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Knowledge graph prediction of 
unknown adverse drug reactions 
and validation in electronic health 
records
Daniel M. Bean1, Honghan Wu1, Ehtesham Iqbal1, Olubanke Dzahini2,3, Zina M. Ibrahim1,5, 
Matthew Broadbent2, Robert Stewart2,4 & Richard J. B. Dobson   1,5

Unknown adverse reactions to drugs available on the market present a significant health risk and 
limit accurate judgement of the cost/benefit trade-off for medications. Machine learning has the 
potential to predict unknown adverse reactions from current knowledge. We constructed a knowledge 
graph containing four types of node: drugs, protein targets, indications and adverse reactions. Using 
this graph, we developed a machine learning algorithm based on a simple enrichment test and first 
demonstrated this method performs extremely well at classifying known causes of adverse reactions 
(AUC 0.92). A cross validation scheme in which 10% of drug-adverse reaction edges were systematically 
deleted per fold showed that the method correctly predicts 68% of the deleted edges on average. 
Next, a subset of adverse reactions that could be reliably detected in anonymised electronic health 
records from South London and Maudsley NHS Foundation Trust were used to validate predictions 
from the model that are not currently known in public databases. High-confidence predictions were 
validated in electronic records significantly more frequently than random models, and outperformed 
standard methods (logistic regression, decision trees and support vector machines). This approach has 
the potential to improve patient safety by predicting adverse reactions that were not observed during 
randomised trials.

Hospital admissions resulting from adverse drug reactions (ADRs) have been projected to cost the National 
Health Service £466m1. A meta-analysis of US hospitals estimated the incidence of serious ADRs at 6.7%2. ADRs 
are therefore a significant risk to patient health, treatment compliance and healthcare costs. ADRs are also a key 
factor in the cost-benefit analysis of pharmacological treatments. This analysis is critical to the decision making 
process for drug licensing and prescription. Although ADRs are monitored during clinical trials, practical limita-
tions on sample size and study population mean not all ADRs of a drug will be detected before it is approved for 
use. Ongoing pharmacovigilance and monitoring of drugs for post-marketing side effects is therefore essential. 
Spontaneous reports of ADRs are sent to regulatory bodies such as the US Food and Drug Administration (via 
the FDA Adverse Event Reporting System, FAERS3), the World Health Organisation (via VigiBase4), the UK 
Medicines and Healthcare Products Regulatory Agency (via the yellow card scheme5) or the European Medicines 
Agency (via EudraVigilance6). These reports may eventually end up in drug product inserts, or could result in a 
drug being withdrawn from the market. Unfortunately, post-marketing surveillance is limited by under-reporting 
of ADRs due to time constraints, limited training in reporting procedures and the low perceived impact of an 
individual report, amongst other factors7.
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Until enough reports emerge for a previously unknown ADR to be recognised as such, these unknown ADRs 
pose a risk to patients, limit the accuracy of cost-benefit analysis and lead to unexpected healthcare costs. The 
ability to predict ADRs is therefore highly desirable, and has been the subject of numerous previous studies 
(reviewed in8,9). In silico prediction of the safety profile of a candidate molecule has the advantage of extremely 
high throughput and is increasingly a part of the lead optimisation pipeline in drug discovery10. Similar methods 
can be applied to marketed drugs, and may benefit from the increased data available on the drug. The aims of the 
research reported in this paper were to predict additional (unknown) ADRs for drugs currently in use, and to 
verify those predictions using information extracted from anonymised electronic health records (EHRs).

“Knowledge graphs” represent facts as edges between nodes that represent entities (e.g. people, drugs) or con-
cepts (e.g. actor, migraine). Regardless of the specific technology used to create them, representing facts as a graph 
allows both highly efficient querying and automated reasoning. We constructed a knowledge graph containing 
publicly available data on drugs, their target proteins, clinical indications and known ADRs. In the context of this 
graph, unknown ADRs for drugs are missing edges between drugs nodes and ADR nodes. This graph is the input 
to our prediction algorithm, which predicts unknown ADRs by inferring missing edges in the graph.

Edges may be absent from the graph for three main reasons: 1) The drug does not cause the ADR, 2) The drug 
can cause the ADR and this fact is known but missing from the source database, 3) The drug can cause the ADR 
but is not yet known to. The aim of the algorithm presented in this paper is to place new edges in the graph that 
fall into categories 2 or 3. Importantly, correct predictions in these two classes are equivalent in terms of validat-
ing the prediction algorithm, even though the category 2 edges (known but missing from the graph) are known 
elsewhere. The correct prediction of edges in category 2 does not directly contribute to patient care, but as these 
databases are widely used for research purposes it is valuable to detect missing information.

Predicting unknown ADRs
ADR prediction has been the subject of numerous previous publications, which have been reviewed thoroughly8,9. 
Existing approaches can be subdivided into two key objectives. Firstly, to predict ADRs for a lead compound 
before marketing, and secondly, to make predictions that add new ADRs to the existing profile. The work pre-
sented here falls into the relatively uncommon category of predicting new ADRs for drugs in the post-marketing 
period. In this same category of study, Cami et al.11 trained a logistic regression classifier using structural prop-
erties of the drug-ADR network together with chemical and taxonomic properties of drugs as features to predict 
unknown ADRs for marketed drugs. The authors tested the predictive performance of their model in a simulated 
prospective framework using snapshots from a commercial database of spontaneous ADR reports; the best model 
achieved an AUROC of 0.87 with a sensitivity of 0.42. We use the same classification method as one of the bench-
marks for the performance of our algorithm. Rahmani et al.12 predicted unknown ADRs by applying a random 
walk algorithm to a network with drug and ADR nodes, where drug-ADR edges represent known ADRs and 
drug-drug edges indicate drug target similarity, but did not validate new ADRs in any real-world clinical data. 
Bresso et al.13 constructed a database of drug, ADR and target knowledge and used decision trees and inductive 
logic programming to predict ADR profiles (rather than individual ADRs) and validated predicted ADRs using 
FAERS3.

These previous studies demonstrate the ability of existing machine learning algorithms to predict new ADRs 
for marketed drugs, but are limited in terms of validation. Spontaneous reports are one of the foundations of 
post-marketing pharmacovigilance and are widely used as validation data in ADR prediction, however these 
databases depend on reports being submitted, and further on the accuracy of those reports. Under-reporting 
of ADRs7 significantly limits the use of such databases both for ADR detection and as a validation set for a 
prediction task. To address this issue, electronic health records (EHRs) can potentially be analysed to detect 
ADRs8, removing the dependency on reporting. Data mining from EHRs has been used to detect novel ADRs14, 
or combined with spontaneous reports to increase confidence in detected drug-ADR signals15. Reliably extracting 
ADR mentions from the free text of EHRs is challenging – a single concept may be described in several different 
specific ways (e.g. synonyms, acronyms or shorthand), or may be mentioned in a historical context. We therefore 
focus on a subset of ADRs for which the NLP pipeline is validated16.

Basis for the prediction algorithm
The workflow of the prediction algorithm is shown in Fig. 1. Intuitively, the drugs that cause a given ADR should 
have certain features in common that are related to the mechanism(s) by which they cause the ADR, such as 
protein targets, transporters or chemical features. One way to identify these features is by a simple enrichment 
test17,18. The enrichment test is a simplistic way to mimic the human reasoning process. For example, for any given 
ADR of interest the known causes are likely to also cause nausea, but we wouldn’t predict that therefore any drug 
that can cause nausea could be a cause of our ADR of interest because we know most drugs can cause nausea. In 
other words nausea is not a specific feature of the known causes of the ADR and we would ignore it. The result is 
achieved in our method by testing for the enrichment of each feature (e.g. also causing nausea or targeting a spe-
cific protein) for all the known causes of an ADR of interest vs all other drugs. Features that are found to be signif-
icantly enriched for the known causes of an ADR are used in the predictive model, other features are not included.

This set of features can be thought of as a “meta-drug” with only the enriched features of the known causes 
of an ADR. Any drug can now be scored for its similarity to this profile, and we expect the known causes of this 
ADR to score relatively highly. Any drug that is not currently known to cause the ADR but that also has a high 
similarity to the enriched “meta-drug” profile is predicted to be a potential new cause. This process is repeated for 
every ADR to generate new predictions.

The features produced from the knowledge graph (in conjunction with the enrichment test) can be used for 
classification by any standard machine learning algorithm such as logistic regression (LR), decision trees (DT) 
and support vector machines (SVM). These three methods are used as a benchmark for the method presented 



www.nature.com/scientificreports/

3ScIeNtIfIc REPOrTS | 7: 16416 | DOI:10.1038/s41598-017-16674-x

here. Our method is most similar to LR, indeed the hypothesis functions can be stated equivalently. The signifi-
cant difference between our method and LR is the objective function used to optimise the feature weights. In LR 
the weight vector is selected to maximising the (log) likelihood, whereas our method optimises Youden’s J statistic 
(see Methods).

The performance of the prediction algorithm on the constructed knowledge graph was assessed in 3 ways: 1) 
ability to correctly classify the known causes of each ADR, 2) ability to predict (replace) edges deleted from the 
graph, 3) ability to predict ADRs not present in the graph but observed in EHRs. The presented prediction algo-
rithm performed well across all tests, indicating that automated reasoning from knowledge graphs representing 
publicly available knowledge can be used to accurately predict unknown ADRs that have been observed in clinical 
practice. Filling in the blanks in our knowledge of ADRs would potentially reduce risks to patients and associated 
healthcare costs.

Results
Construction of the drug knowledge graph.  Public data on drug targets, indications and ADRs were 
retrieved and integrated to create the drug knowledge graph. Only marketed drugs with at least one edge of each 
type were retained in the graph. The final graph contains 70,382 edges (clinical indication, protein target, adverse 
reactions) for 524 drugs (Table 1). The distributions of numbers of known causes per ADR and known ADRs per 
drug were both highly skewed (Supplementary Figure S1), with a median of 3 known causes per ADR and 85 
known ADRs per drug. The most common ADR was nausea, which is a known reaction to 88% of drugs in the 

Figure 1.  Overview of the prediction algorithm. (a) Starting from a knowledge graph containing all publicly 
available information on the ADR being predicted, an enrichment test is used to identify predictive features 
of the drugs known to cause the ADR. The total adjacency of every drug with all predictors of each type (the 
columns of the matrix) is calculated from the graph. Blue nodes are drugs, red nodes are ADRs, orange nodes 
are targets, green nodes are indications. (b) The features (adjacency matrix from (a)) are scaled and weighted 
to produce a final score for every drug. (c) The optimum weight vector from (b) is learned from the knowledge 
graph to maximize an objective function. The predictions of this optimized model are tested in EHRs.
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graph, followed by headache (86%) and rash (81%). 32% of all ADR nodes in the graph have only a single known 
cause, for example Acrodynia (discolouration and pain of hands and feet, a rare side effect of Riluzole).

Model performance in a simulated prediction task.  The goal of the prediction algorithm is to use 
knowledge about drugs known to cause an ADR to predict new causes, which is equivalent to adding edges in the 
knowledge graph. To simulate this task, a proportion of the existing drug-ADR edges for each ADR are deleted 
from the graph before training a predictive model. The performance of the model is evaluated using the propor-
tion of the deleted edges that it correctly placed. Importantly, and unlike a standard k-fold cross validation, the 
test set of drugs is included in the training data, but as true negatives. This is an exact simulation of the intended 
use-case: adding new edges to nodes already present in the graph. This procedure was performed over 10 folds for 
each ADR in the graph (meaning in each fold 10% of the “known cause” edges from this ADR to drug nodes are 
deleted). Deleted edges are replaced before beginning the next fold.

Over all ADRs, 67.3% of deleted edges were correctly predicted by the trained models. As a benchmark, we 
also tested the performance of several standard machine learning methods that have previously been used for 
ADR prediction. The benchmark methods used were logistic regression (LR, used for ADR prediction in11), 
decision trees (DT, as used in13) and support vector machines (SVM, as used in19). Our method gave substantially 
better performance than all the benchmark methods (67.3% correctly predicted vs. 20.0% for DT, 14.5% for 
SVM, 14.3% for LR, Fig. 2a). Furthermore, the performance of our method was consistently high independent 
of the number of known causes of each ADR (Fig. 2b). The performance of all four methods was compared to 
the expected performance of random guessing (Fig. 2c). The distance of each point from the diagonal (where 
model performance equals random) was used as a measure of confidence in the ability of the optimised model to 
outperform a random model in the EHR validation. Our method outperformed random for all ADRs, whereas 
all other methods were no better than random for a proportion of ADRs (DT 7.9%, SVM 41.9%, LR 27.5%). This 
large difference in performance is partly due to the high proportion of models that do not make any new predic-
tions for the other methods. Over all folds for all ADRs, our method makes new predictions for 99.7% of models, 
compared to 92.5% for DT, 52.4% for SVM and 65.1% for LR.

The benchmark methods used here are widely used for classification. We found that our method per-
formed similarly to LR, DT and SVM at classifying the known causes of ADRs (Supplementary Note S1 and 
Supplementary Figure S2).

Model validation in Electronic Health Records.  The EHR at the South London and Maudsley NHS 
Foundation Trust was used to validate drug-ADR associations predicted by the algorithm. ADR mentions were 
identified from the free text of the EHR using a published NLP pipeline developed previously using the same 
EHR16. Reports were only considered a validation of a drug-ADR association when patients were prescribed a 
single drug and then reported the ADR within 30 days. To evaluate the performance of the prediction algorithm 
we identified a set of ADRs for validation for which 1) onset would be expected to occur within 30 days, 2) the 
ADR concept in the knowledge graph can be reliably detected in the EHR text with the NLP pipeline and 3) a 
predictive model could be built from the knowledge graph. Applying these criteria left a set of 10 ADRs for val-
idation (Table 2). Importantly, as shown in Table 2, these test cases were not selected based on confidence in the 
predictive model.

The predictive performance of each model was first assessed by comparing the number of new predictions 
made by the trained model that were validated in the EHR to the performance of random models (Table 3). The 
number of new predictions that were validated in EHR data was greater than expected by chance for all tested 
models, however for Alopecia and Stevens-Johnson Syndrome a considerable proportion of random models did 
perform at least as well (14% for Stevens-Johnson syndrome, 36% for alopecia). The confidence grouping derived 
from cross validation performance compared to random models performed well overall in identifying models 
that are outperformed by random in <5% of cases in EHR validation (Table 3). The only exceptions were for 
neuroleptic malignant syndrome and pericarditis.

Comparison to existing methods.  As a benchmark, we applied machine learning methods that have 
previously been successfully applied to the ADR prediction task for which well documented implementations are 
readily available. The predictions generated by previously published methods will depend on the input features, 
so these methods were trained on the same input features as used with our method, and their prediction perfor-
mance was evaluated with the same EHR pipeline. In all cases, new predictions were taken as the false positives 
from the model and the validation rate was compared to random chance.

The benchmark methods are the same as those used earlier in the simulated prediction task: LR, used for ADR 
prediction in11, DT, as used in13 and SVM, as used in19. The results for all methods are shown in Table 4.

Network Drug nodes Other nodes Total nodes Edges

Drug-ADR 524 3144 3668 62380

Drug-Target 524 736 1260 2610

Drug-Indication 524 1424 1948 5392

Total 524 5304 5828 70382

Table 1.  Size of the drug knowledge graph. Raw data was filtered to retain only marketed drugs with at least one 
known ADR, target and indication.
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Figure 2.  Trained models outperform random and standard models in simulated prediction tasks. (a) 
Distribution of the proportion of deleted edges that was correctly predicted by each method for each ADR, 
as an average over all folds. (b) Average proportion of deleted edges correctly predicted by each algorithm for 
all ADRs. (c) Proportion of deleted edges predicted by trained models compared to the expected proportion 
achieved by a random model. Solid diagonal line represents identical performance. Points above the line 
indicate the trained model performed better than random. DT = Decision Trees, LR = Logistic Regression, 
SVM = Support Vector Machines.

Name UMLS Known AUC High confidence

Akathisia C0392156 46 0.951 True

Alopecia C0002170 215 0.857 False

Amenorrhoea C0002453 62 0.877 True

Galactorrhoea C0235660 49 0.887 True

Hyperprolactinaemia C0020514 14 0.973 True

Hypersalivation C0013132 12 0.982 True

Neuroleptic Malignant Syndrome C0027849 43 0.965 True

Pericarditis C0031046 28 0.895 False

Pulmonary embolism C0034065 67 0.898 False

Stevens-Johnson syndrome C0038325 165 0.842 False

Table 2.  ADRs for which we attempted to validate novel predicted drug associations in the EHR. The “known” 
column refers to the total number of drugs in the knowledge graph with an edge to each ADR.
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The 10 ADRs used for validation were partly selected because the predictive model made new predictions that 
could be tested, so all 10 have new predictions, however our method also generated new predictions for more 
ADRs overall. There was only one ADR for each of the three alternative methods that performed better than ran-
domly selecting the same number of drugs at least 95% of the time (galactorrhoea for SVM and LR, pericarditis 
for DT). On average over all validation ADRs with new predictions, our method outperformed random 92.3% of 
the time, compared to 75.4% for the next best method (LR). Therefore, the method presented here both produces 
new predictions for more ADRs, and the validation rate of new predictions is much better.

Examples of validated ADR predictions.  The overall top 10 highest-scoring predicted ADRs that 
were validated in EHR data are shown in Table 5. As a secondary validation of these predictions, the European 
Medicines Agency EurdaVigilance database of spontaneous ADRs was queried for reports of the same association 
(Table 5). An advantage of the prediction method used here is that the enriched features may provide a molecular 
mechanism for the ADR17.

Of the top 10 predictions, 3 are for akathisia and 4 are for pulmonary embolism. Akathisia is a movement 
disorder and extrapyramidal side effect characterised by a feeling of restlessness and a compulsion to move. A 
pulmonary embolism is a blockage of the pulmonary artery, which supplies blood to the lungs. An embolism 
elsewhere can cause pulmonary embolism if the clot dislodges and reaches the lung.

All three drugs associated with akathisia in Table 5 are tricyclic antidepressants (TCAs), and the indications 
“depression” and “major depression” were predictors in the model. Extrapyramidal side effects, including aka-
thisia, have been associated with TCAs in case reports20,21, as well as with the related class of selective serotonin 
reuptake inhibitor (SSRI) drugs22. Extrapyramidal side effects are listed as possible rare ADRs in the data sheets 
for imipramine and amitriptyline. As noted by Vandel et al. in their review of these case reports20, given the wide-
spread prescription of TCAs, the incidence of extrapyramidal side effects must be very low to have resulted in 
only a small number of reports. The underlying mechanism of akathisia remains unclear but is thought to involve 
dysregulation (hypo-activity) of dopaminergic neurotransmission23, which can result from serotonin potentiation 
by TCAs or SSRIs. This theory is consistent with the predictive protein targets used in the model, which include 
several serotonin and dopamine receptor subtypes.

The four drugs in Table 5 associated with pulmonary embolism are unrelated to each other in their primary 
action: clomipramine (TCA), lamotrigine (anticonvulsant), donepezil (cholinesterase inhibitor), haloperidol 
(antipsychotic). Of these, haloperidol is associated with venous thromboembolism in the knowledge graph, and 
pulmonary embolism is associated generally with antipsychotics as a class of drugs. One case report was found 

Name N V E
Proportion 
random ≥ trained Significant

High 
confidence

Akathisia 22 9 5 0.0337 True True

Alopecia 18 5 4 0.3556 False False

Amenorrhoea 20 6 3 0.0386 True True

Galactorrhoea 22 5 2 0.0329 True True

Hyperprolactinaemia 14 12 6 6.00E-04 True True

Hypersalivation 20 15 9 8.00E-04 True True

Neuroleptic Malignant 
Syndrome 20 6 3 0.0612 False True

Pericarditis 19 11 3 1.00E-04 True False

Pulmonaryembolism 22 8 5 0.1015 False False

Stevens-Johnson syndrome 22 4 2 0.1434 False False

Table 3.  Validation of trained models in EHR data. N = number of drugs predicted to cause the ADR that were 
tested in the EHR data. V = number of predicted drugs that were associated with the ADR (validated) in EHR 
data. E = expected number of validated predictions given N and the proportion of all drugs that are associated 
in the EHR. Random models generate N predictions for each ADR, and the trained model is considered 
significant if <5% of 100,000 random models had an equal or greater validation rate.

Method
Percent of all ADRs 
with new predictions

Validation ADRs 
with new predictions

ADRs with ≥1 
predictions validated

Trained model outperforms 
>95% of random models

Average % of random models 
with better performance

This paper 91.1 (10/10) 10/10 6/10 (60%) 7.7

LR 52.8 7/10 6/7 1/7 (14%) 24.6

DT 89.7 10/10 4/10 1/10 (10%) 24.8

SVM 46.7 4/10 4/4 1/4 (25%) 36.7

Table 4.  Prediction performance compared to other methods. By definition the method developed in this 
paper makes predictions for all 10 of the validation ADRs. The average percent of random models with better 
performance is calculated considering only the ADRs with at least one validated prediction. LR = logistic 
regression, DT = decision trees, SVM = support vector machines.
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in which thrombosis occurred following clomipramine treatment24. The prediction that these drugs can cause 
pulmonary embolism was largely based on their other known ADRs. Examples of predictive ADRs in the model 
with direct relevance to pulmonary embolism include deep vein thrombosis, venous embolism, thrombocytosis, 
thrombophlebitis and increased prothrombin levels.

Discussion
At the time a drug is approved for use, only a subset of the possible adverse reactions to that drug will be known 
from clinical trials. Electronic health records are a vast repository of actual patient outcomes, however much of 
this data is only contained in the free text. In this paper, we have developed a prediction algorithm that uses pub-
licly available data on drugs, which would be available at the time of marketing, that can predict ADRs observed 
in health records that are not found in public databases. With this algorithm, we demonstrate a pharmacovigi-
lance pipeline using drug-ADR associations extracted from the free text of an EHR to verify predictions made 
using a knowledge graph of publicly available data.

A significant distinction between the existing approaches to ADR prediction is whether the predictions are 
generated for drug-like molecules currently in development, or for drugs that have undergone clinical trials. 
From a modelling perspective, the key difference between these two situations is the availability of a side effect 
profile for the drug (albeit a likely incomplete one). Intrinsic structural properties of the drug-ADR network alone 
can achieve surprisingly high performance in predicting additional ADRs, but the integration of additional data 
improves performance11. ADR predictions for lead molecules have tended to focus on chemical features (such 
as widely-used quantitative structure-activity relationship models25,26), possibly also including gene expression 
profiles27 or drug targets28,29. This study is focused on predicting additional ADRs for drugs in the post-marketing 
phase. In general the method presented could be used to make predictions for lead molecules, but the drug 
knowledge graph used in this paper is limited to targets, indications and ADRs. The lack of any chemical features 
means there would be very little input data remaining in the present knowledge graph for a lead molecule.

Integrating chemical features into the knowledge graph could also improve the predictions for marketed 
drugs, as well as allowing predictions to be made for lead drugs. For example, certain ADRs are related to specific 
chemical subgroups in the drug molecule17,30,31. One way to achieve this integration would be to represent the 
presence of different chemical substructures as facts in the graph, which have previously been used to predict side 
effect profiles30. Alternatively, Shao et al. showed that representing the molecular structure of drugs as a graph and 
then applying pattern mining techniques to identify features outperformed more widely used methods such as 
molecular fingerprints for ADR prediction31. Drug structure graphs (or features of these graphs) could be repre-
sented within the knowledge graph and used to generate predictions, possibly increasing predictive value. Cami 
et al.11 used 16 molecular features of drugs as covariates in their ADR prediction model, several of which are con-
tinuous values (e.g. molecular weight, rotatable bond count) rather than binary facts used here. An expanded ver-
sion of the knowledge graph could incorporate these continuous features in the graph as edge weights. Including 
chemical features would change the input data, so the performance would need to be re-evaluated.

Previous studies18,27 found that including GO annotation of target proteins or differentially expressed genes 
improved classifier performance in the ADR prediction task. The combined GO annotation and ontology forms 
a knowledge graph, and as such this data could straightforwardly be integrated in the drug knowledge graph 
constructed in this study. It is therefore possible that expanding the input knowledge graph (for example with 
chemical features of drugs) would improve the accuracy of the predicted ADRs.

Verifying predicted ADRs using EHRs rather than relying on spontaneous reports has several advantages, the 
most significant being that this approach overcomes the under-reporting issues of spontaneous report databases. 
However, there are some general limitations. The most important limitation is that we have to assume patients are 
complying with their prescriptions, and also that they are not taking any medications not captured in the EHR 

Drug ADR

EHR EudraVigilance

Drug + ADR Drug (all) Drug + ADR Drug (all)

Imipramine Akathisia 2 4 5 1,465

Trimipramine Akathisia 1 2 3 931

Amitriptyline Akathisia 2 13 16 8,832

Quetiapine Alopecia 18 20 74 34,010

Mirtazapine Neuroleptic Malignant Syndrome 2 81 81 10,215

Clomipramine Pulmonary Embolism 1 8 15 3,676

Lamotrigine Pulmonary Embolism 8 63 29 21,168

Donepezil Pulmonary Embolism 7 12 15 5,129

Haloperidol Pulmonary Embolism 6 53 99 9,532

Aripiprazole Stevens-Johnson Syndrome 3 564 29 17,758

Table 5.  The ten highest-scoring predicted ADRs that were not present in the drug knowledge graph and 
were validated in EHRs. The number of reports of each drug-ADR pair (“Drug + ADR”) and the total number 
of reports of all ADRs for each drug (“Drug (all)”) are shown for both the EHR used for validation and the 
EudraVigilance database. The total ADR reports for each drug in the EHR only includes the 10 ADRs used for 
validation. The EudraVigilance reports include all cases for all ADRs reported in the dataset up to August 2017 
(accessed October 2017). Note that the ratio of “Drug + ADR” to “Drug (all)” is expected to be much larger in 
the EHR as only 10 ADRs are considered, vs all ADRs for EudraVigilance.
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(which could be the true cause of the ADR). This is particularly problematic for outpatients. As with spontane-
ous reports, these associations alone do not prove a causal link between a drug and an ADR and we cannot truly 
establish (and report) a causal link without further manual investigation to rule out other possible causes. To 
mitigate these limitations, we focused on patients who were only prescribed a single drug and then reported the 
ADR within 30 days. This increases our confidence that the prescribed drug is associated with the ADR, however 
it is not a perfect solution. Some ADRs can have chronic onset (such as amenorrhoea, galactorrhoea, alopecia) 
or may be reported “out of sync” with drug prescriptions, i.e. an ADR could have been caused by a previous 
medication that was stopped, but the ADR was only recorded after another prescription was given. Considering 
these limitations, we consider the drug-ADR associations presented here as strong candidates that require further 
clinical validation.

Considering only those patients prescribed a single drug also excludes a significant proportion of patients who 
are prescribed multiple drugs concomitantly. Technically the prediction algorithm could straightforwardly extend 
to predict ADRs for combinations of drugs, increasing its utility in likely real-world contexts where many patients 
take multiple medications. Including drug combinations is practically challenging as the size of the prediction 
problem would increase exponentially. Finally, the validation is dependent on reliable NLP to extract ADR men-
tions from the free text of EHRs. As the pipeline used for validation was developed and validated using the same 
EHR16, we are confident that the error rate is low.

The predictive models generated using our method are essentially sets of drug properties for each type of 
information in the knowledge graph, along with a weight for each type. The basis for a given drug-ADR predic-
tion is therefore very clear, and the sets of predictors – particularly the predictive targets – may provide valuable 
mechanistic information for future drug development. As new drugs are developed and added to the knowledge 
graph, the model optimisation process should be repeated. Although it is possible to use the previous model to 
calculate a score for a new drug and any ADR, adding edges to the graph would affect all the underlying enrich-
ment calculations that are used to identify predictors. This is computationally expensive and may also result in 
previous predictions changing. However, this is also a reasonable feature by analogy to the human reasoning pro-
cess – when we learn new information, it may require us to revise previous predictions. Beyond the task of ADR 
prediction, the algorithm used here is a general-purpose method that can be applied to any knowledge graph. 
Further work is needed determine its performance in other contexts.

Machine learning algorithms could become valuable tools for pharmacovigilance, which is a critical element 
of drug safety. Systems pharmacology methods such as that presented here could be used to predict and under-
stand ADRs that were not observed in clinical trials but are possible given the observed ADR profile and other 
known properties of the drug. These predictions may not warrant inclusion in drug safety leaflets for patients, 
but could be provided to clinicians to promote reporting of these predicted ADRs. Looking further ahead, we 
can envisage a learning healthcare system in which ADRs are automatically detected in patient records and are 
reported to relevant regulatory bodies if the specific drug-ADR association is missing from the system’s knowl-
edge graph. Such a system lowers the burden on clinicians’ time and mitigates the under-reporting problems of 
current post-marketing surveillance, potentially improving patient safety. These reports could be used to dynam-
ically generate ever more accurate ADR predictions.

Methods
Knowledge graph construction.  The knowledge graph was constructed as a Neo4j 3.0 database contain-
ing publicly available data on marketed drugs. Data on drug targets was retrieved from DrugBank version 4.5.0 
(www.drugbank.ca)32. Adverse drug reactions and indications extracted from drug package inserts were retrieved 
from SIDER (www.sideeffects.embl.de)33 on 09/06/2016. Drugs were matched between datasets using PubChem 
compound identifiers. Target proteins were identified using Uniprot identifiers, indications and adverse drug 
reactions were identified using Unified Medical Language System (UMLS) terms. The constructed graph contains 
4 types of node (drug, ADR, indication, target) and 3 types of edge representing each relationship. Every edge in 
the graph has a drug node at exactly one end. Only drugs with at least one edge of each type were retained in the 
final knowledge graph (i.e. each drug must have at least one known target, indication and ADR). The complete 
public knowledge graph used in this study is provided in Supplementary Table S1.

Prediction algorithm.  The prediction algorithm is a binary classifier which is used to place edges in a graph. 
For each ADR node, the knowledge graph is queried to find known causes. For each of the three types of drug 
knowledge in the graph (target, indication and ADR), Fisher’s exact test is used to identify enriched properties 
of the known causes of the ADR vs. all other drugs in the graph (excluding the ADR being modelled). Enriched 
properties are those with a p-value for enrichment <0.05 following false discovery rate correction. These identi-
fied properties are nodes in the knowledge graph, and the raw features used to make predictions are the adjacency 
of all drug nodes in the graph with these (enriched) nodes. Standard feature scaling is applied to each feature type 
separately to scale values to the range 0–1. Feature scaling is important as drugs typically have many more known 
ADRs than targets or indications.

The scaled features can be represented with matrix D, where each row corresponds to a drug and each column 
corresponds to a predictor node type. The value Di,j is therefore the total (scaled) adjacency of drug i with all pre-
dictors of type j. The score for each drug is calculated by multiplying D by a weight vector w (to be learnt from the 
data), which contains the weight of each predictor type in the same order as the columns of D. A drug is predicted 
to cause the ADR if its score is greater than a threshold. New predictions from the model are any drugs that are 
not known causes of the ADR that score higher than the threshold, and there may not be any new predictions for 
a given model.

The feature weights and score threshold are selected to maximise the objective function. In general, any 
objective function could be used to determine the threshold, based on the cost context of false positives vs false 

http://www.drugbank.ca
http://www.sideeffects.embl.de
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negatives, and the weights for each predictor type could be varied over any given range. For this study, the weights 
for all predictor types were kept within the range 0–1 with L2 normalisation. Youden’s J statistic was used as the 
objective function, which is defined as J = Sensitivity + Specificity − 1 (equation 1). Sensitivity is the true positive 
rate, meaning the proportion of all positive examples that was correctly identified. Specificity is the true negative 
rate, meaning the proportion of all negative examples that was correctly identified.

= + − = + −J TP
P

TN
N

Sensitivity Specificity1 1 (1)

At least one predictor for each node type was required before training a model. This requirement for predic-
tors of all types to be identified meant that it was not possible to build a model for all ADRs in the training data. 
Relaxing this constraint would allow a greater number of predictive models to be built.

The prediction algorithm is implemented as an open source python library which available and documented 
in detail at https://github.com/KHP-Informatics/ADR-graph.

Benchmark methods.  Machine learning methods that have previously been successfully applied to the ADR 
prediction task and for which well documented implementations are readily available were tested used as bench-
marks. The selected methods were logistic regression (LR), support vector machines (SVM) and decision trees 
(DT), all of which are implemented in scikit-learn34 version 0.17.1. SVM classifiers used the RBF kernel and default 
settings to emulate the SVM classifiers used in19. DTs were configured to emulate the method of Bresso et al.13  
by setting the minimum samples per leaf to 5. LR classifiers used L2 regularisation and default settings. All bench-
mark machine learning methods were trained on the same input data as described for our method (normalised 
adjacency with enriched properties of known causes of each ADR). False positives from all models were taken as 
new predictions and validated using the same EHR pipeline.

Random models.  For each ADR, 100,000 random models were generated that made the same number of 
new predictions as the trained model for the same ADR. Random models selected drugs uniformly at random 
from the list of all drugs that are not known to cause the ADR and are prescribed in the EHR used for validation. 
The predictions from these random models are validated in the EHR using the same pipeline as for the trained 
models. The proportion of random models with at least as many validated predictions as the trained model was 
used as the performance metric for trained models (Supplementary Figure S3). Trained models with more vali-
dated predictions than >95% of random models selecting the same number of drugs were considered significant.

Cross-validation.  To simulate the prediction task, the edges for each ADR node were divided into 10 folds. 
In each fold, 1/10th of the edges to drugs from an ADR were deleted and a model was then optimised using 
the resulting graph. The proportion of deleted edges that are correctly predicted by the model is determined. 
Importantly, only edges (not nodes) are deleted from the graph in each fold. This means the drug nodes that 
were previously connected to the ADR remain in the graph and are considered true negatives when the model is 
trained. This is a more accurate simulation of the intended prediction task than a standard cross-validation where 
the test set is completely held out.

Cross validation performance was used to derive a confidence score for the predictions for each ADR gener-
ated on the full graph. The raw confidence is average proportion of deleted edges that was correctly predicted over 
all folds, relative to the expected performance of a random model. If the relative performance equals 1, the model 
performs as expected by random chance. These raw scores were binned into confidence groups, where high con-
fidence models score better than the median and mid confidence models score better than random but less than 
the median. Any ADRs with performance less than or equal to random are assigned low confidence. ADRs with 
fewer than 6 successful folds were not analysed, and were assigned low confidence by default.

Validation in electronic health records and Eudravigilance.  De-identified patient records were 
accessed through the Clinical Record Interactive Search (CRIS)35 at the Maudsley NIHR Biomedical Research 
Centre, South London and Maudsley NHS Foundation Trust. This is a widely used clinical database with a 
robust data governance structure which has received ethical approval for secondary analysis (Oxford REC C 
08/H0606/71 + 5). Free text from these mental health electronic health records was processed using a Natural 
Language Processing pipeline described previously16. Briefly, ADR mentions are identified using a dictionary of 
related terms (including synonyms and misspellings) and further processed to identify negation or other experi-
encers, favouring precision over recall. In this pipeline, ADRs are any adverse events in the record that could be 
an ADR, although causality is not established16.

When an ADR mention is detected in the free text, we associate it with all drugs prescribed within the previ-
ous 30 days based on the typical onset of the ADRs used for validation. Only ADR mentions with a single associ-
ated prescription were considered in the validation; reports from patients prescribed more than one drug in the 
previous 30 days are ignored. The Eudravigilence database was queried via www.adrreports.eu on 04/10/2017. All 
ADR reports up to August 2017 were retrieved.

Data availability.  The data on drug indications, ADRs and targets are publicly available (see “Knowledge 
graph construction”) and the knowledge graph produced from this data is available as Supplementary Table S1. 
The prediction algorithm is implemented as an open source python library, available and documented with the 
knowledge graph at https://github.com/KHP-Informatics/ADR-graph. The anonymised EHR data are available 
for secondary research via CRIS35 subject to approval by the CRIS Oversight Committee in adherence with strict 
patient-led governance35.

https://github.com/KHP-Informatics/ADR-graph
http://www.adrreports.eu
https://github.com/KHP-Informatics/ADR-graph
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