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In silico-based screen synergistic 
drug combinations from herb 
medicines: a case using Cistanche 
tubulosa
Jianling Liu1, Jinglin Zhu1, Jun Xue1, Zonghui Qin1, Fengxia Shen1, Jingjing Liu1, Xuetong 
Chen2, Xiaogang Li1, Ziyin Wu2, Wei Xiao3, Chunli Zheng1 & Yonghua Wang1

Neuroinflammation is characterized by the elaborated inflammatory response repertoire of central 
nervous system tissue. The limitations of the current treatments for neuroinflammation are well-known 
side effects in the clinical trials of monotherapy. Drug combination therapies are promising strategies 
to overcome the compensatory mechanisms and off-target effects. However, discovery of synergistic 
drug combinations from herb medicines is rare. Encouraged by the successfully applied cases we move 
on to investigate the effective drug combinations based on system pharmacology among compounds 
from Cistanche tubulosa (SCHENK) R. WIGHT. Firstly, 63 potential bioactive compounds, the related 133 
direct and indirect targets are screened out by Drug-likeness evaluation combined with drug targeting 
process. Secondly, Compound-Target network is built to acquire the data set for predicting drug 
combinations. We list the top 10 drug combinations which are employed by the algorithm Probability 
Ensemble Approach (PEA), and Compound-Target-Pathway network is then constructed by the 12 
compounds of the combinations, targets, and pathways to unearth the corresponding pharmacological 
actions. Finally, an integrating pathway approach is developed to elucidate the therapeutic effects 
of the herb in different pathological features-relevant biological processes. Overall, the method may 
provide a productive avenue for developing drug combination therapeutics.

Neurogenic neuroinflammation is defined as orchestrated actions of innate and adaptive immune cells, vascular 
cells and neurons triggered by pathological states and enhanced neuronal activity in the central nervous system 
(CNS). It is likely to play a role in priming of CNS inflammatory reactions by conditions such as pain, psycholog-
ical stress, and epilepsy or become a pathogenic factor in neurodegenerative diseases. The current agent for the 
treatment of neuroinflammation mostly belong to monotherapy, including dopamine, somatostatin, neuropep-
tide, or adenosine and so on. However, for example, long-term use of the common but old drugs COX inhibitors, 
Nonsteroidal Anti-inflammatory Drugs (NSAIDs), might cause adverse side-effects, gastrointestinal lesions or 
cardiovascular risks1,2 and clinical trial results remain unsatisfactory particularly3,4, so there is an unmet need for 
new treatments of neuroinflammation.

The novel therapy of drug combinatorial may be a surging strategy to meet the needs of the development of 
the novel drugs as well as overcome hurdles in treatments of complex diseases. Combination or multicompo-
nent therapy could fulfill the above requirements, in which two or more drugs are used together5, with the listed 
advantages: higher efficacy, minimal cross-resistance, low dose while fewer side effects, and less toxicity when 
compared to single-drug agent6. It has been used in the treatment of complex diseases7,8 for nearly 30 years. 
Intriguing, drug combination therapy is also applied in the researches on neurological diseases, for instance, 
combination of glimepiride and ibuprofen could effectively reduce inflammation in Alzheimer Disease (AD)9 
or ketamine/atropine might lower pro-inflammatory proteins expression in epileptic mice10. Synergistic drug 
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combinations may therefore bring new inspiration for tracing effective treatments for neuroinflammation. Hence, 
how can we crack the hard nut to achieve the optimal combinatorial drugs?

Nowadays, the existing approaches to screen out drug combinations are as follows, systematic surveys of 
drug pairs in vitro such as the high throughput screening method11 and the ‘Multiplex Screening for Interacting 
Compounds’ (MuSIC)12 or evaluations of the pairwise drug combinations with large-scale experiments13,14. 
Nevertheless, the excessive consumption of manpower, natural resources and time of arduous empirical test-
ing may be an inevitable issue in the evaluation of effective drug combinations. In response to conquering the 
shortcomings, approaches based on network analysis, especially genetic interaction networks15, chemical systems 
biology data16, and molecular and pharmacological data17 are also emerged for combinatorial drug discovery. 
Furthermore, an increasing body of investigators18,19 proposed novel network approaches to predict optimal com-
binations and offered the corresponding experimental validation in the meantime, so integrating network predic-
tion with experimental validation may be a new trend in the field of combinational prediction.

Herbal medicines involve considerable numbers of formulas (Fang-Ji in Mandarin) and chemical ingredients, 
which forms a natural products database, so that it could afford innovative clues, fundamental biology data for 
the development of drug combinations, as Professor Li20,21 and Professor Liu22 introduced holistic analysis meth-
ods based on integrated biology to decipher the molecular mechanisms of herbal medicines: Liu-Wei-Di-Huang 
pill or Reduning Injection. In our previous work, we found not only two representative herbs Lonicera japonica 
and Fructus Forsythiae show synergistic effects on influenza or inflammation23, but also compounds rutin and 
amentoflavone present synergistic effects in preventing depression24.

In our current work, we develop a system pharmacology approach to discover the synergistic drug combi-
nations among compounds from the herb Cistanche tubulosa (SCHENK) R. WIGHT, the following steps are 
proposed: firstly, we pick out bioactive compounds through drug-likeness prediction, which are used as baits 
to fish the related targets. And then, inspired by “network target”-based paradigm to prioritize synergistic agent 
combinations in a high throughput way25, we acquire effective drug combinations among the potential com-
pounds based on an in-house algorithm that is termed Probability Ensemble Approach (PEA)26 with high train-
ing efficiency, extensive applicability and two quantitative indexes to describe the property of a drug combination. 
Finally, we use the obtained targets and the compounds of candidate pairs to build network/pathway and then 
provide analysis to encode the mechanism of Cistanche tubulosa on neuroinflammation holistically. As an exam-
ple, it is the first time to screen out effective drug combinations from natural products based on system pharma-
cology through integrating computational methods and experimental validation to approve the reliability of the 
prediction. We believe that this may help to personalize neuroinflammation treatment, enhance our understand-
ing of effective neuroprotective development and will aid future preclinical research.

Results
Targets of Cistanche tubulosa.  To get the targets related to neuroinflammation we firstly achieve the 
ingredients in Cistanche tubulosa (SCHENK) R. WIGHT by searching the TCMSP database (http://lsp.nwu.edu.
cn/), which results in 103 compounds (Supplementary Table S1, See Materials and Methods). Then, we analyze 
their drug-likeness by applying the DL prediction model constructed in our previous work (See Materials and 
Methods). In this way, we achieve 63 potential bioactive compounds (Supplementary Table S2) with DL index 
≥0.18. Subsequently, by means of the SysDT and WES algorithms, we identify 117 targets of these potential bio-
active compounds. Finally, 43 potential targets (Supplementary Table S3) closely related to neuroinflammation 
are retrieved after deleting noise and errors, through mapping the 117 targets of the compounds to the CTD 
database.

GOBP enrichment analysis for targets.  To check whether the proteins targeted by the potential bio-
active compounds are closely related to neuroinflammation, we perform GOBP enrichment analysis through 
mapping targets to DAVID. Fig. 1 shows a GO tree representing the results of significantly enriched GOBP terms 
(P value ≤ 0.05), where the targets are categorized into 20 different groups, such as positive regulation of vascular 
smooth muscle cell proliferation and positive regulation of leukocyte migration. Among these groups, chemical 
synaptic transmission, inflammatory response, cell-cell signaling and so on are all closely associated with neu-
roinflammation. For instance, the synaptic alterations occurring during neuroinflammatory diseases are largely 
mediated by inflammatory cytokines released from infiltrating T cells and from activated microglia, and are 
responsible, at least in part, for irreversible dendritic pathology. Collectively, these observations suggest that the 
predicted targets probably can contribute to the treatment of neuroinflammation.

Compound-Target network construction and analysis.  Generally, the feasible and effective combina-
tion therapies are combinations of bioactive compounds with ideal pharmacokinetic properties, which can bal-
ance the disease network by regulating specific targets. Therefore, we further construct a static compound-target 
network to check their topological relations. As shown in Fig. 2, the bipartite compound-target (C-T) network 
exhibits 482 interactions between 63 compounds and 43 targets in a visually appealing manner. We analyze the 
nodes’ degree in the compound-target network which resulting in an average degree per compound of 11.209 and 
7.651 per target, respectively. We observe that among the 63 compounds, 38 of them adjust more than 7 targets 
(larger than the average degree), manifesting the potential synergistic effects among them.

For example, syringin (mol30) interacts with the largest number of targets, which may play a hub role in the net-
work. Interestingly, a study proves that the phenolic constituent syringin isolated from Euonymus alatus (Thunb.) Sieb. 
(Celastraceae) has an anti-neuroinflammatory effect by inhibiting NO production27. 2′-acetylacteoside (mol42) is in 
control of 10 different targets (degree = 10). Among these targets, HSPB1 (also known as HSP27), as an example, is a 
molecular chaperone that displays neuroprotective properties in many disease and injury models28,29. For verbascoside 
(mol33), the neuroprotective properties of this bioactive compound involve modulation of transcription factors and 

http://lsp.nwu.edu.cn/
http://lsp.nwu.edu.cn/


www.nature.com/scientificreports/

3SCiENtiFiC ReporTS | 7: 16364  | DOI:10.1038/s41598-017-16571-3

consequent altered gene expression, resulting in downregulation of inflammation30. It is worth noting that although the 
topology property of the network does not bias toward echinacoside (mol41, degree = 7), it is a potential novel orally 
active compound for regulating neuroinflammation and related signals in Parkinson’s disease and may provide a new 
prospect for clinical treatment. Taken together, these results indicate that the screened potential active compounds are 
all related to neuroinflammation and can be regarded as the data set for predicting drug combinations.

Compound-Target-Pathway network construction and analysis.  By employing the PEA algorithm, 
we get 10 different drug combinations (Table 1.), which involve in 12 compounds. These drug combinations are 
all with high synergy probability, which represents the possibility of inducing synergy between two compounds. 

Figure 1.  Gene Ontology (GO) analysis of potential target genes. The y-axis shows significantly enriched 
‘Biological Process’ (BP) categories in GO of the target genes, and the x-axis shows the enrichment scores of the 
terms (P-value ≤ 0.05).

Figure 2.  C-T network. A compound and a target node are linked if the protein is targeted by the corresponding 
compound. Node size is proportional to its degree and the letters are node labels.
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Therefore, up to a certain extent, these compounds are considered to be the pharmacological fundamental sub-
stances of Cistanche tubulosa. Based on the target information of these compounds and the pathways derived 
from DAVID, we construct the compound-target-pathway (C-T-P) network to preliminarily light on the molec-
ular mechanisms of these compounds. The resulted compound-target-pathway network consists of 47 nodes and 
99 edges. As illustrated in Fig. 3, these compounds can act on not only the proteins of the upstream but also the 
downstream of the pathways associated with neuroinflammation, especially the direct indicators of inflammation 
markers.

In particular, the vast majority of compounds target the upstream proteins such as HSPB1, HTR2A, NTSR1 
and others, indicating the macro regulation of these compounds for the treatment of neuroinflammation. For 
instance, compound echinacoside (mol41) targets the VEGF pathway through protein HSPB1(Supplementary 
Figure 1). Fortunately, studies show that HSPB1 has significant cytoprotective properties in several models of 
neurological disease in vivo31,32 or in vitro33 and it may play a role in anti-inflammatory effect by regulating the 
nuclear factor-κB (NF-κB) signaling pathway34,35. In addition, a study also demonstrate that R-Ras could regulate 
angiogenic activities of endothelial cells in part via inhibition of the p38 mitogen-activated protein kinase (p38 
MAPK)-HSPB1 axis of the VEGF signaling pathway36.

We can get that compound tubuloside A (mol56) target the Calcium signaling pathway through protein 
NTSR1 in the network. It is all known that calcium ions (Ca2+) is a universal second messenger in the immune 
system cells. The reduction in synaptic activity or increased extrasynaptic N-methyl-D-aspartic acid (NMDA) 
receptor signaling may lead to nuclear calcium dyshomeostasis37,38, thereby increasing the occurance of neuro-
degeneration and cognitive dysfunction. Furthermore, the target protein NTSR1 is a member of the large super-
family of G-protein coupled receptors, and signaling is generated through binding G proteins that may activate a 
phosphatidylinositol-calcium second messenger system and downstream MAP kinases39.

Another example is that compound 2′-acetylacteoside (mol42) target the GnRH signaling pathway through 
protein PRKCD. PRKCD, one of the PKC isoforms, is a major mediator of the activation of extracellular regulated 
protein kinases1/2 MAPK (ERK1/2 MAPK), c-Jun N-terminal protein kinases MAPK (JNK MAPK) and p38 
MAPK by gonadotropin releasing hormone (GnRH)40. And, as key processes in the GnRH-stimulated signal-
ing network, the downstream MAPK cascades and arachidonic acid(AA) metabolites41 could produce inflam-
matory protein, COX-2. As for kankanoside O (mol18) and syringin (mol30), they interact directly with the 
downstream proteins PTGS2, NOS2 and other inflammatory indicators, which is an intuitive reflect of the com-
pounds’ efficacy. A study shows syringin could suppress the production of tumour necrosis factor-α (TNF-α) in 
Lipopolysaccharides (LPS)-stimulated RAW264.7 cells42. And the other studies demonstrate that syringin could 
also lower NO concentration and NOS activity43 or the production of prostaglandin E244. Isoacteoside (mol43) 
targeted MMP9, is an important player in central nervous system and would be a putative mediating enzyme 
for neuropsychiatric disorders such as schizophrenia and bipolar illness45. The degradation of NF-κB and phos-
phorylation of p38, ERK1/2, JNK MAPK or Akt (Protein Kinase B) of the upstream signaling pathways could 
modulate the MMP9 gene expression and inhibition of MMP9 that may reduce the expression of inducible nitric 
oxide synthase (iNOS) in activated cells46–48.

Pathway analysis.  An incorporated “Neuroinflammation pathway” is constructed by integrating the key 
pathways that obtained through compound-target-pathway network analysis, including the Alzheimer’s disease 
pathway, Calcium signaling pathway, GnRH signaling pathway, VEGF signaling pathway and the Serotonergic 
synapse. Of the 43 targets, 19 can be mapped onto the “Neuroinflammation pathway”. As shown in Fig. 4, the 
Cistanche tubulosa represents the targets of the active compounds that distribute in the “Neuroinflammation 
pathway”. The “Neuroinflammation pathway” is classified into 13 different therapeutic modules, such as cell 
death, apoptosis, inflammation and neuroprotection. In this study, we take cell death, inflammation and neuro-
protection modules as examples to clarify the mechanism of Cistanche tubulosa for neuroinflammation.

Cell death module.  Targets locate in the Alzheimer’s disease pathway mainly involve in cell death process, sug-
gesting that cell death is closely related to neuroinflammation. Studies demonstrate that neuroinflammation 
mediated by microglia contributes to neuronal cell death, which is not restricted to a specific disease but impli-
cated in various diseases such as ischemia49, Parkinson’s disease50 and Alzheimer’s disease51. As shown in Fig. 4, 

Compound 1 Compound 2 Synergy probability

echinacoside verbascoside 0.97

isoacteoside 2′-acetylacteoside 0.95

echinacoside 2′-acetylacteoside 0.92

cistansinenside A tubuloside A 0.86

cistantubuloside B1 cistantubuloside A 0.85

β-sitosterol 2′-acetylacteoside 0.82

kankanoside O kankanoside K1 0.79

tubuloside A syringin 0.73

cistansinenside A kankanoside K1 0.67

kankanoside O verbascoside 0.61

Table 1.  Synergy probabilities of the top 10 pairs.
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targets APP, GRIN2B and MAPT are regulated by the active compounds from Cistanche tubulosa indicating that 
they can inhibit cell death and thereby offer a treatment for neuroinflammation. Interestingly, APP intracellular 
domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation52. Inability of MAPT 
properly regulate neuronal microtubule dynamics and thus mediate neuronal cell death53. All these indicate that 
Cistanche tubulosa may treat neuroinflammation through inhibiting cell death.

Inflammation module.  The term neuroinflammation is the inflammatory reactions in the CNS in response to 
neuronal activity1. In this study, we detect that GnRH signaling pathway and the VEGF signaling pathway involve 
in the inflammatory module (Fig. 4). For instance, MMP2 in the GnRH signaling pathway belongs to the MMPs 
family, which are expressed in physiological situations and pathological conditions involving inflammation. And 
MMPs regulate several functions related to inflammation including bioavailability and activity of inflammatory 
cytokines and chemokines54. In addition, the VEGF signaling pathway can lead to the generation of NOS2, more-
over, it participates in the acute inflammatory response to LPS by multiple mechanisms: involvement in proin-
flammatory cytokine signaling and alteration of the expression of various genes that affect inflammatory-immune 
responses to LPS55. Collectively, all these indicate that Cistanche tubulosa may cure neuroinflammation by regu-
lating the inflammatory system.

Neuroprotection module.  Neuroprotection is the mechanisms and strategies used to protect against neuronal 
injury or degeneration in the CNS following acute disorders (e.g. stroke or nervous system injury/trauma) or 
as a result of chronic neurodegenerative diseases (e.g. Parkinson’s, Alzheimer’s, Multiple Sclerosis). The goal of 
neuroprotection is to limit neuronal dysfunction/death after CNS injury and attempt to maintain the highest 

Figure 3.  C-T-P network. The link is placed between a target and a compound of the 10 different drug 
combinations if the compound is lighted at the target. The link is placed between a target and a pathway if the 
pathway is lighted at the target. The information of pathways is obtained by mapping the target proteins to the 
KEGG pathway database. The letters are node labels.
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possible integrity of cellular interactions in the brain resulting in an undisturbed neural function. As can be seen 
from the Fig. 4, some targets on Serotonergic synapse pathway involves in the function of neuroprotection. For 
example, the production of prostaglandins through PTGS1 and PTGS2 (also known as COX-1 and COX-2) is 
an essential mediator in evoking anti-inflammatory and novel pro-resolving mechanisms56. A recent study has 
shown that gene expression of ADCY5, an enzyme which catalyzes the generation of cAMP57, is reduced by pro-
moter methylation in COX-2-induced human HCC cell lines58. Based on the above analysis, we speculate that 
COX-2 accumulation may influence the secretion of sAPPα, the α cleavage of APP cleaved by α-secretase that is 
modulated by cAMP and further exert the neuroprotective effect59,60. Our results show that neuroprotection plays 
an important role in the treatment of neuroinflammation.

Experimental validation
The viability of BV2 microglia cells treated by the compounds.  BV2 microglia cells (8 × 104 cells/
ml) are fed with the concentrations of 37.5 to 300 μM per milliliter culture media with no serum of the four 
compounds for 24 h. We regard the cell viability of control group cultured in the absence of serum with less than 
0.1% DMSO as 100% (Fig. 5(a–d)). Apparently, no significant cellular cytotoxicity is observed at the prescribed 
dosages of the groups.

Validation of drug synergy and potential anti-inflammatory effect in vitro.  To further 
assess the obtained results in silico, four compounds covering three synergistic pairs, namely isoacteoside, 
2′-acetylacteoside, echinacoside and verbascoside, are selected to examine their drug synergistic effects and 
potential anti-inflammatory effect using BV2 cells treated with LPS. In particular, we conduct western blot analy-
sis for iNOS and COX-2 protein expression to conform the synergy and anti-inflammatory effects of the predicted 
drug combinations.

As shown in Fig. 5(e–g), the levels of iNOS and COX-2 proteins in the panel of BV2 cell lines tested are 
reported. We observe that either isoacteoside or 2′-acetylacteoside treatment, the protein expressions of iNOS 
and COX-2 in BV2 cells are both declined significantly at different dose levels. However, treatment with the 
combination of isoacteoside and 2′-acetylacteoside induce a significant increase of the inflammatory factors 
iNOS and COX-2 (Fig. 5(e)). Figure 5(f) illustrates that echinacoside or verbascoside treatment, as a single agent, 
causing a decrease of the iNOS and COX-2 expression. Moreover, as expected, treatment with echinacoside in 
combination with verbascoside at the concentration of 150 μM resulted in a more pronounced decrease in the 

Figure 4.  Neuroinflammation pathway and therapeutic modules.
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levels of protein expression (iNOS and COX-2), indicating the synergistic anti-inflammatory effects of this drug 
combination. Similarly, as indicated in Fig. 5(g), the combination of echinacoside and 2′-acetylacteoside show a 
significant synergistic effect on the inhibition of COX-2 at the concentration of 75 μM or 300 μM. However, for 
iNOS, at the dosage of 300 μM, the combination represents marked suppression of the protein. In contrast, we 
find that there are no obvious inhibition effects on both iNOS and COX-2 about the combination of isoacteoside 
and 2′-acetylacteoside or echinacoside and verbascoside at the concentration of 75 μM (Supplementary Figure 2), 
besides, treatment with other pairs shows a much weaker effect compared with the single agents at the dosage of 
150 or 300 μM that can be seen in Fig. 5 (e–g).

To sum up, the in vitro study provides additional information for screening drug combinations with poten-
tially anti-inflammatory effect and demonstrates the reliability of in silico screen strategy.

Discussion
Neuroinflammation is implicated in the majority of neurological, psychiatric and neurodevelopmental diseases 
due to that is not only a consequence but could be a trigger of the pathology61. However, current treatments for 
neuroinflammatory are monotherapies mostly, limited by well-known side effects as we know, COX-2 inhibitors 
may lead cardiovascular defects responded to long-term treatment, and TNF-targeted treatment could cause 
infection through immunosuppression62. Combinatorial therapeutic approaches may be imperative to improve 
treatment of complex diseases with the following advantages: the countered network robustness and bypass com-
pensation, the increased clinical efficacy while maintaining minimal human toxicity and the reduced dosage of 
each compound63. However, exploration the synergistic drug combinations among compounds derived from 
herb medicines based on system pharmacology is few restricted by the possible main reason of large amounts of 
compounds.

In the work, we firstly gain 63 potential bioactive compounds from the herb Cistanche tubulosa, fulfilled the 
criteria (DL ≥ 0.18) for further analysis with the aid of the prediction which is indispensable to screen out more 
promising molecules with desirable property. After mapping the 133 targets of the 63 potential bioactive com-
pounds to database, we get 43 targets related with neuroinflammation, and then GOBP clustering analysis of the 
predicted targets can probably contribute to the treatment of neuroinflammation. The analytical result of the C-T 
network displayed in an average degree per compound of 11.209 and 7.651 per target, respectively and 38 of them 

Figure 5.  Cell viability and inhibition of iNOS and COX-2 in BV2 cells. (a–d) Cell viability of BV2 cells. 
The determination of cell viability of BV2 cells is carried out by CCK-8 assay after treated with control or (a) 
Echinacoside (E), (b) Verbascoside (V), (c) Isoacteoside (I), or (d) 2′-acetylacteoside (2A) (37.5, 75, 150, or 
300 μM) for 24 h. No significant differences are found among groups. (e–g) BV2 cells are pretreated with (e) 
I or 2A (150 or 300 μM), (f) E or V (150 or 300 μM), and (g) E or 2A (75, 150 or 300 μM) or the combinations 
for 2 h, vehical as the control. Then exposure to LPS (1 μg/ml) for 18 h, then iNOS and COX-2 accumulation of 
cytoplasm are measured by western blot. β-actin is used as loading control. All results are repeated at least three 
independent experiments with the same tendency.
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adjust more than 7 targets (larger than the average degree). For example, echinacoside (mol41)64–66 predicted with 
7 targets, verbascoside (mol33)30,67 with 9 targets, or tubuloside B (mol57)68,69 with 8 targets could play key roles 
in neuroprotection in line with the increasing literatures.

We achieve direct therapeutic targets such as APP, MAPT (also known as Tau), PPARG70, MMP9, MMP271,72, 
and HTR2A (also known as 5-HT2A), GRIN2B (glutamate ionotropic receptor NMDA type subunit 2B), and 
GRIA1 (glutamate ionotropic receptor AMPA type subunit 1)73 or downstream potential targets such as PTGS274 
or NOS275 that are associated with neuroinflammation or various diseases of nervous system.

The analysis of the Compound-Target-Pathway network displays 12 compounds from the top 10 drug pairs 
through PEA algorithm, connected with the 43 potential targets and the pathways linked with neuroinflamma-
tion, for example, Calcium signaling pathway, Neuroactive ligand-receptor interaction or TNF signaling pathway 
and so on. In the system, these predicted compounds could act on not only the proteins of the upstream but 
also downstream of pathways associated with neuroinflammation and inflammatory biomarkers, in particular. 
Moreover, the additional information for screening drug combinations with potentially anti-inflammatory effect 
is provided and the reliability of in silico screen strategy is verified by experimental validation. Neuroinflammation 
pathway is comprised of the Alzheimer’s disease pathway, Calcium signaling pathway, GnRH signaling pathway, 
VEGF signaling pathway and the Serotonergic synapse. The analytical results distinctly explained to us that cell 
death, inflammation and neuroprotection modules are exemplified to decipher the mechanism of Cistanche tub-
ulosa for the treatment of neuroinflammation.

Neuroinflammation accompanies various neurodegenerative diseases which could be not only a conse-
quence but a trigger of pathology, thus, anti-inflammatory therapies are suggested to be a promising treatment 
approach61. To our disappointed, though we have realized the limitation of the monotherapies, the evaluation 
and the underlying mechanisms of combination therapies are still the major challenges in the development of the 
novel alternative strategy. This work therefore could offer new therapeutic opportunities for neuroinflammation 
and may open up a new avenue for discovering drug combination from natural products.

Materials and Methods
Compounds collection.  A total of 66 chemical ingredients of Cistanche tubulosa are manually gathered 
from TCMSP (http://lsp.nwu.edu.cn/)76, including 26 phenylethanoid glycosides, 22 iridoids, 4 lignans, 7 mono-
terpene glycosides, 2 nitrogenous substances, 3 benzene acryloyl sugars, 1 sterol, 1 ketol. Given that glycosides 
in Cistanche tubulosa are usually hydrolyzed to liberate aglycone which is then absorbed at the intestinal mucos, 
thus, we take the molecules without glycoligand into consideration, which are tagged as _qt. This lead to the gen-
eration of the 103 compounds. These molecules are provided in Supplementary Table S1.

Drug-likeness evaluation.  To obtain the potential bioactive compounds from Cistanche tubulosa, we eval-
uate the drug-likeness of these ingredients by calculating the Tanimoto similarity77 between herbal compounds 
and the average molecular properties of all chemicals in the Drugbank database78. And, the DL prediction model 
has been applied successfully in many studies79,80 to select out bioactive compounds. In the work, DL index ≥ 0.18 
of the candidates is defined as the threshold value to better suit subsequent analysis.

Drug target prediction.  The identification of the efficacy targets for leading compounds remains a key step 
to progress compounds into drug development81. Here, two in-house tools: SysDT and WES are carried out to 
derive the molecular target information for drug fishing. SysDT is an in silio model which is performed with the 
combination of the chemical, genomic and pharmacological information based on the two powerful mathemat-
ical tools: Random Forest (RF) and Support Vector Machine (SVM) to tackle the issue of target identification 
effectively82. The obtained model is served as a valuable platform for prediction of drug-target interactions with 
an overall accuracy of 97.3%, an activated prediction accuracy of 87.7% and an inhibited prediction accuracy 
of 99.8%. In order to capture more promising components, the filtering criteria is defined as RF value ≥ 0.7 or 
SVM ≥ 0.8 in this study.

Weighted ensemble similarity (WES) is a new powerful computational model to pinpoint the drug direct tar-
gets of the actual bioactive ingredients83. As a novel tool, the obtained model performs well in predicting the bind-
ing with average sensitivity of 85% (SEN) and the non-binding patterns with 71% (SPE) with the average areas 
under the receiver operating curves (ROC, AUC) of 85.2% and an average concordance of 77.5%. The obtained 
targets are further mapped to Uniprot (http://www.uniprot.org) to normalize their names and organisms subse-
quently. Here, we only choose the targets of Homo sapiens for further analysis. Candidate targets of the selected 
compounds are mapped to the CTD database (http://ctdbase.org/)84 to get their related diseases and we screen out 
potential targets related to neuroinflammation finally.

GO enrichment and analysis for targets.  To probe the involved biological processes of the obtained 
targets, we map the targets to DAVID (http://david.abcc.ncifcrf.gov)85 and the terms with P-value less than 0.05 
are chose in this section.

Drug combination analysis.  In our previous work, a system pharmacology framework was exploited to 
predict drug combinations on a newly designed model, termed Probability Ensemble Approach (PEA) with the 
purpose of analyzing the clinical efficacy and adverse effects of drug combinations. In detail, a Bayesian network 
integrating with a similarity algorithm was developed to model the combinations from compound molecular 
and pharmacological effect. The combined evaluation that covered the clinical efficacy and adverse effects for the 
predicted pairs was presented then26. Briefly, it shows that PEA could predict the efficacy of the pairs with high 
specificity and sensitivity (AUC = 0.90) in our work. In this work, we select the top ten drug combinations based 
on their synergy probabilities, which represents the possibility of inducing synergy between two compounds.
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http://www.uniprot.org
http://ctdbase.org/
http://david.abcc.ncifcrf.gov


www.nature.com/scientificreports/

9SCiENtiFiC ReporTS | 7: 16364  | DOI:10.1038/s41598-017-16571-3

Network/Pathway building and analysis.  To investigate relationships between the active ingredi-
ents and the inflammatory diseases, compound-target (C-T) network and compound-target-pathway network 
(C-T-P) are generated by Cytoscape 2.8.1, a popular bioinformatics package for biological network visualization 
and data integration86. The quantitative properties of the network are analyzed by the two following plugins 
Network Analyzer and CentiScaPe 1.2. In the graphic network, nodes indicate either compounds, targets or 
pathways while edges encode the drug-target interaction. To further explore the biological effects of how cel-
lular target work through modulating multiple metabolism pathways, an incorporated “pathway” is assembled 
in accordance with the up-to-date information of neuroinflammation pathology. Firstly, by means of mapping 
them onto KEGG database (http://www.genome.jp/kegg/), the achieved target profiles are aggregated into several 
pathways. After abandoning the indirectly sections, then, a relatively synthesized pathway is manually integrated 
on account of the pathological and clinical data.

Experimental validation
Samples preparation.  Echinacoside, verbascoside, isoacteoside and 2′-acetylacteoside are purchased from 
Nanjing Zelang Biological Technology Co., Ltd. (Nanjing, Jiangsu, China). Test samples are dissolved in dimethyl 
sulfoxide (DMSO) (Sigma, USA) to get 100 mM, as a stock solution, and then stored at 4 °C. The final dilutions of 
DMSO added to the culture medium never exceeded 0.1% what insured there is no effect on cell viability.

Cell culture.  BV2 mouse microglia cells are originally developed by Chinese Academy of Sciences Shanghai 
cell bank and cultured in 25 or 75 cm2 flasks with Dulbecco’s modified Eagle’s medium (DMEM/25mM HEPES) 
(Gibco BRL, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco BRL, USA), penicillin G (100 units/
mL) and streptomycin (100 mg/mL) in a humidified incubator with 5% CO2/95% O2 at 37 °C.

Cell viability assay.  BV2 microglia cells are seeded into 96-well plate at a density of 1 × 105 cells/ml, after 
incubated 18 h, cells are treated with 100 μl of fresh medium with or without various indicated concentrations 
of test samples for an additional 24 h. CCK-8 assay (BestBio, Shanghai, China) is a convenient, reliable method 
to determine viability of the cells. To eliminate the background of test samples, we discard the whole culture 
medium, after which 100 μl/well fresh media containing 10% CCK-8 solution is added then. The OD values at 
450 nm are read on a microplate reader (Molecular Devices, California, USA) after a 3 h incubation at 37 °C and 
5% CO2.

Western blot analysis.  The cellular protein is extracted from cell lines using a Qproteome™ Mammalian 
Protein Prep Kit (Qiagen, Germany) after the indicated procedures in accordance with the manufacturer’s pro-
tocol. Quick Stari Bradford Protein Assay Kit (Bio-Rad, USA) is applied to protein quantification. Equivalent 
amounts of protein (50μg) is denatured by boiling at 100 °C for 10 min with 2*laemmli sample loading buffer 
(Bio-Rad, USA) plus 5% β-mercaptoethanol in a ratio of 1:1 and loaded per lane onto 12% SDS-PAGE (sodium 
dodecyl sulfate polyacrylamide minigels), electrotransferred onto 0.45 μm polyvinylidene fluoride membranes 
(PDVF) (Millipore, Bedford, MA, USA) for 150 min at 200 mA. Subsequently, the membranes are blocked in 3% 
bovine serum albumin (BSA) at room temperature and incubated with the primary antibodies iNOS and COX-2 
(Abcam) at 4 °C overnight. Following three thorough washes in Tris-buffered Saline-Tween (TBST) each for 5 
min, the membranes are probed with horseradish peroxidase (HRP)-conjugated secondary antibodies (1:10000 
dilutions; Abcam) for 1.5 h at room temperature. The immunoreactive bands are then visualized by using ECL 
chemiluminescence detection kit (Bio-Rad Laboratories, Richmond, California, USA) after washing twice in 
TBST and once TBS, each time for 5 min. Densitometric values are normalized using β-actin as loading internal 
control.

Statistical analysis.  Data are presented as means ± standard error, Western blot analysis are repeated three 
independent experiments with the same result. One-way analysis of variance is used to compare the differences of 
means for three or more groups, statistical significance is analyzed with the Student’s t-test between two groups.

Equipment and settings.  Excel of Microsoft Office2013 was used in Fig. 1.
Cytoscape 2.8.1 was used in the Fig. 2.
Cytoscape 2.8.1 was used in the Fig. 3.
Visio of Microsoft Office2013 was used in the Fig. 4.
Graphpad Prism 6 and Visio of Microsoft Office2013 were used in the Fig. 5.

Data Availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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