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A fast approach to detect gene–
gene synergy
Pengwei Xing1,2, Yuan Chen1,2, Jun Gao3, Lianyang Bai4 & Zheming Yuan1,2

Selecting informative genes, including individually discriminant genes and synergic genes, from 
expression data has been useful for medical diagnosis and prognosis. Detecting synergic genes is more 
difficult than selecting individually discriminant genes. Several efforts have recently been made to 
detect gene-gene synergies, such as dendrogram-based I(X1; X2; Y) (mutual information), doublets 
(gene pairs) and MIC(X1; X2; Y) based on the maximal information coefficient. It is unclear whether 
dendrogram-based I(X1; X2; Y) and doublets can capture synergies efficiently. Although MIC(X1; X2; Y) 
can capture a wide range of interaction, it has a high computational cost triggered by its 3-D search. In 
this paper, we developed a simple and fast approach based on abs conversion type (i.e. Z = |X1 − X2|) 
and t-test, to detect interactions in simulation and real-world datasets. Our results showed that 
dendrogram-based I(X1; X2; Y) and doublets are helpless for discovering pair-wise gene interactions, 
our approach can discover typical pair-wise synergic genes efficiently. These synergic genes can 
reach comparable accuracy to the individually discriminant genes using the same number of genes. 
Classifier cannot learn well if synergic genes have not been converted properly. Combining individually 
discriminant and synergic genes can improve the prediction performance.

Selection of informative genes, including individually discriminant genes and synergic genes, from expression 
data has been useful for medical diagnosis and prognosis. Individual gene ranking techniques such as t-test1 etc. 
can typically produce a “list of genes” that are correlated with disease2. However, they cannot provide insights 
into the interaction of these genes. According to information theory, the pair-wise interactions I (X1; X2; Y)3 is 
defined as

= − −I X X Y I X X Y I X Y I X Y( ; ; ) ( , ; ) ( ; ) ( ; ) (1)1 2 1 2 1 2

where I is the symbol for mutual information, I (X1; Y) is the individual effect of gene X1 relative to phenotype Y, 
I (X2; Y) is the individual effect of gene X2 relative to Y, and I (X1, X2; Y) is the joint effect of X1 and X2 relative to 
Y. A positive value of I (X1; X2; Y) indicates synergy, while a negative value of I (X1; X2; Y) indicates redundancy.

Figure 1 illustrates four typical pair-wise synergies examples from Watkinson et al.4 (Fig. 1A,B) and Chen et al.5  
(Fig. 1C,D). Figure 1A–C are generated by simulated data, and Fig. 1D is generated by real-world data. As an 
example, when the RSG9 or DIAPH2 is evaluated individually and separately, neither of these two genes is cor-
related with cancer. Therefore, genes RGS9 and DIAPH2 would not be present in the output of any “individual 
gene ranking” techniques. However, when the pair-wise interactions is evaluated, the genes RGS9 -DIAPH2 are 
sufficient to distinguish cancer from normal samples (Fig. 1D).

Detecting synergic genes is more difficult than selecting individually discriminant genes. Several efforts have 
recently been made to detect gene–gene synergies. These efforts often fall into one of the two strategies. One is 
the non-conversion strategy, which uses formula (1) directly to measure I(X1; X2; Y)4 or uses the maximal infor-
mation coefficient directly to measure MIC(X1; X2; Y)5. The way to discretize continuous variable is the key to 
estimate the value of mutual information. Binarization, such as the dendrogram-based4 technique, simplifies 
the estimation, and provides simple logical functions in the connection of the genes. However, it may result in 
information loss and estimation error. Although MIC(X1; X2; Y)5 can capture a wide range of interactions, it has a 
high computational cost triggered by its 3-D search. The other is the conversion strategy, such as doublets6 and top 
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scoring pair (TSP)7. They employ a new variable Z derived from the combinations between X1 and X2 (e.g. for the 
sum type of doublets, Z = X1 + X2) to measure I (Z; Y) instead of I(X1; X2; Y). This strategy is low computational 
cost, due to the search space reduced from 3-D to 2-D. However, it is unclear whether this conversion strategy can 
capture synergies8 efficiently.

Inspecting Fig. 1A–C, we found that they share the same pattern and can be characterized by the same func-
tion, Y = |X1 − X2|. The only difference between them is the value ranges of independent variables. Although 
Doublets6 included sum, diff, mul and sign conversion types (TSP is similar to sign), it, unfortunately, ignored abs 
conversion type.

In this work, we developed a simple and fast approach based on abs conversion type and t-test, to discover 
pair-wise synergic genes that are related to cancer. Furthermore, we validated these synergic genes by using clas-
sification performance with simulation and real-world datasets. Our results show that these synergic genes can 
enhance the individually discriminant model and improve the prediction performance. We also demonstrated 
that these synergic genes should be converted into new variables (Z) prior to be used as input features for classifi-
ers, especially for many pairs of synergistic genes.

Datasets and Methods
Datasets.  Four binary class datasets are involved in this work. The reference, sample size, number of genes in 
each dataset, and the number of samples in each class are summarized in Table 1. All gene expression data have 
been normalized by using the RMA method9.

Conversion types and pair-wise gene rank.  Suppose that a dataset has n samples and m genes, and 
can be denoted as {Yi, Xij}, i = 1,2,…,n; j = 1,2,…,m. Xij represents the expression value of the jth gene (Gj) in the 
ith sample; and Yi represents the class label of ith sample. Yi ∈ {0, 1}, 0 denotes cancerous and 1 denotes normal 
tissue samples. Rank-based methods7 are robust to quantization effects and to overcome background differences 
between gene pairs. Therefore, let Rij denote the rank of the ith sample in the jth gene, we replace the expression 
values Xij by their ranks Rij and get a new data matrix {Yi, Rij}.

For two genes Gp and Gq, Doublets6 lists four conversion types.

Sum Z R Rconversion type: (2)is ip iq= +

= −Diff Z R Rconversion type: (3)is ip iq
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Figure 1.  Four typical pair-wise synergies examples. Red and green dots represent cancer and normal samples, 
respectively.

Datasets Sample size Number of genes Reference

Prostate 1 102(52, 50) 12600 Singh, D(2002)11

Lung cancer 187 (97, 90) 22,215 Spira, A(2007)17; GSE4115

Prostate 2 424 (264, 160) 20,280 Penney, K(2015)18; GSE62872

Cardiovascular disease 378 (138, 240) 22,277 Ellsworth, D(2014)19; GSE46097

Table 1.  Four binary class gene expression datasets.
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We add a new conversion type:

Abs Z R Rconversion type: (6)is ip iq–=

Here, i = 1,2,…,n; p = 1,2,…, m; q = 1,2,…, m; p ≠ q; s = 1,2,…, m(m−1)/2. Again, we get a new data matrix {Yi, 
Zis}. For each converted feature Zs, we use the t-score, instead of I (Z; Y), to rank the association between Z and 
Y, since Y ∈ {0, 1}.

The individually discriminant genes are also ranked by t- score.

Support Vector Machine Classifier and performance evaluation.  Each gene pairs and each individ-
ually discriminant genes are ranked by t- score based on all samples. The Top N gene pairs and/or the Top N indi-
vidually discriminant genes are selected as input features. Support Vector Machine (SVM) Classifier is available 
at http://www.csie.ntu.edu.tw/~cjlin/libsvm/10. We simply use the average accuracy of five-fold cross-validation 
(CV) to evaluate the classifier performance as the datasets involved in this paper have balanced numbers of pos-
itive and negative samples.

=
+

+ + +
×Accuracy TP TN

TP FP TN FN
100%

(7)

Here TP, TN, FP, FN denote true positives, true negatives, false positives and false negatives respectively.

Results and Discussion
Comparing gene pairs selected by different methods.  Figure 2 illustrates the scatterplot of the top-two 
gene pairs selected by abs conversion type and six reference methods in Prostate1 dataset11. In Fig. 2A,B,M and N,  
although the top-two synergic genes selected by abs conversion type and MIC(X1; X2; Y) are different, they share 
the same pattern: each individual gene is unrelated to cancer by individual gene evaluation, but the pair-wise 
genes are sufficient to distinguish the cancer from normal samples. Figure 2C–L are the top-two gene pairs 
selected from sum, diff, mul, sign and dendrogram-based I(X1; X2; Y) methods. As an example (Fig. 2C), the 
higher the gene PWP2 expression level, the more likely to suffer cancer. The gene MNAT1 showed similar pattern 
as PWP2. Thus, these two genes (PWP2 and MNAT1) are related with cancer directly. However, they are individ-
ually discriminant rather than synergic genes. In a word, only abs conversion type and MIC(X1; X2; Y) can capture 
typical pair-wise synergies, dendrogram-based I(X1; X2; Y) and doublets are helpless for discovering pair-wise 
gene interactions.

We then compared the overlaps among the informative genes selected by Ind, Sum, Diff, Mul, Sign and Abs 
methods (Table 2). Clearly, a considerable number of similar informative genes can be detected by the first five 
methods. On the contrary, the informative genes selected by Abs method have little overlap with the informative 
genes selected by the others.

Given the top10 pair-wise synergic genes (16 genes) selected by abs conversion type, Fig. 3 contains the heat 
maps generated by these genes with different conversion type. Only the heat maps with abs conversion type 
(Fig. 3A) and diff conversion type (Fig. 3C) can distinguish cancer from normal samples. In diff conversion type, 
the Z values are medium in cancer samples, but they are either low or high in normal samples, and vice versa. 
Therefore, the pair-wise synergic genes converted by diff will receive low t-scores and cannot be highlighted.

To answer whether the synergic genes selected by abs conversion type have any biological relevance to cancer, 
we further validated the top10 gene pairs (16 genes) according to UniHI12 database (http://www.unihi.org/) and 
PubMed (Table 3). UniHI is an enhanced database for retrieval and interactive analysis of human molecular inter-
action networks. In Top10 gene pairs, so far we have found two gene pairs (PARP1-HMGB1 and CCHCR1-GRAP) 
that are associated with interaction in UniHI. The interaction between PARP1 and HMGB1 has been verified by 
Dara et al. (2007)13, the activation of PARP1 induces release of the pro-inflammatory mediator HMGB1 from the 
nucleus13–15. Of the 16 genes, 15 of them have been reported to relate to cancer. Four of them have been reported 
to relate to prostate cancer directly. Although LINC01278 has not yet been reported to relate to cancer, abs con-
version type suggests that it is an important informative gene. LINC01278 occurred three times in the top 10 gene 
pairs (Table 3), and should be given proper attention.

Classifier cannot learn well if synergic genes have not been converted properly.  Although we 
get the pair-wise synergic genes based on abs conversion type, Fig. 3F suggests that the no conversion feature (X 
or R) cannot distinguish cancer from normal samples. It also indicates that the input features for classifiers should 
be conversion feature Z (Fig. 3A). Therefore, we conducted an experiment to further validate this hypothesis. Ten 
simulation datasets were generated according to Table 4; their prediction accuracy of 5 fold cross-validation is 
listed in Table 5.

For the less input features (e.g dataset1 and dataset2) (Table 5), all of the seven models perform well by apply-
ing with the converted features, whereas only two models (SVM-RBF and ANNs) perform well by applying with 
the not- converted features. For the larger input features (e.g dataset9 and dataset10) (Table 5), although four 
models (SVM-RBF, SVM-poly, SVM-sig and ANNs) still perform well by applying with the converted features, 
none of these seven models perform well by applying with the not converted features. Thus, we can conclude that 
pair-wise synergic genes should be converted into new variables (Z) prior to be used as input features for classifi-
ers, especially for many pairs of synergistic genes.

This is a surprising and important discovery. Suppose phenotype Y is determined by individually discriminant 
genes X1 and X2, and pair-wise synergic genes X3–X4 and X5–X6. In other words, the true genetic model is 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.unihi.org/
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= + + − + −Y X X X X X X1 2 3 4 5 6 , and the true optimal subset is {X1, X2, X3, X4, X5, X6}, X7–X1000 are genes 
unrelated to Y. Now we get the dataset {Y, X1, X2,…, X1000} and want to construct a genomic prediction model16 
based on machine learning, but don’t know the true genetic model. Even the individual discriminant genes X1 and 

Figure 2.  Top2 gene pairs selected by different methods in Prostate1 dataset. Red and green dots represent 
cancer and control, respectively. Gene expression levels are represented by the ranked values. K and L are from 
dendrogram-based I(X1; X2; Y)4, M and N are from MIC(X1; X2; Y)5.

Ind(100) Sum(98) Diff(94) Mul(70) Sign(128) Abs(132)

Ind(100)

Sum(98) 35

Diff(94) 36 41

Mul(70) 23 20 21

Sign(128) 25 28 30 18

Abs(132) 1 0 0 0 0

Table 2.  Overlaps among the informative genes selected by different methods in the Prostate1 dataset. Ind(100): 
The Top 100 individually discriminant genes selected by t-test. Sum (98): The Top 100 gene pairs selected by 
Sum conversion type and t-test, 98 genes reserved after removing repeated genes; the others as well.
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X2 can be highlighted by t-test, and the synergic genes X3, X4, X5 and X6 can be highlighted by Abs conversion type 
or MIC(X1; X2; Y), classifier cannot learn well when the input features space is {X1, X2, X3, X4, X5, X6}. It means that 
learning machine can never tell us the true optimal subset, if synergic genes have not been converted properly. This 
indicates the complexity of genomic prediction, also provides a new explain for “missing heritability” in GWAS 
study.

Combining individually discriminant and synergic genes can improve prediction performance.  
To further validate the reliability of synergic genes selected by abs conversion type, we also evaluated the pre-
diction performance of individually discriminant and synergic genes with three more recent and larger publicly 
available datasets (Lung, Prostate2 and Cardiovascular) (see Table 1). Meantime, the label randomization tests 
were performed. The top individually discriminant genes are selected by t-test, the top synergic genes are selected 

Figure 3.  The heat maps generated by the same top10 synergic genes which were selected by abs conversion 
type. Each row corresponds to a pair of genes (A–E) or a gene (F), and each column corresponds to a sample. 
Gene expression levels are represented by the ranked values, and normalized to [−1, 1].

Pair-wise synergic Genes Related carcinoma and Ref.

ZNF324–EPHB4 Breast cancer20 – Prostate cancer21

TAB1–LINC01278 Breast cancer22 – Unreported

CDH22–LINC01278 Colorectal cancer23 – Unreported

KLF7–EXT1 Oral carcinoma24 – Cartilage-capped tumor25

SIPA1L3–LINC01278 Breast cancer26– Unreported

KLF7–DDR2 Oral carcinoma24 – Lung cancer27

MMP23A–DIP2C Bladder cancer28 – Breast and lung cancer29

CARM1–EPHB4 Prostate cancers30 – Prostate cancer21

CCHCR1–GRAP Skin cancer31 – Medullary thyroid carcinoma32

PARP1–HMGB1 Prostate cancer33 – Prostate cancer13

Table 3.  The top10 synergic genes selected by abs conversion type in Prostate1 dataset.

Dataset Function No converted input features Converted input features

1 Y = |X1 − X2| = Z1 {X1, X2} {Z1}

2 Y = |X1 − X2| + |X3 − X4| = Z1 + Z2 {X1, X2, X3, X4} {Z1, Z2}

… … … …

10 Y = |X1 − X2| + |X3 − X4| + … + |X19 − X20| = Z1 + Z2 + … + Z10 {X1, X2, X3, X4,…, X19, X20} {Z1, Z2,…, Z10}

Table 4.  Ten simulation datasets and their input features. Here, X is assigned with random values between 0 
and 1, and Y is binarized with the median. Sample size for each dataset is 200.
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by abs conversion type + t-test. Here, we take the individually discriminant genes and/or converted synergic 
genes as the input features for the SVM-RBF classifier.

Table 6 illustrates the prediction of accuracy in different schemes of input features. The results show that: 1)  
By using the individually discriminant genes as input features alone, the average accuracies for Top10_Ind, 
Top20_Ind and Top40_Ind are 77.30%, 78.74% and 80.36%, respectively. By using the synergic genes as input 
features alone, the average accuracies for Top5_Syn, Top10_Syn and Top20_Syn are 75.58%, 81.67% and 84.63%, 
respectively. These indicate that the synergic genes receive comparable accuracy to the individually discriminant 
genes using the same number of genes. 2) When the input features involves 20 genes, the average accuracies 
for Top20_Ind, Top10_Syn and Top10_Ind + Top5_Syn are 78.74%, 81.67%, and 83.74%, respectively. When the 
input features involves 40 genes, the average accuracies for Top40_Ind, Top20_Syn and Top20_Ind + Top10_Syn 

Dataset

SVM-RBFa SVM-linearb SVM-polyc SVM-sigd RF ANNs DT

Con.
No 
con. Con.

No 
con. Con.

No 
con. Con.

No 
con. Con.

No 
con. Con.

No 
con. Con.

No 
con.

1 0.985 0.985 0.990 0.605 1.00 0.56 0.990 0.540 1.00 0.865 1.00 0.975 0.995 0.895

2 0.970 0.905 0.975 0.600 0.985 0.640 0.995 0.455 0.960 0.795 0.990 0.930 0.965 0.785

3 0.985 0.860 0.975 0.465 0.980 0.575 0.975 0.500 0.860 0.780 0.995 0.910 0.900 0.705

4 0.960 0.810 0.925 0.515 0.985 0.400 0.980 0.420 0.850 0.655 0.985 0.825 0.865 0.695

5 0.970 0.790 0.910 0.535 0.965 0.550 0.980 0.460 0.810 0.615 0.995 0.780 0.840 0.600

6 0.945 0.815 0.860 0.500 0.985 0.475 0980 0.485 0.770 0.620 0.990 0.770 0.795 0.615

7 0.940 0.715 0.905 0.530 0.980 0.500 0.980 0.535 0.865 0.610 0.985 0.670 0.795 0.585

8 0.970 0.675 0.955 0.410 0.970 0.455 0.955 0.455 0.760 0.545 0.995 0.695 0.760 0.610

9 0.955 0.660 0.885 0.515 0.960 0.460 0.955 0.435 0.790 0.510 0.990 0.665 0.770 0.580

10 0.955 0.655 0.860 0.480 0.955 0.525 0.975 0.525 0.735 0.520 0.960 0.600 0.750 0.625

Table 5.  Prediction accuracy with converted and not converted input features. Here, a: SVM with radial basis 
function (RBF) kernel; b: SVM with linear kernel; c: SVM with polynomial kernel; d: SVM with sigmoid kernel. 
RF: Random Forest; ANNs: artificial neuron network; DT: Decision Tree; Con: the converted input features; No 
con: the not converted input features.

Input features Lung Prostate2 Cardiovascular Average

Top10_Ind 74.41 (43.81) 84.20 (64.39) 73.29 (63.22) 77.30 (57.14)

Top20_Ind 76.49 (43.31) 85.13 (61.08) 74.59 (61.65) 78.74 (55.35)

Top40_Ind 75.93 (46.02) 84.20 (61.09) 80.96 (62.95) 80.36 (56.69)

Top5_Syn 76.54 (47.03) 74.52 (62.25) 75.67 (62.99) 75.58 (57.42)

Top10_Syn 84.44 (50.28) 76.18 (55.90) 84.40 (61.38) 81.67 (55.85)

Top20_Syn 83.98 (47.06) 80.20 (62.96) 89.70 (62.17) 84.63 (57.40)

Top10_Ind + Top5_Syn 82.33 (48.17) 86.34 (62.27) 82.55 (63.22) 83.74 (57.89)

Top20_Ind + Top10_Syn 83.91 (40.11) 86.31 (57.54) 87.04 (62.44) 85.75 (53.36)

Table 6.  Prediction accuracies of 5-fold CV in different schemes of input features (%). Ind represents the 
individually discriminant genes, Syn represents the synergic genes. A number in parentheses indicates the result 
of label randomization test.

Features Lung Prostate2 Cardiovascular Average

Top20_Ind 76.49 85.13 74.59 78.73

Top10_Sum 80.68 81.61 78.83 80.37

Top10_Diff 83.37 85.84 76.97 82.06

Top10_Mul 80.81 81.61 79.09 80.50

Top10_Sign 78.08 84.68 79.38 80.71

Top10_Abs 84.44 76.18 84.40 81.67

Top10_Sum + Top20_Ind 79.70 85.14 80.42 81.75

Top10_Diff + Top20_Ind 82.33 84.44 83.33 83.37

Top10_Mul + Top20_Ind 78.11 86.55 79.64 81.43

Top10_Sign + Top20_Ind 81.35 84.43 76.21 80.66

Top10_Abs + Top20_Ind 83.91 86.31 87.04 85.75

Table 7.  Prediction accuracies of 5-fold CV in different conversion types (%). Top20_Ind: The Top20 
individually discriminant genes selected by t-test. Top10_Sum: the Top10 gene pairs selected by Sum conversion 
types + t-test, the others as well.
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are 80.36%, 84.63%, and 85.75%, respectively. These indicate that combining individually discriminant and syn-
ergic genes, rather than only using the individually discriminant genes or the synergic genes, can receive better 
prediction accuracies. 3) The classification performances of the label randomization tests drop to random, it 
validate the reliability of synergic genes selected by abs conversion type.

The minimum number of individually discriminant and synergic genes required in the optimal subset remains 
to be determined by the further research.

We also compared the prediction performance of the 5 conversion types (Table 7). The results show that the 
genes selected by Abs conversion type have more powerful ability to improve prediction performance for the 
individually discriminant model than the genes selected by the other conversion types.

Conclusion
In this paper, we propose a fast approach based on the combination of abs conversion type and t-test, to detect 
gene–gene synergy. We find that dendrogram-based I(X1; X2; Y) and doublets are helpless for discovering 
pair-wise gene interactions, and the synergic genes selected by our method and the MIC(X1; X2; Y) method are 
consistent with the typical pair-wise synergy. However, MIC(X1; X2; Y) has a higher computational cost. For 
example, the running time of the entire process on Prostate1 dataset (12,600 × 12,599/2 gene pairs) by MIC(X1; 
X2; Y) method is approximately 20 hours (Intel Core i5-4590@3.3 GHz), whereas it is only 47 minutes by our 
method. Experiments on simulated and real-world data showed that combining the individually discriminant 
genes selected by t-test and the synergic genes selected by our methods can improve prediction performance. 
These synergic genes should be converted into new variables (Z) prior to be used as input features for classifiers.
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