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 Genome-wide association studies (GWASs) have been performed extensively in diverse populations

. toidentify single nucleotide polymorphisms (SNPs) associated with complex diseases or traits.
However, to date, the SNPs identified fail to explain a large proportion of the variance of the traits/
diseases. GWASs on type 2 diabetes (T2D) and obesity are generally focused on individual traits
independently, and genetic intercommunity (common genetic contributions or the product of over

. correlated phenotypic world) between them are largely unknown, despite extensive data showing that

. these two phenotypes share both genetic and environmental risk factors. Here, we applied a recently
developed genetic pleiotropic conditional false discovery rate (cFDR) approach to discover novel loci

. associated with BMI and T2D by incorporating the summary statistics from existing GWASs of these

. two traits. Conditional Q-Q and fold enrichment plots were used to visually demonstrate the strength

. of pleiotropic enrichment. Adopting a cFDR nominal significance level of 0.05, 287 loci were identified

. for BMI and 75 loci for T2D, 23 of which for both traits. By incorporating related traits into a conditional

. analysis framework, we observed significant pleiotropic enrichment between obesity and T2D. These

. findings may provide novel insights into the etiology of obesity and T2D, individually and jointly.

 Genome-wide association studies (GWASs) have successfully identified hundreds of SNPs associated with com-
. plex diseases or traits. However, to date, the SNPs identified fail to explain a large proportion of the variance of the
. traits/diseases under study. Previous studies have suggested that GWASs have the potential to explain a larger pro-
: portion of “missing heritability”’* mainly by using larger sample sizes®. However, although acquiring larger sam-
- ple sizes may increase statistical power, it is often not feasible since the recruiting and genotyping of additional
: participants is too costly. Therefore, there is a need for analytical methods that can better and more efficiently
. utilize the information contained in the existing pool of available data for the identification of trait-associated
- loci. Several of these types of methods have recently been developed*~® and successfully applied”® to identify novel
- loci for various complex traits.
: Pleiotropy is the phenomenon of a single gene or locus affecting two or more phenotypes’. There is ample
evidence to suggest that genetic pleiotropy exists in many correlated diseases and traits, such as bipolar disorder
. and schizophrenia’, indicating that related traits may share overlapping genetic mechanisms. Through the incor-
. poration of information regarding genetic pleiotropy, we can improve the detection power of common variants
. associated with complex diseases or traits by effectively increasing the sample sizes without the need to recruit
more individuals. The joint analysis of related phenotypes may reveal novel insights into the common biological
mechanisms and overlapping pathophysiological relationships between complex traits.
: Andreassen et al.* developed a genetic-pleiotropy-informed conditional false discovery rate (c(FDR) method
. by leveraging two GWASs from associated traits in a conditional analysis. The method has been successfully
© applied to genetically associated diseases and phenotypes including schizophrenia and bipolar disorder”, as well
as blood pressure and other phenotypes®. Our group has recently successfully applied the cFDR method to the
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joint analyses of bone mineral density (BMD) and breast cancer!'!, BMD and coronary artery disease!?, femo-
ral neck (FNK) BMD and height'?, and T2D and birth weight'%. All of these studies improved statistical power
through the joint analysis of related traits, and unambiguously demonstrated the utility of the method for improv-
ing the identification of potentially novel trait-associated variants.

Obesity is a chronic metabolic disorder mainly characterized by excessive body fat. Body Mass Index (BMI) is
widely used in obesity research and clinical diagnosis to quantify an individual’s tissue mass. Identification of the genetic
determinants for BMI, a non-invasive measure of obesity that predicts the risk of related complications'®, could lead
to a better understanding of the biological basis of obesity. Epidemiological studies estimate that the prevalence of
overweight/obese individuals increased by >40% between 1980 and 20136, and that these elevated obesity levels are a
driving force for the similarly rapid increase of Type II Diabetes (T2D)". T2D is a chronic metabolic disorder charac-
terized by high blood sugar, insulin resistance, and relative lack of insulin, all of which share some genetic susceptibility
and functional mechanisms with obesity'®. Heritability studies have demonstrated a substantial genetic contribution
to both obesity risk (h?~40-70%)" and T2D (h?>~26-69%). In 2014, an estimated 387 million people were living with
diabetes, corresponding to a worldwide prevalence of 8.3%, and 90% of these individuals had T2D*!.

There has been substantial evidence to indicate an important relationship between obesity and T2D, along
with strong support**? to suggest that obesity and T2D share some common genetic risk factors. The accumu-
lation of body fat may be associated with several conditions related to T2D including insulin resistance, hyper-
insulinemia, the reduced utilization of glucose in muscles and other tissues, and impaired glucose tolerance?*.
Additionally, Corbin et al.*® used Mendelian Randomization (MR) Egger analysis to explore the complex rela-
tionship between these traits and demonstrated a true causal effect of BMI on T2D, as well as potential pleiotropy
between the two phenotypes. Although dozens of genetic loci associated with BMI or T2D have been detected by
GWASs*?, these loci can explain at best 10% of the genetic variance for either obesity*® or T2D%. Considering
the high degree of heritability and potential pleiotropy between these phenotypes, the two traits are ideal for the
further analyses using the cFDR approach to improve the detection of loci associated with obesity and/or T2D.

In this study, we applied the genetic-pleiotropy-informed cFDR method* on two large datasets of GWAS sum-
mary statistics for BMI and T2D***! to identify novel loci and pleiotropic relationships between these traits. These
two GWASs have identified 97 and 62 loci associated with BMI and T2D respectively, but they only explain 2.7%
and 5.7% of the total heritability for these traits’®*!. The purpose of our study is to improve SNP detection for
obesity and T2D using these two existing GWASs, and gain some novel insights into the shared biological mecha-
nisms and overlapping genetic heritability between them. The clarification of potentially shared genetic determi-
nants may have significant implications for the identification of important biomarkers and development of novel
therapeutic approaches for joint prediction, prevention, and intervention of the two related diseases/phenotypes.

Results

Assessment of pleiotropic enrichment. The conditional Q-Q plot for BMI conditional on T2D (Upper Panel
(left) in Fig. 1) showed some enrichment across varying significance thresholds for T2D. The presence of leftward shift
when restricting the analysis to include the SNPs that have more significant associations with BMI indicates an increase
in the number of true associations for a given T2D p-value. Similar enrichment is observed for T2D given BMI (Upper
Panel (right) in Fig. 1), as there appears to be a similar departure pattern between the different curves. These leftward
deflections from the null line indicate a greater proportion of true associations for any given BMI nominal p-value.

Based on the fold-enrichment plot (Lower Panel of Fig. 1), we observed SNP enrichment for BMI across dif-
ferent levels of significance with T2D and vice versa. For progressively stringent p-value thresholds for BMI SNPs,
we observed about a 50-fold increase in the proportion of SNPs reaching the genome wide significance level of
-log10 (p) > 7.3 when comparing the subset with the most stringent conditional association to the group with all
SNPs. A 50-fold increase was also observed for T2D.

As negative controls, conditional Q-Q plots for BMI given nominal p-values of association with
attention-deficit/hyperactivity disorder (ADHD) (Upper Panel (left) in Figure S1) and major depressive disorder
(MDD) (Lower Panel (left) in Figure S1), and T2D conditional on ADHD (Upper Panel (left) in Figure S2) and
MDD (Lower Panel (left) in Figure S2) all showed no enrichment and vice versa.

BMI loci identified with cFDR. Conditional on their association with T2D, we identified 287 significant
SNPs (cFDR < 0.05) for BMI variation (Fig. 2 and Table S2), which were mapped to 21 different chromosomes
(1-21) and annotated to 323 genes. In the original meta-analysis for BMI GWAS?!, 105 SNPs had p-values smaller
than 1 x 107> while 36 of them reached the standard genome-wide significance of 5 x 1078. We confirmed 43
SNPs that were reported in the original BMI GWAS analysis® and previous BMI related GWASs*%. Another 40
SNPs that were reported to be associated with BMI-related traits were also confirmed in our analysis®-**. The rest
of the 204 SNPs were not previously reported in the original BMI GWAS?*! or any other previous obesity studies.
However, 26 of these 204 SNPs are in high linkage disequilibrium (LD) (r2 > 0.6) with other BMI-associated SNPs
reported previously (Table S3). Among the 323 genes these 287 SNPs were annotated to, 146 of these genes were
newly detected compared to the original BMI GWAS?! and previous obesity-related studies (Table $2). Among all
the 287 detected loci for BMI, most of the genes were enriched in BMI-related terms such as “positive regulation
of cellular metabolic process”, “positive regulation of metabolic process” and “regulation of protein metabolic
process”. GO term enrichment analysis results were detailed in Table 1.

T2D gene loci identified with cFDR.  We identified 75 SNPs significantly (cFDR < 0.05) associated with
T2D given their association with BMI (Fig. 3 and Table S4), which were located on 20 chromosomes (1-20) and
annotated to 89 genes. In the original meta-analysis for T2D GWAS*, 38 SNPs had p-values smaller than 1 x 1073
while 12 of them reached the standard genome-wide significance of 5 x 10~%. We confirmed 17 SNPs that were
reported in the original T2D GWAS analysis* or previous T2D related GWASs**>. Another 18 SNPs that were
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Figure 1. Stratified QQ (upper panel) and Enrichment (lower panel) plots. Upper Panel: Stratified QQ plots of
nominal versus empirical -log,, p-values in (left) BMI as a function of significance of the association with T2D,
and in (right) T2D as a function of significance of the association with BMI. Lower Panel: Fold-enrichment
plots of enrichment versus nominal -log10 p-values for (left) BMI below the standard GWAS threshold of

p <5 x 1078 as a function of significance of the association with T2D, and (right) T2D below the standard
GWAS threshold of p <5 x 107% as a function of significance of the association with BMI. The purple line with
slope of zero represents all SNPs.
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Figure 2. Conditional Manhattan plot of conditional -log,, FDR values for BMI given T2D (BMI|T2D). The
red line marks the conditional -log,, FDR value of 1.3 corresponds to a cFDR < 0.05.
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BMI GO:0031325 | positive regulation of cellular metabolic process 58 0.00983
GO:0031328 positive regulation of cellular biosynthetic process 41 0.0119
GO0:0007275 multicellular organismal development 74 0.0172
GO0:0045935 positive regulation of nucleobase-containing compound metabolic process | 39 0.019
GO0:0051173 positive regulation of nitrogen compound metabolic process 40 0.0197
GO0:0010604 positive regulation of macromolecule metabolic process 53 0.0223
GO0:0010628 positive regulation of gene expression 38 0.0223
GO0:0051130 positive regulation of cellular component organization 30 0.0223
GO0:0051254 positive regulation of RNA metabolic process 35 0.0223
GO:0045859 regulation of protein kinase activity 21 0.0282
GO0:0009893 positive regulation of metabolic process 63 0.0306
GO0:0010557 positive regulation of macromolecule biosynthetic process 36 0.0316
GO0:0051246 regulation of protein metabolic process 48 0.0343
G0:0051338 regulation of transferase activity 24 0.0379
GO:0044767 single-organism developmental process 77 0.0449
GO0:0035270 endocrine system development 8 0.0462
T2D GO0:0031016 | pancreas development 6 0.00523
GO:0009749 response to glucose 6 0.0222
GO0:0035270 endocrine system development 6 0.0222
GO0:0061017 hepatoblast differentiation 2 0.0289
GO0:0031018 endocrine pancreas development 4 0.0393
GO0:0000976 transcription regulatory region sequence-specific DNA binding 10 0.0116
GO:0044212 transcription regulatory region DNA binding 11 0.0116
GO:0043565 sequence-specific DNA binding 12 0.0214
GO0:0051427 hormone receptor binding 5 0.0478
ggloziiggzgzg,D regulation of lipid storage 3 0.0231
GO0:0070344 regulation of fat cell proliferation 2 0.007
GO0:0007267 cell-cell signaling 15 8.79¢-6
GO:0016055 Wnt signaling pathway 10 2.38e-6
GO0:0198738 cell-cell signaling by wnt 10 2.38e-6
GO0:1905114 cell surface receptor signaling pathway involved in cell-cell signaling 10 3.4le-6
G0:0045444 fat cell differentiation 5 0.00279
GO:0045598 regulation of fat cell differentiation 5 0.000541
GO0:0015908 fatty acid transport 4 0.000926
GO0:0015909 long-chain fatty acid transport 4 0.000246
GO0:0019395 fatty acid oxidation 4 0.00268
GO0:0030258 lipid modification 4 0.0485
GO0:0034440 lipid oxidation 4 0.00277
GO0:0030308 negative regulation of cell growth 7 3.11e-5
G0:0045600 positive regulation of fat cell differentiation 4 0.000457
GO0:0010565 regulation of cellular ketone metabolic process 4 0.0239
GO0:0019217 regulation of fatty acid metabolic process 4 0.00394
GO:0045834 positive regulation of lipid metabolic process 4 0.0146
GO0:0045923 positive regulation of fatty acid metabolic process 4 0.000242
G0:0046320 regulation of fatty acid oxidation 4 0.000145
GO0:0046321 positive regulation of fatty acid oxidation 4 2.78e-5
G0:0050872 white fat cell differentiation 4 4.02e-5
G0:0050873 brown fat cell differentiation 4 0.000653

Table 1. Functional Term Enrichment Analysis.

reported to be associated with T2D-related traits were also confirmed in our analysis***¢. The remaining 40 SNPs
were not previously reported in the original T2D GWAS?® or any other T2D studies, although nine of these SNPs
showed high LD (r2 > 0.6) with the T2D-associated SNPs reported previously (Table S5). For the 89 genes these
75 SNPs were annotated to, 42 of these genes were novel and not identified by the original T2D GWAS* or previ-
ous T2D-related studies (Table S2). Of the detected loci for T2D, some of the genes were enriched in T2D-related

terms such as “pancreas development”, “response to glucose” and “endocrine pancreas development”. GO term

» «
>

enrichment analysis were detailed in Table 1.
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Figure 3. Conditional Manhattan plot of conditional -log,, FDR values for T2D given BMI (T2D|BMI). The
red line marking the conditional -log,, FDR value of 1.3 corresponds to a cFDR < 0.05.

Pleiotropic gene loci for both BMl and T2D.  The conjunction FDR analysis detected 23 independent
pleiotropic loci that were significantly (conjunction FDR < 0.05) associated with both traits (Fig. 4 and Table 2).
Of the 23 identified pleiotropic variants, one SNP rs9930506 (FTO) reached genome-wide significance in the orig-
inal BMI and T2D GWASs***!. The SNPs rs7141420 (NRXN3), rs1996023 (GNPDA2 and GABRG1), rs16945088
(FTO), 9540493 (LOC10272396 and LINC01052) and rs4238585 (GPR139 and GP2) reached genome-wide
significance in only the original BMI GWAS?!. Six SNPs (rs10787472 (TCF7L2), rs2881654 (PPARG), rs849135
(JAZF1I), rs4481184 (IGF2BP2), rs1783598 (FCHSD2) and rs12245680 (TCF7L2)) were reported to be signifi-
cant for only T2D in the original® or previous T2D GWAS¥. The two SNPs rs6795735 (ADAMTS9-AS2) and
rs12454712 (BCL2) were previously reported to be associated with both obesity and T2D?**7%8, The other five
SNPs (rs17584208, rs11979110, rs10898868, rs1996023 and rs4474658) were previously reported to be associated
with high density lipoprotein (HDL) and proinsulin®****%’. The final four SNPs were not previously reported in
the original BMI and T2D GWASs or GWAS studies for any related traits. For the 30 genes the identified pleio-
tropic SNPs were annotated to, we found twelve of them (AKAP6, NPAS3, PSRC1, MYBPHL, MIR29A, GABRGI,
ZNF664, FAM101A, LOC10272396, LINC01052, GPR139, and PUM1I) were not identified by any BMI or T2D
related GWASs. For the SNPs that were annotated to these 12 genes, two SNPs were located in the intronic regions
of genes ZNF664 and PUMI respectively, and the other five SNPs were all located in intergenic regions (Table 2).
Of the detected 23 pleiotropic loci, most of the genes were enriched in BMI and T2D related terms such as “reg-
ulation of lipid storage”, “regulation of fat cell proliferation”, “fat cell differentiation”, and “fatty acid transport”
Detailed information of GO term analysis was given in Table 1.

Protein-protein interaction network. The 323 identified BMI-associated genes were retrieved from the
STRING database. Only 143 genes, including 46 novel genes, were annotated in this database. The 143 genes
were clearly enriched in three clusters: TMEM]18, PPARG and MAP2K5 (Figure S3). Two novel genes MSRA
and PDILT, respectively encoding methionine sulfoxide reductase A and protein disulfide isomerase-like, were
directly connected with the TMEM18 cluster. Another two novel genes, MED23 and ANPC4, respectively encod-
ing mediator complex subunit 23 and anaphase promoting complex subunit 4, were involved in the PPARG clus-
ter. Another three novel genes, MEF2D, RASL11A and PTPN12, respectively encoding myocyte enhancer factor
2D, RAS-like, family 11, member A and protein tyrosine phosphatase, were involved in the MAP2K5 cluster.
(Figure S3).

The 89 identified T2D-associated genes were retrieved from the STRING database. Only 37 genes, including
7 novel genes, were annotated in this database. The 37 genes were clearly enriched into three clusters: HNF4A,
MTNRIB and TCF7L2 (Figure S4). Three novel genes, ANXA11, BCL2L11 and NEUROGS3, those respectively
encoding Annexin A11, BCL2-like 11 and Neurogenin 3, were involved in the HNF4A cluster. Another two novel
genes, NPBWR2 and PTHLH, encoding Neuropeptides B/W receptor 2 and Parathyroid hormone-like hormone,
were involved in the MTNRIB cluster. The other novel gene MED30 was directly connected with TCF7L2 cluster
(Figure S4)
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Figure 4. Conjunction Manhattan plot of conjunction -log,, FDR values for BMI and T2D. The red line
marking the conditional -log,, FDR value of 1.3 corresponds to a conjunction FDR < 0.05. The figure shows the
genomic locations of pleiotropic loci and further details are provided in Table 2.

Discussion

In our study, two GWASs with summary statistic p values were combined to explore the pleiotropic enrich-
ment of SNPs that are associated with BMI and T2D. Compared to the conventional standard single phenotype
GWASs, simultaneously analyzing multiple related traits allows for the increased discovery of trait-associated
variants without requiring additional larger datasets for each individual trait. By leveraging the power of two
different GWAS datasets from BMI and T2D, we discovered 287 loci for BMI and 75 loci for T2D. Using the
standard GWAS significance threshold in the datasets, only 36! were significant for BMI. Most of the genes
have not been reported to show borderline significance with BMI, as detailed in Table S2. Adopting the genetic
pleiotropy-informed cFDR method, we found 12 additional novel loci associated with both BMI and T2D. These
novel findings may enable us to further dissect the overlapping genetic mechanisms between these two related
phenotypes. The improved detection of novel susceptibility loci with genetic pleiotropy may lead us to a better
understanding of common etiology between disorders and have a significant impact on the clinical treatment and
prevention of related complex human diseases.

The cFDR approach was adopted here to account for some of the missing heritability between traits or dis-
eases. This method employs the idea that a variant with significant effects in two associated phenotypes is more
likely to be a true effect, and therefore has a higher probability of being detected in multiple independent stud-
ies*’. This technique allows for an increase in effective sample size and therefore a subsequent increase in power
to detect true associations for more variants with small to moderate effect sizes, which are often ignored in the
standard single phenotype GWAS. In addition, the genetic enrichment presented in conditional Q-Q plots con-
veys that the decreased cFDR value for a given nominal p value greatly increases power to detect true association
effects. When initially implementing the cFDR method, Andreassen ef al.” demonstrated one advantage of this
model-free empirical cdf approach is for the avoidance of bias in cFDR estimates from model misspecification.
Through a comparison of traditional unconditional FDR and cFDR methods, they found that the latter resulted
in an increase of 15-20 times the number of SNPs under the same FDR threshold of 0.05.

Our cFDR analysis identified 23 pleiotropic signals annotated to 30 genes, providing evidence for the close
relationship and shared genetic mechanisms between these two traits. These findings are consistent with the evi-
dence from previous studies? that have demonstrated a causal relationship between these two traits. The genes
FTO, MC4R and TCF7L2 were frequently reported and replicated in previous BMI and T2D related studies?3*4!.
However, potential confounding factors and biases might coincidently be responsible for some of these associa-
tions. For the genes FTO and MC4R, their respective effects on T2D were found to be modest and previous studies
showed that their effects on T2D disappeared after adjustment for BMI*2. In European populations, TCF7L2 was
not reported as a risk factor for obesity although its effect on T2D risk is modulated by obesity because of the
interaction between TCF7L2 polymorphisms (rs7903146) and BMI status*’. The implementation of the cFDR
method in our study not only furnishes another empirical validation for the cFDR method to successfully detect
novel and known disease associated genetic variants, but also shows the possibility of improved discovery of
novel susceptibility loci using existing GWAS summary statistics. There were 14 genes (JAZF1, IGF2BP2, NRXN3,
ADAMTS9-AS2, GIPR, FCHSD2, HHEX, EXOC6, KLF14, ARAP1, GNPDA2, GP2, C2CD4A and C2CD4B) that
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RSID ROLE GENE CHR P.valueA P.valueB cFDR.AcB cFDR.BcA conjunction FDR
rs9930506 intronic FTO chrle 2.52E-124 1.90E-10 1.01E-123 1.90E-10 1.90E-10
rs10787472 intronic TCF712 chr10 3.25E-07 1.30E-36 3.25E-07 6.63E-35 3.25E-07
rs2881654 intronic PPARG chr3 1.40E-06 3.40E-09 4.19E-06 7.82E-08 4.19E-06
rs849135 intronic JAZF1 chr7 1.45E-05 1.70E-09 3.85E-05 7.08E-08 3.85E-05
rs4481184 intronic IGF2BP2 chr3 0.0002524 4.50E-22 0.0003786 6.55E-20 0.0003786
rs7141420 intronic NRXN3 chr14 8.66E-15 0.00025 4.68E-13 0.001125 0.001125
rs6795735 ncRNA_intronic ADAMTS9-AS2 chr3 2.92E-05 2.00E-04 0.000555 0.00604 0.00604
rs12895330 intergenic AKAP6, NPAS3 chr14 9.72E-05 0.00021 0.0016041 0.007245 0.007245
rs2334255 UTR3 GIPR chr19 0.0008051 0.00034 0.0114503 0.0176422 0.0176422
rs1783598 intronic FCHSD2 chrll 0.0003666 0.00052 0.0064359 0.0193556 0.0193556
rs12245680 intronic TCF7L2 chr10 0.01444 1.10E-09 0.02527 6.70E-07 0.02527
rs17584208 intergenic PSRCI1, MYBPHL chrl 4.58E-06 0.0016 0.000306 0.02976 0.02976
rs2488071 intergenic HHEX, EXOC6 chr10 0.006642 4.70E-06 0.032103 0.0011194 0.032103
rs11979110 intergenic KLF14, MIR29A chr7 0.00288 9.70E-05 0.03456 0.0140973 0.03456
rs1473 intronic PUM1 chrl 0.0004889 0.00092 0.0114403 0.03542 0.03542
rs10898868 intronic ARAP1 chrll 0.002589 0.00044 0.0370227 0.03608 0.0370227
rs1996023 intergenic GNPDA2, GABRG1 chr4 1.11E-20 0.025 1.93E-17 0.0375 0.0375
rs825461 intronic ZNF664, FAM101A chr12 0.0003917 0.0013 0.0114376 0.04472 0.04472
rs16945088 intronic FTO chrlé 5.30E-09 0.0072 1.48E-06 0.045 0.045
rs9540493 intergenic LOC10272396, LINC01052 chrl3 3.95E-09 0.0057 1.22E-06 0.0456 0.0456
rs4238585 intergenic GPR139, GP2 chrlé 1.12E-08 0.0069 3.02E-06 0.0483 0.0483
rs12454712 intronic BCL2 chr18 6.04E-06 0.0034 0.0004955 0.0485714 0.0485714
rs4474658 intergenic C2CD4A, C2CD4B chr15 0.009024 9.60E-06 0.0489874 0.0023849 0.0489874

Table 2. Conjunction FDR: Pleiotropic Loci in BMI and T2D (cFDR < 0.05). Notes: P.valueA is the p value of
BMLI. PvalueB is the p value of T2D.

were associated with either BMI or T2D in previous studies but not with both that were detected as pleiotropic
loci in this analysis. Furthermore, 12 novel genes are worth noting because no previous study has reported asso-
ciations with either BMI or T2D for any of them. For the SNPs that were annotated to these 12 genes, two SNPs
were located in the intronic regions of genes ZNF664 and PUM1 and the other five SNPs were all located in inter-
genic regions. As examples, we will discuss two of these genes ZNF664 and PUM 1 for their potential functional
relevance and significance.

The SNP rs825461 is located at the intronic region between gene ZNF664 and FAM101A. The ZNF664
gene encodes a protein named zinc finger protein 664, and one study reported that ZNF664 was involved in eye
development and that the monogenic form may be associated with high risk of myopia*!. Furthermore, ZNF664
was previously reported to show suggestive association (P < 1E-4) with adiponectin®, a protein involved in many
metabolic processes including glucose regulation and fatty acid oxidation*®. The rs1473 SNP is located at the
intronic region of the gene PUM1, a member of the PUF family of proteins that contains a sequence-specific RNA
binding domain. One study reported that the protein may be involved in the regulation of embryogenesis, and
cell development and differentiation®’. These genes may be involved in certain processes that are significant in
the development of obesity and T2D, however future studies are needed to explore the exact mechanisms of those
novel genes we identified.

Our study presents several strengths. First, the statistical power is increased through the cFDR method by
leveraging two large GWAS datasets, providing an increase in the effective sample size. Although a meta-analysis
of the same data would offer a similar gain, the meta-analysis approach only allows for more powerful detection
of loci with the same direction of allelic effects in the phenotypes?®, whereas the cFDR method allows for detec-
tion of loci regardless of their effect directions. Second, we consider two traits that are unlikely to be correlated
with BMI and T2D, ADHD and MDD, and generate conditional QQ plots with respect to these “control traits”
The “control trait” enrichment analysis provides an alternative way to examine pleiotropic enrichment and pro-
vides a baseline that can be used to statistically partially validate the novel findings in our study. We believe that
the collider-stratification bias is unlikely in our analysis because, the GWAS datasets have undergone genomic
control (GC) and we also carried out LD pruning with r2 > 0.2. In addition, our conditional analysis provides a
model-free method to obtain conservative estimation®”®.

Our study may also have some important limitations. First, we could not provide information about the effect
estimates of pleiotropic loci on the phenotypes due to a lack of detailed individual-study-level data. However,
we can infer this information from the summary effect sizes in the original GWAS study. This cFDR approach
cannot distinguish between vertical and horizontal pleiotropy of the pleiotropic signals, although this question
might be partially addressed in future Mendelian Randomization*>* studies. Second, it is likely that some of our
cFDR results may be overestimated due to overlapping samples although the model-free approach is able to neu-
tralize this overestimation of the conservative cFDR estimate*”8. Alternative approaches may be applied to check
whether novel loci could still be identified in order to further confirm novel findings in our study or to furnish an
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empirical comparison of the relative performance of alternative methods, a topic we wish to pursue in the future
with comprehensive theoretical and simulation approaches.

In summary, by incorporating the shared genetic effects of two closely related traits into a conditional analysis
framework, we observed significant pleiotropic enrichment between obesity and T2D. We identified several novel
pleiotropic loci of potential functional significance for obesity and T2D in our analysis, and the results may pro-
vide us with novel insights into the shared genetic influences between these two disorders.

Materials and Methods

GWAS Datasets. The dataset for T2D contains association summary statistics for a trans-ethnic T2D GWAS
meta-analysis of 26,488 cases and 83,964 controls®. Ancestry-specific meta-analyses were previously performed
by component datasets from the full set of cohorts, including the DIAbetes Genetics Replication and Meta-
analysis (DIAGRAM) Consortium (European descent)?, the Asian Genetic Epidemiology Network T2D (AGEN-
T2D) Consortium (East Asian descent)’, the South Asian T2D (SAT2D) Consortium (south Asian descent)®?,
and the Mexican American T2D (MAT2D) Consortium (Mexican and Mexican American descent)>*. Further
details of the samples and methods employed within each ancestry group are presented in the corresponding
consortium papers*>'-3. Briefly, various genotyping products were applied in the individual study’s assay pro-
cesses, with appropriate sample and SNP quality control (QC). Genotype imputation was conducted within each
GWAS dataset using Phase II/III HapMap as the reference panels. Each SNP with MAF > 1% (except MAF > 5%
in MAT2D GWAS due to a smaller sample size) and passing QC was analyzed for association with T2D using an
adjusted additive model. Association summary statistics of each ancestry-specific meta-analysis were combined
using a fixed-effect inverse-variance weighted meta-analysis. Genomic control (GC) was carried at the individual
study level, after ethnicity-specific meta-analysis, and finally after trans-ethnic meta-analysis®.

The GIANT dataset for BMI contains association summary statistics for the GWAS and Metabochips
meta-analysis of 339,224 individuals of various ancestries, including 322,154 individuals of European descent
and 17,072 individuals of African-American and Hispanic descent’!. The data contains the summary p-values
from meta-analysis after correction for inflation due to potential population admixture. Two rounds of GC were
separately applied both at the cohort level and after meta-analysis®!.

Data Preparation. Before the implementation of the cFDR method, several preparation steps were per-
formed. First, we checked the European Ancestry cohorts for overlapping samples included in these two datasets
(Table S1). Next, we combined the common SNPs included in these two datasets. Then we applied a linkage
disequilibrium (LD) based SNP pruning method”® to remove large correlations between pairs of variants. The
SNP pruning method begins using a window of 50 SNPs where LD is calculated between each pair of SNPs. The
minor allele frequency (MAF) is the basis for the SNP pruning, where for pairs with r> > 0.2 we removed the SNP
with smaller MAF. Following this initial removal of SNPs, the window slides 5 SNPs forward and the process is
repeated until there are no pairs of SNPs that are high in LD. The dataset was pruned using the HapMap 3 gen-
otypes as a reference panel. Last, we performed gene annotation for the final set of 123,804 variants that were
included in the analyses.

GC corrections were used in the GWASs to ensure that the variance estimates for each SNP are not inflated
due to population structure and cryptic relatedness®. Both of the original datasets***! we adopted in our study
applied GC at the individual study level and again after meta-analysis, hence there was no need for us to reapply
the GC in this analysis.

Statistical analysis. The cFDR approach is well-established now, which has been widely applied by many
other groups*”*>>* and our group'*'%. We briefly summarized this cFDR approach as follows: after the data
preparation processing, we computed the conditional empirical cumulative distribution functions (cdfs) of the
corrected p-values for the x axis in conditional QQ plot. Empirical cdfs for BMI SNP p-values were conditioned
on nominal p-values in T2D, and vice versa. For each nominal p-value, an estimate of the cFDR was obtained
from the conditional empirical cdfs. Using this cFDR approach, we obtained two cFDR tables—cFDR result for
BMI conditioned on T2D and vice versa. Using these tables we identified loci associated with BMI and T2D
(cFDR < 0.05), respectively. Then a conjunction method was used to find SNPs significantly associated with both
BMI and T2D. Specifically, we took the maximum of those two cFDR values above as our conjunction FDR.

Conditional QQ and enrichment plots for assessing pleiotropic enrichment. Asan intuitive illus-
tration, we presented conditional Q-Q plots to graphically assess the pleiotropic enrichment of SNPs of the prin-
cipal phenotype successively conditioning on various strengths of associations with the conditional phenotype.
We plotted the QQ curve for the quantiles of nominal -log, (p)-values obtained from GWAS summary statistics
for association of the subset of SNPs that are below each significance threshold in the conditional trait. The nom-
inal -log, (p)-values were plotted on the y-axis and the empirical quantiles (empirical cumulative distribution
functions (cdfs)) of the nominal p-values were plotted on the x-axis. Under the global null hypothesis, the theo-
retical distribution of p-values is expected to lie approximately on the diagonal line of the Q-Q plots. Enrichment
of genetic associations is indicated as a leftward deflection from the null line as the principal phenotype is succes-
sively conditioned on increasing strength of associations with the conditional phenotype. The degree of deflection
between curves provides important information about the degree of pleiotropy between the two phenotypes.
Larger deflections are considered to represent a greater enrichment of pleiotropic genes between the two
phenotypes.

For the associated phenotypes BMI and T2D, pleiotropic “enrichment” of BMI with T2D exists if the propor-
tion of SNPs or genes associated with BMI increases as a function of increased association with T2D. To confirm
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the pleiotropic enrichment effect, we presented fold-enrichment plots of nominal —log, (p) values for BMI SNPs
below the standard GWAS threshold of p <5 x 107® and for subsets of SNPs determined by the significance of
their association with T2D and vice versa. As the p values of the conditional phenotypes become more significant,
lower upward shift from the null line will persist.

In order to check the pleiotropic enrichment and provide a baseline that can be used to confirm novel findings,
we also generated conditional QQ plots for two control traits that are unlikely to be correlated with BMI and T2D,
ADHD and MDD.

Conditional Manhattan plots for localizing genetic variants. To demonstrate the localization of the
SNPs associated with BMI conditional on their significance on T2D, and the reverse, we present conditional
Manbhattan plots. The plots present the relationship between all SNPs within an LD block and their chromosomal
locations. The 22 chromosomal locations are plotted on the x-axis, and the -log, ,(FDR) BMI values conditional
on T2D are plotted on the y-axis and vice versa for T2D. Any SNP with a —log (FDR) value greater than 1.3
(FDR < 0.05) was deemed to be significantly associated with the principal phenotype. We also present a conjunc-
tion Manhattan plot to demonstrate the locations of the common pleiotropic genetic variants associated with
both phenotypes.

Functional annotation and gene enrichment analysis. In order to evaluate the biological functions of
the individual trait associated loci identified by cFDR and pleiotropic loci identified by conjunction FDR, we per-
formed functional annotation and gene enrichment analysis using the gene ontology (GO) terms database (http://
geneontology.org/)”’. All significant genes identified by cFDR and conjunction cFDR in our study were annotated
and characterized based on three main categories: biological processes, cellular component and molecular func-
tions. This analysis provided comprehensive biological information, allowing us to partially validate our findings
by determining specific genes that are enriched in T2D- and obesity-related GO terms.

Protein-protein interaction network. In order to detect interactions and associations of the
BMI-associated and T2D-associated genes respectively, protein-protein interaction analyses were conducted
by searching the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (http://
string-db.org/). The STRING database comprises known and predicted associations from curated databases or
high-throughput experiments, and also with other associations derived from text mining, co-expression, and
protein homology®®.
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