there were several limitations to that study. First, only 8 studies were included, comparing surgical outcomes between the two methods. Second, the

aishideng® W

E

WJG | www.wjgnet.com

A	LA	۱.	0	A		Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI	M-H, fixed, 95%CI
2.6.1 LLS							
Jin 2015	3	96	4	105	16.8%	0.81 (0.18, 3.74)	
Shin 2015	4	33	10	30	41.8%	0.28 (0.08, 1.00)	
Subtotal (95%CI)		129		135	58.5%	0.43 (0.16, 1.13)	
Total events	7		14				
Heterogeneity: Chi ² = Test for overall effect:	: 1.13, df = : Z = 1.70 (/	1 (P = 0.29) P = 0.09)	9); <i>I</i> ² = 11%	•			
26214							
Nomaoona 2014	0	27	4	117	10 10/-	0 22 (0 02 6 11)	
Peng 2016	1	15	4	112	2 00%	3 41 (0 13 00 40)	
Shin 2015	1	7	3	24	5 3%	1 17 (0.10, 13, 36)	
Vo 2015	3	46	3	51	12 1%	1.17(0.10, 15.50) 1.12(0.21, 5.83)	
Subtotal (95%CI)	5	105	5	203	20 5%	1.12 (0.21, 3.03)	
Total events	5	105	10	205	23.370	1.01 (0.34, 2.30)	
Heterogeneity: Chi ² =	1 14 df =	3(P = 0.7)	$7) \cdot I^2 = 0\%$				
Test for overall effect:	z = 0.01 (/	P = 0.99)	,,1 = 0,0				
2.6.3 RH							
Kim 2015	2	17	3	17	12.0%	0.62 (0.09, 4.29)	
Subtotal (95%CI)		17		17	12.0%	0.62 (0.09, 4.29)	
Total events	2		3				
Heterogeneity: Not ap Test for overall effect:	oplicable : Z = 0.48 (/	P = 0.63)					
Total (95%CI)		251		355	100.0%	0.62 (0.32, 1.22)	•
Total events	14		27				-
Heterogeneity: Chi ² =	3.61, df =	6 (<i>P</i> = 0.73	3); $I^2 = 0\%$				
Test for overall effect:	: Z = 1.37 (/	² = 0.17)					0.005 0.1 1 10 200
Test for subaroup diff	erence: Chi ²	= 1.31, df	f = 2 (P = 0)	52); $I^2 = 0$	%		Favours LA Favours OA
R							
	LA		0	A	M/+ :	Odds ratio	Odds ratio
Study or subgroup	Events	Iotal	Events	Iotai	weight	М-Н, пхеа, 95%СІ	M-H, fixed, 95%CI
2.7.1 LL3	1	06	0	105	3 30%	3 31 (0 13 82 33)	
Dena 2016	1	90	1	22	5.5% 6.4%	1 10 (0.06 18 77)	
	1	21			0.1/0	1.10 (0.00, 10.77)	ſ
Shin 2015	1	21 33	2	30	14 3%	0.44(0.04.5.09)	
Shin 2015 Subtotal (95%CI)	1 1	21 33 150	2	30 158	14.3% 24.0%	0.44 (0.04, 5.09)	
Shin 2015 Subtotal (95%CI) Total events	1 1 3	21 33 150	2	30 158	14.3% 24.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² =	1 1 3 : 0.98. df =	21 33 150 2 (<i>P</i> = 0.6)	1 2 3 1): $I^2 = 0\%$	30 158	14.3% 24.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect:	1 1 3 : 0.98, df = : Z = 0.01 (A	21 33 150 2 ($P = 0.62$ P = 0.99)	1 2 3 1); $I^2 = 0\%$	30 158	14.3% 24.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH	1 1 3 : 0.98, df = : Z = 0.01 (/	21 33 150 2 ($P = 0.62$ P = 0.99)	1^{2} 3 1); $I^{2} = 0\%$	30 158	14.3% 24.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014	1 1 3 : 0.98, df = : Z = 0.01 (/	$21 \\ 33 \\ 150 \\ 2 (P = 0.63) \\ P = 0.99) \\ 37$	1 2 3 1); $I^2 = 0\%$ 2	30 158 112	14.3% 24.0% 8.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016	1 1 5 0.98, df = 2 Z = 0.01 (/ 0 1	$21 \\ 33 \\ 150 \\ 2 (P = 0.62 \\ P = 0.99) \\ 37 \\ 15 \\ 15 \\ 310 \\ 15 \\ 37 \\ 15 \\ 310 \\ 15 \\ 37 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 310 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ $	$\frac{1}{2}$ $\frac{3}{1}; I^{2} = 0\%$ $\frac{2}{2}$	30 158 112 16	14.3% 24.0% 8.7% 12.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015	1 1 3 0.98, df = : Z = 0.01 (/ 0 1 0	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^2 = 0\% \\ \begin{array}{c} 2 \\ 2 \\ 1 \end{array}$	30 158 112 16 24	14.3% 24.0% 8.7% 12.7% 4.8%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015	1 1 3 0.98, df = : Z = 0.01 (/ 0 1 0 2	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46	$1 \\ 2 \\ 3 \\ 1); I^2 = 0\%$ $2 \\ 2 \\ 1 \\ 3$	30 158 112 16 24 51	14.3% 24.0% 8.7% 12.7% 4.8% 19.1%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI)	1 1 3 0.98, df = 2 = 0.01 (/ 0 1 0 2	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46 105	$1 \\ 2 \\ 3 \\ 1); I^2 = 0\%$ $2 \\ 2 \\ 1 \\ 3$	112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events	1 1 3 0.98, df = : Z = 0.01 (/ 0 1 0 2 3	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46 105	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \end{array}); I^2 = 0\%$ $\begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ \end{array}$	30 158 112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect:	1 1 3 0.98, df = Z = 0.01 (/ 0 1 0 2 3 0.14, df = Z = 0.63 (/	21 33 150 2 ($P = 0.6$) P = 0.99) 37 15 7 46 105 3 ($P = 0.99$ P = 0.99	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ 9); I^{2} = 0\% \end{array} $	30 158 112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect:	1 1 3 0.98, df = Z = 0.01 (/ 0 1 0 2 3 c.0.14, df = Z = 0.63 (/	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46 105 3 ($P = 0.99$ P = 0.99 2 = 0.53)	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 1); \ I^2 = 0\% \\ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ \end{array}$ $\begin{array}{c} 8 \\ 9); \ I^2 = 0\% \end{array}$	30 158 112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH	1 1 3 0.98, df = Z = 0.01 (/ 0 1 0 2 3 0.14, df = Z = 0.63 (/	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46 105 3 ($P = 0.99$ P = 0.99 2 = 0.53)	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); \ t^2 = 0\% \\ 2 \\ 2 \\ 1 \\ 3 \\ 9); \ t^2 = 0\% \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	30 158 112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (05%CI)	1 1 3 0.98, df = Z = 0.01 (/ 0 1 0 2 3 0.14, df = Z = 0.63 (/ 0	21 33 150 $2 (P = 0.62)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.92)$ $P = 0.53)$ 17 17	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^2 = 0\% \\ 2 \\ 2 \\ 1 \\ 3 \\ 9); I^2 = 0\% \\ 4 \end{array} $	112 16 24 51 203	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI)	1 1 3 0.98, df = Z = 0.01 (/ 0 1 0 2 3 0.14, df = Z = 0.63 (/ 0 0	21 33 150 $2 (P = 0.62)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.99)$ $P = 0.53)$ 17 17 17	$\frac{1}{2}$ $\frac{3}{2} = 0\%$ $\frac{2}{2}$ $\frac{1}{3}$ $\frac{8}{2}$ $\frac{9}{7}; t^{2} = 0\%$ 4	30 158 112 16 24 51 203 17 17	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 0.98, df = \\ 2 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 3 \\ 0.14, df = \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	21 33 150 2 ($P = 0.62$ P = 0.99) 37 15 7 46 105 3 ($P = 0.99$ P = 0.99 P = 0.99	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 9); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 4 \\ 4 \end{array} $	30 158 112 16 24 51 203 17 17	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect:	$1 \\ 1 \\ 3 \\ 0.98, df = 2 \\ Z = 0.01 (7) \\ 0 \\ 1 \\ 0 \\ 2 \\ 3 \\ 0.14, df = 2 \\ Z = 0.63 (7) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	21 33 150 $2 (P = 0.63)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.92)$ $P = 0.53)$ 17 17 17 $P = 0.11)$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 1); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ 9); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 4 \\ 4 \end{array} $	30 158 112 16 24 51 203 17 17	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95%CI)	$1 \\ 1 \\ 3 \\ 0.98, df = 2 \\ Z = 0.01 (7) \\ 0 \\ 1 \\ 0 \\ 2 \\ 3 \\ 0.14, df = 2 \\ Z = 0.63 (7) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	21 33 150 $2 (P = 0.6)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.99)$ 17 17 17 $P = 0.11)$ 272	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ 9); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 4 \\ 4 \end{array} $	30 158 112 16 24 51 203 17 17 17	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95%CI)	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 0.98, df = \\ 2 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 3 \\ 0.14, df = \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	21 33 150 $2 (P = 0.6)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.92)$ $P = 0.53)$ 17 17 17 $P = 0.11)$ 272	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ 9); I^{2} = 0\% \end{array} $ $ \begin{array}{c} 4 \\ 4 \\ 4 \end{array} $	30 158 112 16 24 51 203 17 17 17	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7% 100.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95%CI) Total events Heterogeneity: Chi ² =	$ \begin{array}{c} 1\\ 1\\ 3\\ c.0.98, df = \\ Z = 0.01 (t) $ $ \begin{array}{c} 0\\ 1\\ 0\\ 2\\ 3\\ c.0.14, df = \\ Z = 0.63 (t) $ $ \begin{array}{c} 0\\ 0\\ 0\\ c.2 = 1.60 (t) \end{array} $	21 33 150 $2 (P = 0.6)$ $P = 0.99)$ 37 15 7 46 105 $3 (P = 0.92)$ $P = 0.53)$ 17 17 $P = 0.11)$ 272 $7 (P = 0.9)$	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 1); \ r^2 = 0\% \\ 2 \\ 2 \\ 1 \\ 3 \\ 8 \\ 9); \ r^2 = 0\% \\ 4 \\ 4 \\ 4 \end{array}$	30 158 112 16 24 51 203 17 17 17 378	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7% 100.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect:	1 1 3 $0.98, df =$ $Z = 0.01 (/$ 0 1 0 2 3 $0.14, df =$ $Z = 0.63 (/$ 0 0 0 0 0 0 0 0 0 0	21 33 150 2 $(P = 0.6)$ P = 0.99) 37 15 7 46 105 3 $(P = 0.99)$ 2 $(P = 0.53)$ 17 17 27 2 $(P = 0.8)$ 2 $(P = 0.21)$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1); \ 1^2 = 0\% \\ \begin{array}{c} 2 \\ 2 \\ 1 \\ 3 \\ 9); \ 1^2 = 0\% \\ \begin{array}{c} 4 \\ 4 \\ 4 \\ 7); \ 1^2 = 0\% \end{array} $	30 158 112 16 24 51 203 17 17 17 378	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7% 100.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73)	
Shin 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.2 LH Namgoong 2014 Peng 2016 Shin 2015 Ye 2015 Subtotal (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: 2.7.3 RH Kim 2015 Subtotal (95%CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect: Total (95%CI) Total events Heterogeneity: Chi ² = Test for overall effect:	1 1 3 $0.98, df =$ $Z = 0.01 (/$ 0 1 0 2 3 $0.14, df =$ $Z = 0.63 (/$ 0 0 0 0 0 0 0 0 0 0	21 33 150 2 $(P = 0.6)$ P = 0.99) 37 15 7 46 105 3 $(P = 0.99)$ 2 $(P = 0.53)$ 17 17 27 2 $(P = 0.8)$ P = 0.21) = 2.08, df	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 1); \ r^{2} = 0\% \\ 2 \\ 2 \\ 1 \\ 3 \\ 9); \ r^{2} = 0\% \\ 4 \\ 4 \\ 4 \\ 7); \ r^{2} = 0\% \\ \epsilon = 2 \ (P = 0. \\ \end{array}$	$ \begin{array}{c} 10 \\ 30 \\ 158 \\ 112 \\ 16 \\ 24 \\ 51 \\ 203 \\ 17 \\ 17 \\ 378 \\ 35); I^2 = 3 \end{array} $	14.3% 24.0% 8.7% 12.7% 4.8% 19.1% 45.3% 30.7% 30.7% 100.0%	0.44 (0.04, 5.09) 1.01 (0.23, 4.52) 0.59 (0.03, 12.55) 0.50 (0.04, 6.17) 1.04 (0.04, 28.44) 0.73 (0.12, 4.56) 0.67 (0.19, 2.31) 0.09 (0.00, 1.73) 0.09 (0.00, 1.73) 0.57 (0.24, 1.36)	0.001 0.1 1 10 1000 Favours LA Favours OA

Figure 5 Forest plots and subgroup meta-analysis of initial residual stone rate (A) and stone recurrence rate (B). IV: Inverse variance method; LA: Laparoscopic approach; LH: Left hemihepatectomy; LLS: Left lateral sectionectomy; OA: Open approach; RH: Right hemihepatectomy; SD: Standard deviation.

Zaishideng⊗ WJG | www.wjgnet.com

Figure 6 Funnel plot presenting meta-analysis of postoperative complication rate.

authors concluded the advantages of laparoscopic surgery for patients without any subgroup analysis. Furthermore, although hepatolithiasis is prevalent in the left-sided liver, stones may occur in any segment of the liver. The study only included studies that compared the safety and efficacy of laparoscopic and open approaches in left hemihepatectomy and left lateral segmentectomy for hepatolithiasis.

Our meta-analysis of an RCT and 15 retrospective studies, including 1329 patients, compared the efficacy and flexibility of two methods for hepatolithiasis. We showed that the laparoscopic approach was better than the open approach for both right and left sides of the liver, with significantly lower intraoperative blood loss and blood transfusion rate, shorter intestinal function recovery time, shorter LOS, and lower postoperative complication rate. However, no significant differences in operation time, residual stone and stone recurrence were found.

With respect to surgical outcomes, patient safety should be determined first in the application of any procedure. From the pooled data of postoperative complication rate, EBL and intraoperative blood transfusion, our results indicated that patients who underwent laparoscopic liver resection had better perioperative outcomes than those treated with the open approach.

In term of intraoperative outcomes, our study demonstrated that, compared with the open approach, laparoscopic hepatectomy for patients with hepatolithiasis had advantages of lower blood loss and less transfusion. Laparoscopic parenchymal dissection and the high intra-abdominal pressure during laparoscopic hepatectomy attained by pneumoperitoneum result in lower intraoperative blood loss^[37]. Moreover, laparoscopy provided a magnified view of the liver, which contributed to bleeding control. Therefore, fewer patients undergoing laparoscopic surgery were in need of intraoperative transfusion. However, operating time did not differ significantly between the two approaches. This suggests that laparoscopic techniques are still a challenge for hepatic surgeons. The surgeons' experience had an impact on hepatic lobe dissection under laparoscopy, which contributed significantly to operating time^[38,39]. The laparoscopic approach required frequent installation and removal of laparoscopic devices, resulted in additional operative time. In addition, the dissimilarity of the operating procedures in different institutions would have affected the result.

As for postoperative outcomes, the pooled outcomes of 16 studies with 1329 patients revealed that few patients experienced postoperative complications, including wound-related, vascular and biliary complications. Furthermore, fewer postoperative complications appeared in patients who underwent laparoscopic hepatectomy. In laparoscopic liver resection, the vessels and hepatic bile duct could be identified more precisely with the amplification effect of laparoscopy, and the probability of bile duct injury was reduced. Preoperative magnetic resonance cholangiopancreatography would help to reduce postoperative bile leak. With respect to postoperative recovery, the pooled outcomes of 7 studies suggested that the laparoscopic approach was associated with shorter time to oral intake and intestinal function recovery. Minimal incision, better intraoperative outcomes, and faster intestinal function recovery were confirmed to be in favor of shorter hospital stay in patients undergoing laparoscopic hepatectomy. Future well-designed studies should be performed to confirm these potential benefits.

Long-term outcomes after any procedure should also be taken into account. Our meta-analysis and subgroup analysis both showed that, compared with open surgery, there were no significant differences in residual stone rate and hepatolithiasis recurrence rate between the laparoscopic and open approaches. On the one hand, it means that there is no correlation between selection of the surgical procedure and stone residual/recurrent rate. Indeed, the generation and development of hepatolithiasis may have mainly been caused by anatomical variation and dietary habits in different regions^[40,41]. Hepatolithiasis is likely to recur even if no residual stones exist after radical hepatectomy. On the other hand, it is known that the severity of abdominal adhesion after laparoscopic liver resection is significantly less than after open surgery^[42]. Even though the patients have recurrence of intrahepatic bile duct stones, it would be easier for them to receive effective and safe treatment.

We conducted subgroup analysis, including left lateral hepatectomy, left hemihepatectomy and right hepatectomy for hepatolithiasis, to avoid the influence of heterogeneity. Similar outcomes were found for postoperative complication rate, blood loss and

Baishideng®

WJG | www.wjgnet.com

intraoperative blood transfusion, whereas EBL in the subgroup of right hepatectomy did not differ between the two surgical approaches. Sensitivity analysis was also performed to assess the impact of study quality on the estimates. A meta-analysis of RCTs would be ideal. However, with ethical concerns and patient expectations, this kind of study is difficult to conduct. This situation highlights the importance of the present meta-analysis. Although only 1 RCT was included in the present study, most of the other studies were of high quality, and the results could be considered credible and evidential.

The present study confirmed that the laparoscopic approach was better than the open approach for hepatolithiasis. However, our meta-analysis had several limitations that should be taken into account. First, although there was no evidence of publication bias, all the included studies were retrospective studies, except for one RCT. This increased the risk of bias for inadequate random sequencing and blinding. Second, the different levels of surgical expertise would have affected the final outcomes, and multicenter studies with large patient samples are required. Third, the included studies were in English, Chinese and Korean, which could have caused language selection bias. Finally, only studies performed in eastern countries were included in our meta-analysis, which could have resulted in regional selection bias. Further studies are needed to overcome the above-mentioned limitations and confirm our findings.

Nevertheless, the results of this meta-analysis are encouraging, as laparoscopic surgical techniques are frequently applied in abdominal surgery. Moreover, sufficient data on a large patient cohort that underwent liver resection for treatment of hepatolithiasis have been accumulated, allowing evaluation by metaanalysis. Multiple strategies were used to identify applicable studies, with strict criteria used for study inclusion and evaluation. Subgroup analysis was performed to minimize heterogeneity. Future studies comparing laparoscopic and open approaches for treatment of intrahepatic bile duct stones should include larger numbers of patients, with a longer follow-up period.

In summary, this meta-analysis demonstrated that laparoscopic surgery was technically feasible and safe, and superior to open surgery for treatment of hepatolithiasis. Subgroups analysis showed consistent results, except for EBL during right hepatectomy. The laparoscopic approach provides a favorable option for patients seeking curative treatment for hepatolithiasis.

COMMENTS

Background

Hepatectomy has become an established treatment modality for patients with

hepatolithiasis. With laparoscopic approach widely used in hepatic surgery in recent years, laparoscopic hepatectomy for treating symptomatic hepatolithiasis attracted more and more attention. Despite this, no consensus is available in the literature about which of these two approaches is more beneficial to the patient.

Research frontiers

Laparoscopy is applied in hepatic surgery more and more frequently. It has been reported about no less safety and efficacy of laparoscopic hepatectomy for liver cancer compared to the conventional approach. The worldwide research is directed towards a type of technique to guaranteeing the safety of patients with benign liver disease.

Innovations and breakthroughs

In this study, the authors investigate the perioperative outcomes of laparoscopic hepatectomy and conventional liver resection by pooling data from the literature. This is the first report of a meta-analysis comparing these two kinds of surgical approaches with large sample size comprehensively.

Applications

This work allows understanding the role of two surgical techniques for treating hepatolithiasis.

Peer-review

This systematic review and meta-analysis adds useful information for practice and research, and probably for policy.

REFERENCES

- Lee SE, Jang JY, Lee JM, Kim SW. Selection of appropriate liver resection in left hepatolithiasis based on anatomic and clinical study. *World J Surg* 2008; 32: 413-418 [PMID: 18196323 DOI: 10.1007/s00268-007-9355-1]
- 2 Yang T, Lau WY, Lai EC, Yang LQ, Zhang J, Yang GS, Lu JH, Wu MC. Hepatectomy for bilateral primary hepatolithiasis: a cohort study. *Ann Surg* 2010; 251: 84-90 [PMID: 20032719 DOI: 10.1097/SLA.0b013e3181b2f374]
- 3 Li SQ, Liang LJ, Peng BG, Hua YP, Lv MD, Fu SJ, Chen D. Outcomes of liver resection for intrahepatic stones: a comparative study of unilateral versus bilateral disease. *Ann Surg* 2012; 255: 946-953 [PMID: 22504194 DOI: 10.1097/SLA.0b013e31824dedc2]
- 4 Jan YY, Chen MF, Wang CS, Jeng LB, Hwang TL, Chen SC. Surgical treatment of hepatolithiasis: long-term results. *Surgery* 1996; 120: 509-514 [PMID: 8784405]
- 5 Cheung MT, Kwok PC. Liver resection for intrahepatic stones. Arch Surg 2005; 140: 993-997 [PMID: 16230551 DOI: 10.1001/ archsurg.140.10.993]
- 6 Huang MH, Chen CH, Yang JC, Yang CC, Yeh YH, Chou DA, Mo LR, Yueh SK, Nien CK. Long-term outcome of percutaneous transhepatic cholangioscopic lithotomy for hepatolithiasis. *Am J Gastroenterol* 2003; **98**: 2655-2662 [PMID: 14687812 DOI: 10.1111/j.1572-0241.2003.08770.x]
- 7 Lee SK, Seo DW, Myung SJ, Park ET, Lim BC, Kim HJ, Yoo KS, Park HJ, Joo YH, Kim MH, Min YI. Percutaneous transhepatic cholangioscopic treatment for hepatolithiasis: an evaluation of long-term results and risk factors for recurrence. *Gastrointest Endosc* 2001; 53: 318-323 [PMID: 11231390]
- 8 Feng ZQ, Huang ZQ, Xu LN, Liu R, Zhang AQ, Huang XQ, Zhang WZ, Dong JH. Liver resection for benign hepatic lesions: a retrospective analysis of 827 consecutive cases. *World J Gastroenterol* 2008; 14: 7247-7251 [PMID: 19084942 DOI: 10.3748/wjg.14.7247]
- 9 Uchiyama K, Onishi H, Tani M, Kinoshita H, Kawai M, Ueno M, Yamaue H. Long-term prognosis after treatment of patients with choledocholithiasis. *Ann Surg* 2003; 238: 97-102 [PMID:

Baishideng®

12832971 DOI: 10.1097/01.sla.0000077923.38307.84]

- 10 Manterola C, Asenjo-Lobos C, Otzen T. [Hierarchy of evidence: levels of evidence and grades of recommendation from current use]. *Rev Chilena Infectol* 2014; 31: 705-718 [PMID: 25679928 DOI: 10.4067/S0716-10182014000600011]
- 11 Yoshii A, Plaut DA, McGraw KA, Anderson MJ, Wellik KE. Analysis of the reporting of search strategies in Cochrane systematic reviews. *J Med Libr Assoc* 2009; 97: 21-29 [PMID: 19158999 DOI: 10.3163/1536-5050.97.1.004]
- 12 Fan X, Lin T, Xu K, Yin Z, Huang H, Dong W, Huang J. Laparoendoscopic single-site nephrectomy compared with conventional laparoscopic nephrectomy: a systematic review and meta-analysis of comparative studies. *Eur Urol* 2012; 62: 601-612 [PMID: 22704730 DOI: 10.1016/j.eururo.2012.05.055]
- 13 Taggart DP, D'Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. *Lancet* 2001; 358: 870-875 [PMID: 11567701 DOI: 10.1016/s0140-6736(01)06069-x]
- 14 Wells GA, Shea BJ, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. *Applied Engineering Agriculture* 2000; 18: 727-734
- 15 Higgins Jp T, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0: Wiley-Blackwell, 2011
- 16 Cai X, Wang Y, Yu H, Liang X, Peng S. Laparoscopic hepatectomy for hepatolithiasis: A feasibility and safety study in 29 patients. *Surg Endosc* 2007; 21: 1074-1078 [PMID: 17516119 DOI: 10.1007/s00464-007-9306-9]
- 17 Ding G, Cai W, Qin M. Pure laparoscopic versus open liver resection in treatment of hepatolithiasis within the left lobes: A randomized trial study. Surgical Laparoscopy. Surg Laparosc Endosc Percutan Tech 2015; 25: 392-394 [PMID: 25793351 DOI: 10.1097/SLE.00000000000120]
- 18 Li H, Mao HX, Yu DS. [Laparoscopic anatomical hepatectomies for intrahepatic bile duct stone]. *Zhongguo Yi Xue Ke Xue Yuan Xue Bao* 2008; 30: 465-468 [PMID: 18795622]
- 19 Jin RA, Wang Y, Yu H, Liang X, Cai XJ. Total laparoscopic left hepatectomy for primary hepatolithiasis: Eight-year experience in a single center. *Surgery* 2016; **159**: 834-841 [PMID: 26518391 DOI: 10.1016/j.surg.2015.09.022]
- 20 Kim YK, Han H-S, Yoon Y-S, Cho JY, Lee W. Laparoscopic Approach for Right-Sided Intrahepatic Duct Stones: A Comparative Study of Laparoscopic Versus Open Treatment. *World J Surg* 2015; 39: 1224-1230 [DOI: 10.1007/s00268-015-2942-7]
- 21 Lee SE, Choi YS. Initial experience of laparoscopic hepatectomy for intrahepatic duct (IHD) stones: Comparison with open hepatectomy. *HPB* 2014; 16: 359
- 22 Li J, Lu B, Cai X, Huang Y, Lu W, Huang F, Jin X, Yan Y. Comparative study of clinical effects of laparoscopic hepatectomy versus open hepatectomy for treating hepatolithiasis. *Chongqing Yiyao* 2014; **43**: 4891-4894
- 23 Li Y, Wei D, Wang K, Huang S, Zhu H, Li X, Zhang X, Zou H. Laparoscopic versus open left lateral hepatic lobectomy plus choledochoscopic stone extraction for left lobe hepatolithiasis. *Zhonghua Puwaike Zazhi* 2015; 24: 1070-1076
- 24 Namgoong JM, Kim KH, Park GC, Jung DH, Song GW, Ha TY, Moon DB, Ahn CS, Hwang S, Lee SG. Comparison of laparoscopic versus open left hemihepatectomy for left-sided hepatolithiasis. *Int J Med Sci* 2014; 11: 127-133 [PMID: 24465157 DOI: 10.7150/ijms.7516]
- 25 Peng L, Xiao J, Liu Z, Zhu J, Wan R, Xiao W, Li Y. Laparoscopic left-sided hepatectomy for the treatment of hepatolithiasis: A comparative study with open approach. *Int J Surg* 2017; 40: 117-123 [PMID: 28254607 DOI: 10.1016/j.ijsu.2017.02.068]
- 26 Shin YC, Jang JY, Kang MJ, Jung W, Chang J, Chang YR, Kim SW. Comparison of laparoscopic versus open left-sided hepatectomy for intrahepatic duct stones. *Surg Endosc* 2016; 30:

259-265 [PMID: 25861904 DOI: 10.1007/s00464-015-4200-3]

- 27 Song YJ, Kim KJ, Moon HG, Jeong SH, Ju YT, Jung E-J, Lee YJ, Hong SC, Choi SE, Ha WS, Park ST, Jeong CY. The Feasibility of Laparoscopic Hepatectomy for the Patients with Left Intrahepatic Stones. *J Korean Surg Society* 2010; 78: 35-40 [DOI: 10.4174/ jkss.2010.78.1.35]
- 28 Tian J, Li JW, Chen J, Fan YD, Bie P, Wang SG, Zheng SG. Laparoscopic hepatectomy with bile duct exploration for the treatment of hepatolithiasis: An experience of 116 cases. *Dig Liver Dis* 2013; 45: 493-498 [PMID: 23395128 DOI: 10.1016/ j.dld.2013.01.003]
- 29 Tu JF, Jiang FZ, Zhu HL, Hu RY, Zhang WJ, Zhou ZX. Laparoscopic vs open left hepatectomy for hepatolithiasis. *World J Gastroenterol* 2010; 16: 2818-2823 [PMID: 20533604 DOI: 10.3748/wjg.16.2818]
- 30 Ye X, Ni K, Zhou X, Xie K, Hong X. Laparoscopic versus open left hemihepatectomy for hepatolithiasis. J Surg Res 2015; 199: 402-406 [PMID: 26169034]
- 31 Zhou F, Shao JH, Zou SB, Huang MW, Yin XB, Yu X. Laparoscopic hepatectomy is associated with a higher incident frequency in hepatolithiasis patients. *Surg Today* 2013; 43: 1371-1381 [PMID: 23184324 DOI: 10.1007/s00595-012-0425-0]
- 32 Lin CC, Lin PY, Ko CJ, Chen YL, Chen ST, Kuo SJ. Hepatic resection for bilateral hepatolithiasis: a 20-year experience. ANZ J Surg 2013; 83: 978-984 [PMID: 23013139 DOI: 10.1111/ j.1445-2197.2012.06283.x]
- 33 Gagner M, Rogula T, Selzer D. Laparoscopic liver resection: benefits and controversies. *Surg Clin North Am* 2004; 84: 451-462 [PMID: 15062655 DOI: 10.1016/j.suc.2003.11.002]
- 34 Yoon YS, Han HS, Shin SH, Cho JY, Min SK, Lee HK. Laparoscopic treatment for intrahepatic duct stones in the era of laparoscopy: laparoscopic intrahepatic duct exploration and laparoscopic hepatectomy. *Ann Surg* 2009; 249: 286-291 [PMID: 19212183 DOI: 10.1097/SLA.0b013e31818eea56]
- 35 Huang C, Li G, Zou S, Fang L, Huang M, Wang K, Lou S. Clinical efficacy of laparoscopic left hemihepatectomy for the treatment of intrahepatic bile duct stones. *Zhonghua Xiaohua Waike Zazhi* 2015; 14: 152-154
- 36 Peng L, Xiao J, Liu Z, Li Y, Xiao W. Laparoscopic Versus Open Left-Sided Hepatectomy for Hepatolithiasis: A Systematic Review and Meta-Analysis. *J Laparoendosc Adv Surg Tech A* 2017; 27: 951-958 [PMID: 27754740 DOI: 10.1089/lap.2016.0357]
- 37 Eiriksson K, Fors D, Rubertsson S, Arvidsson D. High intraabdominal pressure during experimental laparoscopic liver resection reduces bleeding but increases the risk of gas embolism. *Br J Surg* 2011; **98**: 845-852 [PMID: 21523699 DOI: 10.1002/ bjs.7457]
- 38 Langenhuijsen J, Birtle A, Klatte T, Porpiglia F, Timsit MO. Surgical Management of Adrenocortical Carcinoma: Impact of Laparoscopic Approach, Lymphadenectomy, and Surgical Volume on Outcomes-A Systematic Review and Meta-analysis of the Current Literature. *Eur Urol Focus* 2016; 1: 241-250 [PMID: 28723392 DOI: 10.1016/j.euf.2015.12.001]
- 39 Wu TJ, Wang F, Lin YS, Chan KM, Yu MC, Lee WC. Right hepatectomy by the anterior method with liver hanging versus conventional approach for large hepatocellular carcinomas. *Br J Surg* 2010; 97: 1070-1078 [PMID: 20632274 DOI: 10.1002/ bjs.7083]
- 40 Kitagawa Y, Nimura Y, Hayakawa N, Kamiya J, Nagino M, Uesaka K, Oda K, Ohta A, Jan YY, Cheng LP, Hwang TL, Chen MF. Intrahepatic segmental bile duct patterns in hepatolithiasis: a comparative cholangiographic study between Taiwan and Japan. J Hepatobiliary Pancreat Surg 2003; 10: 377-381 [PMID: 14598139 DOI: 10.1007/s00534-002-0834-3]
- 41 Shaffer EA. Gallstone disease: Epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 2006; 20: 981-996 [PMID: 17127183 DOI: 10.1016/j.bpg.2006.05.004]
- 42 Stommel MW, Ten Broek RP, Strik C, Slooter GD, Verhoef C,

WJG | www.wjgnet.com

Grünhagen DJ, van Duijvendijk P, Bemelmans MH, den Dulk M, Sietses C, van Heek TN, van den Boezem PB, de Wilt JH, van Goor H. Multicenter Observational Study of Adhesion Formation after Open-and Laparoscopic Surgery for Colorectal Cancer. *Ann Surg* 2017; Epub ahead of print [PMID: 28207436 DOI: 10.1097/SLA.00000000002175]

P-Reviewer: Lee HC, Pani SP, Specchia ML S-Editor: Qi Y L-Editor: Filipodia E-Editor: Huang Y

Published by Baishideng Publishing Group Inc

7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA Telephone: +1-925-223-8242 Fax: +1-925-223-8243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk http://www.wjgnet.com

© 2017 Baishideng Publishing Group Inc. All rights reserved.