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Abstract Because of differences in the downstream signaling
patterns of its pathways, the role of the human epidermal
growth factor family of receptors (HER) in promoting cell
growth and survival is cell line and context dependent.
Using two model cell lines, we have studied how the regula-
tory interaction network among the key proteins of HER sig-
naling pathways may be rewired upon normal to cancerous
transformation. We in particular investigated how the tran-
scription factor STAT3 and several key kinases’ involvement
in cancer-related signaling processes differ between normal
184A1L5 human mammary epithelial (HME) and MDA-
MB-231 breast cancer epithelial cells. Comparison of the re-
sponses in these cells showed that normal-to-cancerous cellu-
lar transformation causes a major re-wiring of the growth fac-
tor initiated signaling. In particular, we found that: i) regula-
tory interactions between Erk, p38, JNK and STAT3 are trian-
gulated and tightly coupled in 184A1L5 HME cells, and ii)
STAT3 is only weakly associated with the Erk-p38-JNK path-
way in MDA-MB-231 cells. Utilizing the concept of pathway
substitution, we predicted how the observed differences in the
regulatory interactions may affect the proliferation/survival
and motility responses of the 184A1L5 and MDA-MB-231
cells when exposed to various inhibitors. We then validated
our predictions experimentally to complete the experiment-
computation-experiment iteration loop. Validated differences

in the regulatory interactions of the 184A1L5 and MDA-MB-
231 cells indicated that instead of inhibiting STAT3, which
has severe toxic side effects, simultaneous inhibition of JNK
together with Erk or p38 could be a more effective strategy to
impose cell death selectively to MDA-MB-231 cancer cells
while considerably lowering the side effects to normal epithe-
lial cells. Presented analysis establishes a framework with ex-
amples that would enable cell signaling researchers to identify
the signaling network structures which can be used to predict
the phenotypic responses in particular cell lines of interest.
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Introduction

Cells constantly receive and process signals through interac-
tions with their microenvironment. Variations in the signaling
patterns is a common mechanism for cells to regulate their
phenotypic responses. Human epidermal growth factor family
of receptors (HER) belong to the receptor tyrosine kinase
(RTK) superfamily. HER receptors (also known as ErbB re-
ceptors) play a critical regulatory role in fundamental physio-
logical processes through the activation of proliferation, pro-
survival and stress-response pathways of cells (Schlessinger
2000; Yarden and Sliwkowski 2001; Prenzel et al. 2000;
Arteaga 2003a; Hynes and MacDonald 2009; Volinsky and
Kholodenko 2013). There is a significant positive correlation
between the expression of HER receptors in cancers with a
poor prognosis (Normanno et al. 2006; Holbro et al. 2003;
Britten 2004; Arteaga 2003b; Klinger et al. 2013;
Libermann et al. 1984). Although HER signaling promotes
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growth and survival in almost all normal (untransformed) and
transformed cell types, the role of HER receptors is cell line
and context dependent (Joslin et al. 2010; Alexander et al.
2011). This mainly stems from differences in the downstream
signaling among multiple pathways: Activation of HER fam-
ily of receptors, in particular its first member EGFR/HER1/
ErbB1, leads to robust stimulation of major kinases and tran-
scriptional regulators downstream of the receptors (Naegle
et al. 2012; Rodland et al. 2008; Avraham and Yarden 2011;
Aksamitiene et al. 2012). This provides a useful context to
study the crosstalk between oncogenic proteins in breast can-
cer cells (Rodland et al. 2008; Avraham and Yarden 2011;
Aksamitiene et al. 2012; Zhang et al. 2005; Jones et al.
2006; Kumar et al. 2008).

Stimulation of epithelial cells through HER receptors leads
to the activation of Erk, p38, JNK (SAPK), and Akt kinases,
as well as various transcription regulators such as STAT3
(Yarden and Sliwkowski 2001; Aksamitiene et al. 2012;
Katz et al. 2007; Pawson and Warner 2007; Neve et al.
2002). As we have discussed earlier (Gong et al. 2015), pro-
teins Erk, p38, JNK, Akt and STAT3 form a group of sentinels
representative of the HER signaling pathways associated with
cell proliferation, pro-survival, stress-responses, and enhanced
cell migration. Erk, p38 and JNK kinases, which are the three
major subgroups of the MAPK family, are activated by a large
set of growth factors, cytokines, transforming agents, and car-
cinogens (Cobb 1999). Signaling through the Erk pathway
can have significant functional consequences such as speedy
cell migration, enhanced cell transformation and resistance to
apoptosis (Joslin et al. 2007; Wu et al. 1999; Raman et al.
2007). JNK and p38 are stress-activated kinases involved in
apoptosis/survival. The p38 kinase regulates EGFR down-
regulation, survival, and cellular migration (Wagner and
Nebreda 2009; Mueller et al. 2012; Frey et al. 2006), and it
can suppress cell proliferation by antagonizing the JNK/c-Jun
pathway (Hui et al. 2007). Activity of the Erk-p38-JNK axis
plays a universal role in balancing autophagy and apoptosis
related signals and this role can be context dependent (Wagner
and Nebreda 2009; Frey et al. 2006; Chiacchiera et al. 2012).
The serine/threonine kinase Akt promotes cellular survival
(Song et al. 2005), and it has been implicated in many types
of cancers because of its possible role in angiogenesis and
tumor development (Chen et al. 2005).

The activation of MAPKs by RTKs leads to the activation
of the signal transducer and activator of transcription (STAT)
family of transcription factors (Katz et al. 2007). STATs are
stimulated through a vast set of cytokine and growth
factors. STATs, in particular STAT3, transcriptionally
regulate a diverse array of cellular processes, including
the transcription of genes related to cell proliferation
(Katz et al. 2007; Rawlings et al. 2004; Berclaz et al.
2001; Levy and Darnell 2002; Yue and Turkson 2009;
Banerjee and Resat 2015; Sen et al. 2012).

Because of these properties, Erk, p38, JNK, Akt, and
STAT3 form a sentinel set whose activation patterns
provide a good representation of the integrated signal
flow downstream of HER receptors which is directly
related to cell survival and proliferation (Gong et al.
2015). We have earlier shown that STAT3 occupies a
central role in the crosstalk between cell proliferation,
survival, and migration related signaling pathways when
normal (untransformed) 184A1L5 human mammary ep-
ithelial (HME) cells were stimulated through HER re-
ceptors, and that wiring of the regulatory interactions
was dependent on the expression of the members of
HER family (Gong et al. 2015). In contrast to our initial
study which compared the interactions in the 184A1L5
HME cell library, in this study we have investigated
whether STAT3 has a similar role in the triple negative
breast cancer cell line MDA-MB-231 and normal
184A1L5 HME cells when stimulated through EGFR.
Our hypothesis was that transformation from normal to
cancerous cells involves a considerable rewiring of the
regulatory interaction network of HER signaling path-
ways. Since differences in signaling networks can im-
pact cellular signal propagation and regulation capabili-
ties, rewiring of the HER regulatory interaction network
can lead to significant physiological response differ-
ences between the compared cell lines. Deriving the
regulatory interaction network among studied sentinels
in MDA-MB-231 breast cancer cells and comparing it
to the network in normal 184A1L5 cells has allowed us
to address this hypothesis and to investigate differential
involvement of STAT3 and several key kinases in
cancer-related signaling processes in normal mammary
and MDA-MB-231 breast cancer epithelial cells. Our
results have validated our hypothesis and established
that: i) regulatory interactions between Erk, p38, JNK
and STAT3 are triangulated and tightly coupled in
184A1L5 cells and ii) STAT3 is only weakly associated
with the Erk-p38-JNK pathway in MDA-MB-231 cells.
Combining these findings with the concept of pathway
substitution enabled by the crosstalk between related
signaling pathways, we predicted the differences in the
proliferation/survival and motility responses of 184A1L5
and MDA-MB-231 cells when these cells were exposed
to various inhibitors. We then tested our predictions to
validate the inferred network models, and argue that our
validated predictions can provide clues to developing
new therapeutic strategies. Examples to possible strate-
gies based on our results are discussed in the
Discussion and Conclusions section below. Most impor-
tantly, this study presents a conceptual framework to
identify the network structures involved in cellular sig-
naling. We show with examples that the new framework
can be used to predict cell phenotypic responses.
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Materials and methods

General considerations Establishing the relationships be-
tween signaling proteins requires multi-factorial perturbation
experiments where signaling patterns are altered such that the
possible effects of crosstalk between pathways are sampled.
We have selectively inhibited the studied proteins one at a
time and measured how a particular inhibition affected the
activities of the other studied sentinels. We then analyzed the
collected data separately for the 184A1L5 andMDA-MB-231
cell lines using inference methods to identify the regulatory
interactions between investigated signaling molecules. This
analysis enabled us to establish that EGFR signaling pathways
are wired differently in 184A1L5 and MDA-MB-231 cells
and that this differential wiring can lead to significant differ-
ences in cellular phenotype responses.

Cell lines Our study compared the normal human mammary
epithelial (HME) and MDA-MB-231 breast cancer cells. As
the cancer cell line we utilized MDA-MB-231 cells (ATCC
listing: HTB-26), which are a human EGFR+ (Davidson et al.
1987) and ER−/PR−/HER2− (i.e., triple negative) basal breast
cancer cell type (Neve et al. 2006). HME cell line 184A1L5
(Stampfer et al. 1993) expresses approximately 200,000 mol-
ecules of EGFR/HER1 and relatively low copy numbers of
HER2 (~30,000) and HER3 (~1000), two other members of
the EGFR (HER) family of receptor tyrosine kinases
(Hendriks et al. 2003; Zhang et al. 2009). We note that, unlike
many model cell lines with limited physiological responses to
growth factors, 184A1L5 HME cells are an excellent model
system for studying the properties of the HER signaling. This
is because, like many epithelium derived cell types, HME
cells require EGFR activation for proper proliferation and mi-
gration responses (Stampfer et al. 1993; Dong et al. 1999).
Because they express EGFR at comparable levels and have
low levels of HER2 and HER3 (Shankaran et al. 2013),
MDA-MB-231 cells was the most logical choice for compar-
ison studies with 184A1L5 cells (which was labeled as the
Bparental^ or BHER2−/3−^ cell line in our earlier studies with
this HME cell library (Gong et al. 2015; Zhang et al. 2009;
Shankaran et al. 2013)). This close similarity eliminated the
HER receptor expression difference concern and made cell
line comparisons more realistic. We note that our earlier stud-
ies compared the signaling patterns between the cell lines of
our HME library while this current study compares the
184A1L5 cells to MDA-MB-231 cancer cells.

The MDA-MB-231 cells were maintained at 37 °C in at-
mospheric air in L-15media supplemented with 10% FBS and
1% penicillin-streptomycin. At approximately 70–80%
confluency, the growth medium was replaced with medium
lacking FBS and cells were brought to quiescence for 16–18 h
prior to treatment in Western blot, proliferation and imaging
experiments. These experiments were run in triplicate for

every treatment condition. The MDA-MB-231 cells were ac-
tivated by stimulating them using L-15 media containing 1%
FBS, 12 ng/ml EGF and 40 ng/ml HRG-β. The 184A1L5
cells were maintained at 37 °C with 5% CO2 in DFCl-1 media
supplemented with 10% FBS and 12.5 ng/ml EGF (Gong
et al. 2015). A DFHBminimal media containing 0.1% bovine
serum albumin and deficient of EGF was used to bring the
cells to quiescence. DFCl-1 media supplemented with ligands
was used to stimulate the 184A1L5 cells and data was collect-
ed in duplicate (Gong et al. 2015). Thus, the data for the
normal and cancer epithelial cells were collected under equiv-
alent conditions.

Western blot analysis of sentinel proteins - inhibition stud-
ies We selectively inhibited the studied proteins one at a time
and measured how a particular inhibition affected the activi-
ties of all sentinels. Inhibitors were added to starvation medi-
um 2 h prior to ligand-induced stimulation. They were also
included in the treatment medium, i.e., cells were exposed to
respective inhibitors continuously before and after the stimu-
lation with ligands. The following inhibitors and doses were
used: U0126 (Erk1/2 inhibitor; 20 μM), JNK Inhibitor VIII
(JNK inhibitor; 20 μM), Stattic (STAT3 inhibitor; 10 μM),
Akt Inhibitor VIII (Akt inhibitor; 10 μM), and Birb-796
(p38 MAPK inhibitor; 5 μM). No-ligand measurements
where cells were treated with minimal media provided the
negative control.

Lysates for Western blotting studies were collected 15 min
after activation. Data for the 184A1L5 cells was collected
earlier (Gong et al. 2015). To collect the data anew for the
MDA-MB-231 cells, plates were washed with ice-cold PBS
and cells were then immediately lysed using RIPA buffer pre-
pared with protease and phosphatase inhibitors. Plates were
lysed over a period of 30min, on ice, prior to cell scraping and
transfer of the lysate to microtubes. Lysates were centrifuged
at 12,000 rpm for 10 min. The supernatant was aspirated into
fresh microfuge tubes for analysis and the pellet was
discarded. Lysates were stored at −80 °C between analyses.
Total protein concentration of cell lysates was determined by
the Bicinchoninic Acid assay technique (reagents from
Sigma). Total protein amount was matched to 20 μg protein/
well and loaded to SDS-PAGE gels. TGX precast 10% gels
from Bio-Rad with 10 wells were used. Electrophoresis was
done using the Bio-Rad Mini-Protean Tetra System and pro-
teins were transferred from the gel to PVDFmembranes using
the Bio-Rad Trans-blot Turbo transfer system. PVDF mem-
branes were developed using ECL. Western blot images were
captured by a LI-COR C-DiGit scanner. Images were ana-
lyzed using the Image Studio Digits v3.1 software.

The Western blots (Fig. 1) illustrate that the chosen inhibi-
tion conditions effectively block phosphorylation of their des-
ignated targets, thus meeting the perturbation requirements
necessary to infer regulatory interactions with MRA and
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BVSA. We note that our studies require comparison between
cell lines and stimulation conditions; i.e., data from multiple
plates or gels need to be combined during analysis. To in-
crease the quality of merging data frommultiple gels, we used
Bcommon positive controls^ (CC; cf. Fig. 1), which are mea-
surements for a strong signal condition that are performed on
every gel in one or more wells. The lysate material used for
CC is prepared in large batches at once and same lysate is later
used on every gel. Measured CC values are then used for
quality checks and normalization of gels against each other.

Reagents Epidermal growth factor (EGF, human recombi-
nant) and heregulin-β1 (HRG-β, human recombinant) were
purchased from Peprotech (Rocky Hill, NJ). L-15 and FBS
were purchased fromHyClone. PrimaryWestern blot antibod-
ies for phosphorylated p38 MAPK (Thr180/Tyr182, #9215),

SAPK/JNK (Thr183/Tyr185, #9255), c-Jun (Ser73, #9164),
Akt (Ser473, #4060) and STAT3 (Tyr705, #9145) were pur-
chased from Cell Signaling Technology (Danvers, MA). As it
is a direct target of JNK activity, c-Jun was used as a measure
of output of integrated JNK signaling by assuming that c-Jun
phosphorylation is directly proportional to JNK activation.
Primary antibody for β-actin (mouse monoclonal, #A2228)
was purchased from Sigma. WesternSure HRP goat-anti rab-
bit IgG (926–80,011) and HRP goat-anti mouse IgG (926–
80,010) were purchased from LI-COR. U0126 (Erk1/2 inhib-
itor), JNK Inhibitor VIII, and Akt Inhibitor VIII were pur-
chased from Calbiochem (EMD Millipore, Billerica, MA).
Birb-796 (p38 MAPK inhibitor) was purchased from
Selleckchem, and Stattic (STAT3 inhibitor) was purchased
from Enzo Life Sciences. Protease and phosphatase inhibitors
were obtained from Fisher. SDS-PAGE gels, PVDF mem-
branes, SDS buffer and transfer buffer were purchased from
Bio-Rad. Bicinchoninic acid assay reagents were obtained
from Sigma. The peroxidase-based electrochemiluminescence
(ECL) immunoassay substrate (femto maximum sensitivity)
for Western blot was purchased from Thermo Scientific
(Pittsburg, PA). All the other reagents were purchased from
Sigma (St. Louis, MO) unless otherwise indicated.

Cell proliferation studies We constructed GFP-expressing
versions of 184A1L5 andMDA-MB-231 cells by transfecting
them with GFP-Bsd lentiviral particles (GenTarget, Inc.).
GFP-tagged cells were then seeded at a count of 10,000
cells/well using opaque black 96-well plates with transparent
ultra-thin clear bottom (Corning, special optics plate). Cells
were grown overnight and fluorescence from wells were mea-
sured daily to track growth. Fluorescence intensity was used
as a measure of relative cell counts. All fluorescence readings
were taken using a Cytation5 (BioTek) multi-well plate reader
at an excitation wavelength of 485 nm and emission wave-
length of 528 nm. Cell maintenance medium was changed
every 12 h during the measurement period. Medium contained
the respective inhibitors when used. Protein inhibitors and
their doses matched those used in the Western blotting studies
described above.

Cell motility studies Motilities of the 184A1L5 and MDA-
MB-231 cells were measured in duplicate using 12 well, flat
bottom plates. Plates were coated with 300 μg/ml collagen-I
and incubated overnight at room temperature. Plates were
rinsed with nano-pure water before cells were plated. After
plating, cells were allowed to attach to the collagen coated
surface for at least 5 h. Cells were then treated with inhibitors
for 2 h by adding the inhibitors at concentrations that were
used in the Western blot experiments. Afterwards, media
(L-15 media supplemented with 10% FBS for MDA-MB-
231 cells and DFCl-1 media supplemented with 10% FBS
and 12.5 ng/ml EGF for 184A1L5 cells) were replaced with
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Fig. 1 Representative Western blots used in the cell line comparison
study for the (a, top) HME and (b, bottom) MDA-MB-231 cells. Cells
were activated for 15 min with 12 ng/ml EGF and 40 ng/ml HRG. Labels
on the right indicate the measured phospho-protein. Labels below blots
indicate the treatment conditions used in the study: C− (negative control),
C+ (positive control), CC (common control, used for normalization
between gels, analogous to the positive control condition. Loading
material used for the two CC lanes were from different batches.), i-Akt
(Akt inhibition), i-Erk (Erk inhibition), i-p38 (p38 inhibition), i-JNK
(JNK inhibition), and i-S3 (STAT3 inhibition). Data for the PI3K
inhibition (i-P3K) was not used in the analysis. Note that the layout of
the gels is slightly different for the two cell types. Loading control
measurements using β-actin are shown for illustration purposes
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fresh inhibitor containing media and cell positions were re-
corded at 4 min intervals for 2 h using time lapse imaging with
a Zeiss Axio Vert.1 microscope with AxioCan MRm camera
using the Zen software. Collected images were then analyzed
using the Volocity image analysis software for cell tracking
and in house Matlab codes for additional quantification and
statistical analysis.

Motion of the cells were tracked at the individual cell level
and average instantaneous velocity of cells (vins) and the root-
mean-squared distance (RMSD) of cellular trajectories were
computed. Average instantaneous velocity vins of a cell is

computed from its measured locations as vins ¼ 1
N−1 ∑

N

k¼2
j r!k−

r!k−1j=Δt where k is the frame index of the image time-series
data collected at intervals Δt. This average instantaneous ve-
locity is equal to the ratio of the total trajectory length of a cell
to the total elapsed time. RMSD is a measure of the compact-
ness of a trajectory. It was computed as <rk

2 > 1/2

where rk is the radial distance of the cell from the start
of the trajectory at the kth time point, and the mean was
taken over all the N measurement time points.
Computed vins and RMSD for individual cells were then
averaged over cells to obtain the reported values.

Network inference and analysis We have combined the
modular response analysis (MRA) and its Bayesian variable
selection algorithm (BVSA) variant to identify the interactions
among the sentinels. MRA reverse engineers a system to infer
the existing regulatory interactions and their causality in a
quantitative manner from measurements of how perturbing
one system element affects the responses of the other elements
in the system (Rkl below) (Bruggeman et al. 2002;
Kholodenko et al. 2002; Andrec et al. 2005). MRA derives
the local response matrix elements rkl = ∂xk/∂xl, which quan-
tify the sensitivity of element k to changes in element l pro-
vided that the activities of all other nodes are kept constant,
where xk denotes the activation of protein k in our case
(Kholodenko et al. 2002; Andrec et al. 2005). For example,
rerk,jnk corresponds to the Erk ← JNK interaction describing
how JNK regulates Erk activation. Whenmultiple interactions
could be involved, measured changes in the activities are char-
acterized with a global response matrix with elements
Rkl = ∂lnxk/∂lnPl, which corresponds to the change in xk in
response to a perturbation in component l, Pl. Rkl may be
approximated as Rkl ≅ 2 (xk

(l) - xk
(0)) / (xk

(l) + xk
(0)) for small

variations, where xk
(0) and xk

(l) are the activity levels of com-
ponent k before and after the perturbation of component l,
respectively (Kholodenko et al. 2002). MRA then computes
the strengths of the interactions between module elements rkl
from the measured Rkl by solving Σn rkn Rnl = Rkl where k ≠ l
and the sum is over the nodes n (n ≠ k) that were perturbed in
the experiments and rnn = −1 [51, 52]. Typically the total least

squares estimation is used in Monte Carlo based simulations
to estimate the local response coefficients (Gong et al. 2015;
Santos et al. 2007). Utilizing this approach, we have computed
the estimated probability distributions of the local response
coefficients by forming random realizations of the node activ-
ities that were drawn from a normal distribution with a mean
equal to those of the measured values. Standard deviation in
the distribution was assumed to be 20% of the mean for each
of the measured xk activity values, which is a typical deviation
for Western blot experiments. Response matrices were calcu-
lated for 5 × 105 realizations of the randomly sampled data
sets, and statistical distribution data obtained for the resulting
local response coefficients were used to calculate the mean
(μkl = <rkl>) and standard deviation (σkl) of the computed
response coefficients. When tested, increasing the sam-
pling 10-fold to 5 × 106 runs have hardly changed the
results. So obtained distributions were well converged.
MRA simulations were performed using the Matlab
codes written in-house (Gong et al. 2015).

When the data are noisy, which usually is the case in bio-
logical experiments, global responses Rkl contain uncer-
tainties and obtaining the local response coefficients rkl can
be problematic. BVSA integrates Bayesian selection into
MRA to infer regulatory interactions in a network and, instead
of estimating rkl as in the MRA algorithm, it estimates the
probability of interaction between nodes (Santra et al. 2013).
The constitutive equation above is changed to Σn Akn rkn
Rnl = 0, where the added variable Akn represents the probabil-
ity of direct interaction between k and n (with Akn = 1 present
to Akn = 0 absent scale). As a statistical inference algorithm,
BVSA uses Bayesian statistics: An initial prior distribution is
updated based on the experimental data using Bayes’ theorem
to obtain the posterior distribution of the probabilities of con-
nections between network modules (Santra et al. 2013). Our
simulations utilized the Gibbs sampler Matlab program pro-
vided as SupplementaryMaterial by Sandra et al. (Santra et al.
2013). Simulations were run for 1000 Gibbs scans (parameter:
noit) and 5000 iterations (parameter: times). 50% of the early
samples were assumed to be burn-ins and were not considered
in the calculation of posterior edge probabilities. Prior and
posterior distributions were computed using the default values
for the other parameters of the program.

As further discussed in the Results section, two different
strategies were used in our analysis. First, we utilized the
combined BVSA-MRA approach that we have developed ear-
lier (Gong et al. 2015). Combined BVSA-MRA approach
integrates the predictions of the BVSA and MRA algorithms
in two-stages:

i) Perform BVSA analysis separately for 184A1L5
and MDA-MB-231 cells (cf., Table 1). Identify
which interactions are likely to be present, i.e.,
find which Akl’s are not zero. The threshold to
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decide the presence of interactions was chosen to
be equal to the average posterior edge probability,
as recommended (Santra et al. 2013). Interaction
set selection was done in two different ways; for
each individual cell line by itself (BVSA-cell) or
forming a collective (union) set by combining the
interactions for both cell lines (BVSA-both).

ii) In the MRA stage, set the local response matrix
rkl elements corresponding to the interactions that
were found to be not-likely to exist in the BVSA
analysis to zero and compute the rkl values for the
remaining interactions (cf., Tables 2, 3, 4, 5, and
6) and their interaction type. It should be noted
that reactions with r > 0 are activating and with
r < 0 are suppressing interactions.

Second, we analyzed the perturbation data using MRA
repeatedly such that interactions with the weakest strength
were eliminated one at a time until convergent results were
obtained (cf., Tables 2, 3, 4, 5, and 6) as follows:

i) Assume that all interactions are possible and include all
the interactions in the MRA study (i.e., no interaction is
excluded; cf., MRA-0). For our study set with 5 pro-
teins, for a particular protein, this corresponds to includ-
ing all of the 4 interactions with other proteins. Then,
identify which of the 4 interactions have the weakest
strength.

ii) Discard the weakest interaction, i.e., set the correspond-
ing rkl to be zero, and repeat the MRAwith the reduced
set (cf., MRA-1). Repeat step ii iteratively to further
reduce the network (cf., MRA-1, MRA-2, and MRA-
3) until the remaining links have converged to a subset
of significant interactions. In this notation MRA-N cor-
responds to a results set where N interactions were ex-
cluded from the computation.

Note that, in MRA studies, error with the predicted set of rkl
values can be computed (Gong et al. 2015; Andrec et al. 2005).
MRAwere run for 5 × 105 random realizations of the perturba-
tion data. We filtered the MRA-0 runs based on errors before
computing the statistical distributions of the rkl values and their
averages. If the error of estimation for how a protein X (X = Erk,
Akt, p38, JNK, STAT3) was impacted by the inhibition pertur-
bations for a particular run was εx, we defined the total error for
that run as εtot

2 =Σx εx
2 where the sum is over all 5 proteins.We

also defined an error value for each protein εx,low by computing
the mean of the errors of the 1000 runs with the smallest εx. A
total error value εtot,low was defined similarly. We then selected
which parameter estimation tries were included in the mean and
statistical distribution computations as the runs that satisfied
both of the following two criteria: i) εx < 5 εx,low for every
protein, i.e., for X = Erk, Akt, p38, JNK, STAT3. This criterion
ensured that not a single protein dominated the error computa-
tion and each protein was considered equally. ii) εtot < 1.5
εtot,low, which allowed for the selection of runs with reasonable
errors. We then computed the maximum error for each protein
separately among the keptMRA-0 runs, and defined them as the
error cutoff for selection in the subsequent MRA runs when
certain interactions were excluded from the analysis (i.e.,
MRA-N with N > 0; Tables 2, 3, 4, 5, and 6). This ensured that
a consistent error selection was applied as the number of inter-
actions (i.e., model parameters) were changed in the analysis. It
should also be noted that error cutoff determination was done
separately for the 184A1L5 and MDA-MB-231 cells.

Results

Our comparative analysis revealed that there are considerable
differences in how the investigated sentinel proteins regulate
each other in normal 184A1L5 and MDA-MB-231 breast
cancer epithelial cells. As explained above, how the investi-
gated proteins respond to inhibition perturbations were

Table 1 Bayesian variable selection algorithm (BVSA) results

Regulation of Erk by

Cell line Akt p38 STAT3 JNK

HME 0.154 0.250 0.661 0.165

MDA-MB-231 0.283 0.494 0.194 0.196

Regulation of Akt by

Cell line Erk p38 STAT3 JNK

HME 0.189 0.161 0.166 0.165

MDA-MB-231 0.140 0.138 0.908 0.160

Regulation of p38 by

Cell line Akt Erk STAT3 JNK

HME 0.151 0.207 0.750 0.185

MDA-MB-231 0.122 0.425 0.126 0.485

Regulation of JNK by

Cell line Akt Erk p38 STAT3

HME 0.169 0.200 0.331 0.274

MDA-MB-231 0.127 0.823 0.171 0.132

Regulation of STAT3 by

Cell line Akt Erk p38 JNK

HME 0.189 0.759 0.429 0.204

MDA-MB-231 0.338 0.201 0.231 0.181

Response matrix elements are classified into 3 classes: Elements with
interaction probabilities A that are i) A < μr, ii) μr < A < μr + σr, and
iii) A > μr + σr where μr and σr are the mean and standard deviation of the
derived probabilities, respectively. In our analysis, they were μr = 0.288
and σr = 0.195 for the normal HME cells and μr = 0.294 and σr = 0.223
for the MDA-MB-231 breast cancer cells. Interactions in the first catego-
ry are unlikely to be present. The ones in the last category are highly likely
to be present in our system and they are marked in bold. Interactions with
probabilities in the second category are likely to be present and they are
marked in bold italics
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measured using Western blots. Fig. 1 reports the results for a
typical blot from multiple replicates. We first explain our

results individually for each protein and then provide a de-
scription of the overall network for each cell line.

Table 2 Modular response
analysis (MRA) results Regulation of Erk by

Analysis set Akt p38 STAT3 JNK

HME cells

BVSA-cell N/I N/I -0.541 ± 0.049 N/I

BVSA-both N/I −1.326 ± 0.701 −1.223 ± 0.386 N/I

MRA-0 0.500 ± 0.841 −0.759 ± 1.521* −1.287 ± 0.694 0.772 ± 1.216*

MRA-1 N/I -1.332 ± 0.725 −1.261 ± 0.411 0.121 ± 0.296

MRA-2 N/I -1.326 ± 0.701 −1.223 ± 0.386 N/I

MDA-MB-231 cells

BVSA-cell N/I 0.318 ± 0.053 N/I N/I

BVSA-both N/I 0.294 ± 0.053 0.176 ± 0.058 N/I

MRA-0 0.204 ± 0.114 0.251 ± 0.093 −0.009 ± 0.130 0.099 ± 0.222

MRA-1 0.195 ± 0.054 0.244 ± 0.080 N/I 0.130 ± 0.191

MRA-2 0.199 ± 0.053 0.282 ± 0.053 N/I N/I

MRA-3 N/I 0.318 ± 0.053 N/I N/I

Interaction strengths, rkl, are expressed as mean prediction +/− standard deviation. Interactions with r > 0 are
activating and with r < 0 are suppressing interactions. Interaction are classified into 3 classes: Elements with
interaction strengths that are i) |r| < μr, ii) μr < |r| < μr + σr, and iii) |r| > μr + σr where μr and σr are the mean and
standard deviation of the absolute values of the derived interaction strengths (|r|), respectively. In our analysis, they
were μr = 0.727 and σr = 0.461 for the normal HME cells and μr = 0.527 and σr = 0.567 for the MDA-MB-231
breast cancer cells. Interactions in the first category are unlikely to be present. The ones in the last category are
highly likely to be present in our system and they are marked in bold. Interactions in the second category are likely
to be present and they are marked in bold italics

N/I Not included in the analysis. These interactions were assumed to have r = 0

*The strength of these interactions had a large coefficient of variation (cv = σr/μr), and therefore, they were not
well identified

Table 3 Modular response
analysis (MRA) results Regulation of Akt by

Analysis set Erk p38 STAT3 JNK

HME

BVSA-cell N/I N/I N/I N/I

BVSA-both N/I N/I 0.087 ± 0.075 N/I

MRA-0 (33.2

vs 66.8%)a
−2.448 ± 0.813

1.655 ± 0.839

−1.772 ± 0.874

2.263 ± 0.771

−2.180 ± 0.879

2.440 ± 0.830

−0.526 ± 0.517

MRA-1 (58.5

vs 41.5%)a
−2.546 ± 0.792

2.157 ± 0.896

−2.079 ± 0.796

2.627 ± 0.811

−2.436 ± 0.762

2.581 ± 0.835

N/I

MRA-3 N/I N/I N/I -0.100 ± 0.175

MDA-MB-231

BVSA-cell N/I N/I 0.754 ± 0.050 N/I

BVSA-both N/I N/I 0.754 ± 0.050 N/I

MRA-0 0.298 ± 0.464 0.141 ± 0.190 0.897 ± 0.112 −0.941 ± 0.729

MRA-1 0.557 ± 0.819 (*) N/I 0.857 ± 0.133 −1.093 ± 1.092 (*)

MRA-2a N/I N/I 0.832 ± 0.061 −0.435 ± 0.151

MRA-2b −0.242 ± 0.103 N/I 0.793 ± 0.055 N/I

MRA-3 N/I N/I 0.754 ± 0.050 N/I

Notation used in this table is the same as in Table 2
a As discussed in the main text, estimated interaction strengths for Akt ← Erk, Akt ← p38 and Akt ← STAT3
interactions had bimodal distributions in some of the analyzed cases. These values report the percentage of the
runs that resulted in the indicated modes, respectively
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Regulation of sentinel proteins in HME
and MDA-MB-231 epithelial cells

Regulatory interactions between sentinels were inferred using
two different approaches that utilized the modular response
analysis (MRA) and its Bayesian variable selection algorithm
(BVSA) variant (cf., Methods section). The first method used
a combined BVSA-MRA approach, which integrates the pre-
dictions of the BVSA andMRA algorithms in two-stages. The
second method analyzed the perturbation data using MRA
repeatedly by eliminating the weakest interaction one at a time
until convergent results were obtained. Details of these ap-
proaches can be found in the Methods section.

Regulation of Erk Erk and Akt are relatively upstream of p38,
JNK and STAT3 in the HER signaling pathways. Therefore,
interactions of the latter proteins with Erk or Akt can be con-
sidered as feedbacks. In the combined BVSA-MRA analysis
(cf., Methods section), BVSA identified interactions of Erk
with STAT3 in normal 184A1L5 cells and with p38 in MDA-
MB-231 breast cancer cells (Table 1). Interestingly, MRA uti-
lizing only these interactions resulted in conflicting outcomes
(Table 2). In 184A1L5 cells, interaction with STAT3 was pre-
dicted only when Erk← p38 interaction was also included. As
discussed below, this outcome was later confirmed in the sec-
ond approach. In cancer cells, none of the BVSA predicted
interactions were found to have a strong strength.

Table 4 Modular response
analysis (MRA) results Regulation of p38 by

Analysis set Akt Erk STAT3 JNK

HME

BVSA-cell N/I N/I -0.559 ± 0.050 N/I

BVSA-both N/I −0.487 ± 0.575 −0.860 ± 0.188 0.202 ± 0.360

MRA-0 0.341 ± 0.243 −0.253 ± 0.634 −0.986 ± 0.192 0.591 ± 0.484

MRA-1 0.318 ± 0.142 N/I -0.882 ± 0.132 0.622 ± 0.223

MRA-2 N/I N/I -0.721 ± 0.091 0.449 ± 0.182

MRA-3 N/I N/I -0.559 ± 0.050 N/I

MDA-MB-231

BVSA-cell N/I −0.047 ± 0.687 N/I 0.990 ± 0.922 (*)

BVSA-both N/I 0.074 ± 0.722 −0.082 ± 0.118 0.871 ± 0.935 (*)

MRA-0 0.494 ± 0.270 0.057 ± 0.409 −0.558 ± 0.271 1.127 ± 0.550

MRA-1 0.464 ± 0.286 N/I -0.497 ± 0.292 1.233 ± 0.247

MRA-2a N/I N/I -0.083 ± 0.079 1.011 ± 0.149

MRA-2b 0.044 ± 0.078 N/I N/I 0.985 ± 0.140

MRA-3 N/I N/I N/I 0.978 ± 0.138

Notation used in this table is the same as in Table 2

Table 5 Modular response
analysis (MRA) results Regulation of JNK by

Dataset Akt Erk p38 STAT3

HME

BVSA-cell N/I N/I 0.817 ± 0.282 N/I

BVSA-both N/I −0.475 ± 0.144 0.847 ± 0.223 N/I

MRA-0 -0.085 ± 0.262 0.955 ± 0.498 1.945 ± 0.560 1.403 ± 0.435

MRA-1 N/I 0.783 ± 0.399 1.810 ± 0.419 1.186 ± 0.341

MDA-MB-231

BVSA-cell N/I 0.663 ± 0.092 N/I N/I

BVSA-both N/I 0.680 ± 0.115 −0.022 ± 0.115 N/I

MRA-0 0.034 ± 0.311 0.753 ± 0.261 −0.063 ± 0.198 −0.159 ± 0.390

MRA-1 N/I 0.767 ± 0.132 −0.069 ± 0.124 −0.153 ± 0.084

MRA-2 N/I 0.707 ± 0.067 N/I -0.136 ± 0.073

MRA-3 N/I 0.663 ± 0.092 N/I N/I

Notation used in this table is the same as in Table 2
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In the second approach, for 184A1L5 cells, the poten-
tial Erk ← Akt regulatory interaction was the weakest,
and its inclusion in the analysis actually increased the
variances in other Erk interactions considerably (Table 2,
MRA-0). This was most likely due to over-fitting of the
system using unsupported degrees of freedom. Its negli-
gence (MRA-1) decreased the variances of the computed
parameters and illustrated that the Erk ← JNK interaction
was insignificant (MRA-1) and that Erk ← STAT3 and
Erk ← p38 interactions (MRA-2 and BVSA-both) were
strong. As their r < 0, both of these interactions are sup-
pressive, i.e., feedback from p38 and STAT3 both repress
Erk activation. Compared to BVSA predictions (Table 1),
MRA results confirmed the Erk ← STAT3 interaction.
BVSA analysis showed a weak Erk ← p38 interaction
but it was still second to STAT3 in strength (Table 1).
We therefore conclude that Erk is regulated by both
STAT3 and p38 in normal 184A1L5 HME cells.

MRA analysis indicated that there are no significant regu-
latory interactions between Erk and other studied sentinel pro-
teins in MDA-MB-231 cancer cells (Table 2). Even the pre-
diction for the strongest interaction has a strength that is less
than 60% of the average interaction strength in the signaling
network. Since BVSA prediction for the likelihood of Erk
interaction with p38 was only moderate, we conclude that
feedback to Erk is insignificant in MDA-MB-231 cells when
EGFR pathways are stimulated.

Regulation of Akt BVSA identified no interactions between
Akt and other proteins in normal 184A1L5 cells but a very
strong Akt← STAT3 interaction was identified in MDA-MB-
231 breast cancer cells (Table 1). Follow up analysis with
MRA has fully supported these predictions that Akt was acti-
vated by STAT3 in MDA-MB-231 cells (Table 3).

Full MRA using the second approach has led to several
interesting observations (Table 3). In 184A1L5 cells, distribu-
tion of the strengths of the Akt regulation by Erk, p38 and
STAT3 were found to be bi-modal (Table 3 and
Supplementary Fig. 1) and derived strengths of the three in-
teractions were highly correlated (with correlation coefficients
>0.95; Supplementary Fig. 2). This meant that Akt could be
regulated by Erk/p38/STAT3 collectively. However, MRA
analysis was not able to capture this unambiguously.
Interestingly, Akt was predicted to be regulated by Erk, p38
and STAT in the same manner, i.e., all three either repress or
activate Akt.

Full MRA investigation of MDA-MB-231 cells confirmed
the Akt ← STAT3 interaction which was predicted by the
BVSA. Stepwise MRA analysis established the Akt ← p38
interaction to be the weakest (MRA-0, Table 3). Although the
Akt← JNK interaction seemed to be significant, its predicted
interaction strength varied considerably and it was closely
correlated with the Akt ← Erk interaction strength (MRA-1,
Table 3). For example, the correlation coefficient between the
predicted strengths of Akt← JNK and Akt← Erk interactions

Table 6 Modular response
analysis (MRA) results Regulation of STAT3 by

Dataset Akt Erk p38 JNK

HME

BVSA-cell N/I −0.887 ± 0.139 −0.802 ± 0.174 N/I

BVSA-both 0.049 ± 0.106 −0.872 ± 0.139 −0.778 ± 0.180 N/I

MRA-0 0.260 ± 0.136 −0.579 ± 0.174 −0.715 ± 0.145 0.408 ± 0.158

MRA-1 N/I -0.796 ± 0.174 −0.811 ± 0.169 0.156 ± 0.161

MRA-2 N/I -0.887 ± 0.139 −0.802 ± 0.174 N/I

MDA-MB-231

BVSA-cell 0.600 ± 0.074 N/I N/I N/I

BVSA-both 0.487 ± 0.127 0.360 ± 0.458 0.004 ± 0.392 N/I

MRA-0 (90.8

vs 9.2%)a
0.767 ± 0.333 −1.305 ± 0.464

1.634 ± 0.483

−0.210 ± 0.372 2.954 ± 0.771

−2.623 ± 0.848

MRA-1 (90.2

vs 9.8%)a
0.760 ± 0.354 −1.651 ± 0.543

2.176 ± 0.545

N/I 3.170 ± 0.853

−2.994 ± 0.898

MRA-2 (17.7

vs 82.3%)a
N/I −1.985 ± 0.547

2.288 ± 0.420

N/I 3.753 ± 0.846

−3.212 ± 0.689

MRA-3 0.600 ± 0.074 N/I N/I N/I

Notation used in this table is the same as in Table 2
a As discussed in the main text, estimated interaction strengths for STAT3← Erk and STAT3← JNK interactions
had bimodal distributions in some of the analyzed cases. These values report the percentage of the runs that
resulted in the indicated modes, respectively
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were 0.92 and 0.99 in MRA-0 and MRA-1 runs, respectively.
This indeterminate condition was more obvious in MRA-2
runs, which showed that the strengths of the Akt ← JNK or
Akt← Erk interactions were weak when one of these interac-
tions was excluded from the analysis (Table 3). In all cases,
Akt← STAT3 interaction was unambiguously predicted to be
a strong activation reaction (Table 3). We therefore conclude
that Akt ← STAT3 in MDA-MB-231 cells is the only Akt
interaction supported by our data when EGFR pathways are
stimulated with growth factors.

Regulation of p38 BVSA identified different interactions for
p38 in normal 184A1L5 and MDA-MB-231 breast cancer
epithelial cells (Table 1): p38 interacts with STAT3 in
184A1L5 cells and with Erk and JNK in MDA-MB-231 cells.
The p38 ← STAT3 interaction in 184A1L5 cells was also
supported by the MRA analysis (Table 4). However, although
its distribution had a small variance, the strength of the
p38 ← STAT3 interaction was found to depend on the inclu-
sion of other interactions in MRA analysis. This dependence
was obvious in particular for the p38 ← JNK interaction,
which had an insignificant but sizable strength (Table 4).
However, because of the low likelihood estimate for this in-
teraction in BVSA analysis (Table 1), we conclude that the
only significant regulatory interaction for p38 in 184A1L5
cells is its repression by STAT3 (Table 4).

For the MDA-MB-231 cells, BVSA analysis predicted p38
interactions with Erk and JNK. However, the likelihood esti-
mate for both of the interactions were relatively low (Table 1),
and only the p38← JNK interaction was clearly supported by
the MRA analysis (Table 4). It should be noted that distribu-
tion of the interaction strength between p38 and JNK had an
asymmetrical distribution with a long tail (Supplementary
Fig. 3). Although its strength was very low (Table 4), obtained
estimates for the p38 ← Erk interaction strength was highly
correlated with the p38 ← JNK interaction strength (correla-
tion coefficient was 0.99) and p38← Erk interaction strength
had a relatively large variance. This correlation was also evi-
dent in the asymmetric distribution of the p38← Erk interac-
tion strength that mimicked the distribution for p38 ← JNK
interaction (Supplementary Fig. 3). Therefore, although our
analysis predicted the p38 ← JNK activation interaction to
be highly likely, p38 ← Erk activation interaction may also
be present in the MDA-MB-231 cells because of the signifi-
cant BVSA prediction. The MRA analysis indicated that the
p38 ← STAT3 interaction may also be present in MDA-MB-
231 cells (Table 4) but the strength of the interaction depended
on the inclusion of other interactions in the analysis.

Regulation of JNK Based on BVSA, JNK activation is reg-
ulated by p38 in normal 184A1L5 cells and by Erk in MDA-
MB-231 breast cancer cells (Table 1). MRA analysis support-
ed these predictions to a large degree but also identified the

JNK ← Erk and JNK ← STAT3 activation as possible inter-
actions in 184A1L5 cells (Table 5).

In the stepwise MRA approach, analysis for 184A1L5 cells
has indicated that the only insignificant interaction between
JNK and other sentinels was with Akt. The remaining three
interactions were detected to activate JNK strongly (Table 5).
It should be noted that, unlike the regulation of Akt case
discussed above, distributions of the strengths of these three
interactions were unimodal and had reasonably low correla-
tions: pairwise correlations were only 0.59, 0.85, and 0.78. In
the MDA-MB-231 cells, linkage of JNK to the rest of the
network was more limited and only the JNK ← Erk
activation interaction was detected (Table 5). This inter-
action was detected uniformly among different run sets
(Table 5) and this MRA prediction agreed well with
BVSA results (Tables 1 and 5).

Regulation of STAT3 STAT3 has been detected to be regu-
lated by Erk and p38 in normal 184A1L5 cells and by Akt in
MDA-MB-231 breast cancer cells in the BVSA analysis
(Table 1). These predictions were supported by the MRA re-
sults (Table 6). In 184A1L5 cells, stepwise MRA approach
established that both of the STAT3← Erk and STAT3← p38
interactions suppress the STAT3 activation strongly (Table 6).

For MDA-MB-231 cells, stepwise MRA has clearly pre-
dicted the STAT3 ← Akt activation interaction. Distribution
of the predicted interaction strengths for STAT3 ← Erk and
STAT3 ← JNK interactions was bi-modal (Supplementary
Fig. 4) with opposite signs for the two interactions (Table 6;
e.g., if STAT3 ← Erk is an activation interaction then
STAT3← JNK is a repression or vice versa). Bi-modal distri-
bution was observed regardless of the inclusion of the other
two, i.e., STAT3←Akt and STAT3← p38, interactions in the
analysis. However, the population of the Bactivation/
repression^ interaction prediction was dependent on the in-
cluded interaction set (Table 6). Latter observation implies that
both of STAT3← Erk and STAT3← JNK regulatory interac-
tions may exist in the MDA-MB-231 cells. We therefore con-
clude that, as it is clearly predicted by both BVSA and MRA,
STAT3 is regulated by Akt in MDA-MB-231 cells and it may
also be regulated by Erk and JNK, where the latter two act in
opposing manner when activating or repressing STAT3.

Interaction networks in 184A1L5 and MDA-MB-231
epithelial cells

Inferred regulatory interactions between sentinel proteins can
be combined into a network model. Figure 2 reports the sig-
naling networks for normal 184A1L5 HME and MDA-MB-
231 breast cancer epithelial cells. Comparison of the recon-
structed network models show that, although there are simi-
larities, EGFR signaling pathways are wired considerably dif-
ferently in these two cell lines. Most notably:
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Erk-p38-JNK network is common in both cell lines JNK
and p38 kinases are known to be functionally associated with
the Erk pathway. Although observed interactions and feed-
backs between these three kinases were somewhat different
(Fig. 2), the Erk-p38-JNK pathway is largely conserved be-
tween 184A1L5 and MDA-MB-231 cells.

STAT3 is coupled to the Erk-p38-JNKpathway differently
in normal and breast cancer cells In 184A1L5 cells, STAT3
is tightly integrated to the Erk-p38-JNK pathway (Fig. 2a). In
contrast, in MDA-MB-231 cells, it is directly coupled to Akt
and only weakly associated with the Erk-p38-JNK pathway
(Fig. 2b). This loose crosstalk could be an indicator of
decoupled regulation of Erk and Akt pathways in cancer cells.

Interactions are triangulated in 184A1L5 cells Interactions
between Erk-p38-STAT3, between Erk-p38-JNK, and be-
tween p38-JNK-STAT3 are triangulated in 184A1L5 cells
(Fig. 2a). This implies that occurrence of pathway substitution
for signaling under different conditions would be much more
likely in normal 184A1L5 HME cells. Lack of such permuta-
tions among interactions in MDA-MB-231 breast cancer cells
implies that normal-to-cancer cell transformation causes a re-
duction in the inter-connectedness of regulatory interactions

between Akt/STAT3 and key MAP kinases involved in pro-
liferation and survival related responses.

Phenotypic cell response prediction based on inferred
signaling networks

The ultimate aim of computational analysis and modeling
studies is to generate predictive knowledge which can be used
to determine the outcome of a system in response to various
internal/external perturbations or stimuli. Querying biological
data with model-based computational analysis can be a pow-
erful approach to both eliminating invalid hypotheses and dis-
covering the most physiologically relevant interactions
(Shankaran et al. 2013; Shankaran et al. 2007a; Shankaran
et al. 2006; Shankaran et al. 2007b; Shankaran et al. 2012;
Shankaran et al. 2008). As described above, we have used the
BVSA and MRA methods to infer network models from ex-
perimental perturbation data for EGFR signaling networks
that regulate increased cell proliferation/viability and motility
processes. Since the predictions of any inference method may
contain false positives and false negatives, we have used the
derived network models to make predictions and develop new
hypotheses related to the proliferation and motility of
184A1L5 and MDA-MB-231 cells to show the utility and
predictive power of the inferred models. We have then further
validated the derived networks by experimentally testing the
model predictions.

Predictions for cell proliferation

We have used the derived network models tomake predictions
and develop new hypotheses related to the proliferation of
184A1L5 andMDA-MB-231 cells. It is clear from the obtain-
ed network topologies (Fig. 2) that the Akt-STAT3 pathway is
loosely connected to the Erk-p38-JNK pathway inMDA-MB-
231 cells while the two pathways are coupled at multiple
levels in 184A1L5 cells. JNK and p38 kinases are both impli-
cated in the regulation of stress responses and cell survival.
The Erk pathway plays a major role in the proliferation and
motility of many cell lines, and STAT3 is an important tran-
scriptional regulator of cell survival and proliferation.
Crosstalk between related signaling pathways can enable
pathway substitution when cells respond to external stimuli.
Based on this expectation, we have hypothesized that tighter
linkage between STAT3 and Erk-JNK-p38 pathway would
make possible pathway substitution much more likely thus
lowering the effects of STAT3 blocking in 184A1L5 cells.
Therefore, inhibition of STAT3 is expected to decrease the
proliferation and viability of the MDA-MB-231 cells more
than the 184A1L5 cells. Although the effects of STAT3 inhi-
bition on cell proliferation/death are very strong in both
MDA-MB-231 and 184A1L5 cells, which is expected
because of STAT3’s severe toxicity, we have found that

Fig. 2 Inferred regulatory interaction networks in a 184A1L5 human
mammary epithelial cells, and b MDA-MB-231 breast cancer cells.
Solid lines indicate the regulatory interactions that were predicted by
the used inference methods as robust interactions (cf. Tables 1, 2, 3, 4,
5, and 6). Arrows with a pointed end indicate activation interaction and
with a blunt end indicate repression interaction. Arrows with dashed lines
indicate the regulatory interactions which were either not reliably
predicted by the used inference methods or predicted by only one of the
two utilized methods. So their presence may not be as reliable as the
interactions shown with solid lines. To identify these latter interactions,
results of BVSA-MRA and repeated MRA analyses were contrasted for
consensus and an inclusive selection was used. If an interaction was
predicted as highly likely by either method, it was included in the
model. When an interaction was predicted as likely by one of the
methods and as unlikely by the other, consensus decision was weighted
towards the repeated MRA method because pursuing MRA in different
ways by leaving various interactions out (cf., Tables 2, 3, 4, 5, and 6) also
provided information about the robustness of the derived strengths of the
interactions. If the strength of the likely interaction under question was
not significantly affected by the deletion of other interactions, the
interaction was evaluated to be possible and included in the model. If it
showed sensitivity to deletions, then it was excluded
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STAT3 inhibition causes cell death about one day earlier
in MDA-MB-231 cells than 184A1L5 cells (Fig. 3; an
expanded and simplified version of the figure can be
seen in Supplementary Fig. 5), which supported our
expectation based on the inferred models.

We have also hypothesized that pathway substitution due to
the triangulated interactions between Erk-p38-JNK would
lower the impact of inhibition of these proteins in normal
184A1L5 cells compared to MDA-MB-231 breast cancer
cells. Comparison of the results for the two cell lines have
validated this prediction (Fig. 4): In MDA-MB-231 cells, in-
dividual inhibition of Erk, JNK or p38 lowered the prolifera-
tion rate (Fig. 4a) but individual inhibition of Erk, JNK or p38
had only a minimal impact on the proliferation of 184A1L5
cells (Fig. 4b) where the impact of p38 inhibition was largest
of the three. Implications of our hypothesis were much more
evident in multi-inhibition cases. Since the interactions along
the Erk-p38-JNK pathway has a linear branch structure in
MDA-MB-231 cells (Fig. 2b), inhibition of two or all three
of these proteins are expected to have a larger impact than
inhibition of individual proteins. Our results supported this
expectation fully in the MDA-MB-231 cells where cell sur-
vival was reduced for dual inhibition cases and cells started to
die after a few days (Fig. 4a). For the 184A1L5HME cells, we
found that dual inhibition of Erk + JNK or p38 + JNK had a
minimal impact on cellular growth while dual inhibition of
Erk and p38 had a more noticeable impact (Fig. 4b). The latter
was most likely due to p38 and Erk being upstream of JNK
and activating JNK (Fig. 2b). This amplifies their regulatory
role, and their simultaneous inhibition lowers JNK activation
as well thus significantly reducing the total signaling through
the Erk-p38-JNK pathway. As expected simultaneous inhibi-
tion of all three proteins led to cellular death and corresponded
to the lowest cell count among the studied combinations in
both cell lines (Fig. 4a, b).

Akt is a regulator of cell survival, and therefore, controls
cellular growth and apoptosis. Our network reconstruction
analysis (Fig. 2) have shown that Akt interacts strongly with

STAT3 and the Akt-STAT3 pathway is weakly coupled to Erk-
p38-JNK in MDA-MB-231 cells while Akt crosstalks with
STAT3-Erk-p38-JNK at multiple levels in 184A1L5 cells.
We therefore hypothesized that, because of its direct role, the
impact of Akt inhibition would be stronger in MDA-MB-231
cells. This is because Akt inhibition would reduce the activa-
tion of STAT3 and hence simultaneously lower proliferation
and induce cell death. In contrast, although it would have
some impact, Akt inhibition would affect the proliferation of
184A1L5 cells to a lesser extent. Our results have validated
this hypothesis: We have found that while it reduced the pro-
liferation of 184A1L5 cells (Fig. 5a), Akt inhibition led to the
death of MDA-MB-231 cells (Fig. 5b). We have further tested
our hypothesis by blocking both Akt and Erk-p38-JNK path-
ways in cells. One implication of our hypothesis is that simul-
taneous blocking of Akt and some of the elements of the Erk-
p38-JNK pathway should lower the proliferation below levels
observed for Akt inhibition alone by shutting down both sig-
naling pathways. Our results validated this expectation for
both MDA-MB-231 and 184A1L5 cells (Fig. 5).

Predictions for cell motility

Like proliferation, increased motility is another hallmark of
cancer related cellular processes. We have therefore also

Fig. 4 Cellular proliferation of a MDA-MB-231 and b 184A1L5 cells
over 7-day duration for the inhibition conditions listed in the legends.
Plots show the proliferation profiles when no protein was inhibited
(solid line), single proteins were inhibited (long dashed lines), two
proteins were inhibited simultaneously (short dashed lines), and three
proteins were inhibited (dotted line). The vertical axis shows cell counts
normalized with respect to the starting seeding. Typical error bars for this
type of experiments can be seen in Fig. 3

Fig. 3 Cellular proliferation of HME (dashed lines; N) and MDA-MB-
231 (solid lines; C) cells with (red) and without (black) inhibition of
STAT3 with chemical inhibitors. The vertical axis shows the cell counts
normalized with respect to the starting seeding. Error bars (one standard
deviation) are shown for no inhibition cases only to illustrate the typical
error sizes for this type of experiments
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investigated how the observed differences in the coupling be-
tween Akt-STAT3 and Erk-p38-JNK pathways may impact

the motilities of the MDA-MB-231 breast cancer and normal
184A1L5 HME cells. We measured the cellular motilities un-
der 12 different treatment conditions by inhibiting one or more
of the investigated sentinels (cf., Methods section). Trajectories
of individual cells were analyzed to compute the average in-
stantaneous velocity vins of the cells and the root-mean-squared
distance RMSD of cellular trajectories (Table 7). Computed
vins and RMSD were highly correlated for the studied condi-
tions: Correlation coefficient between vins and RMSDwas 0.97
for 184A1L5 and 0.94 for MDA-MB-231 cells. Therefore,
derived conclusions were equally applicable to both properties.

Our most notable findings were that: i) MDA-MB-231
cells had a considerably higher motility than 184A1L5 cells
(Table 7). ii) STAT3 inhibition lowered the motilities of both
MDA-MB-231 and 184A1L5 cell lines significantly
(Table 7). This observation was valid when STAT3 was
inhibited alone or together with other proteins. Iii) Akt or
JNK inhibition increased the motility of normal 184A1L5
HME cells while not affecting the motility of the MDA-MB-
231 breast cancer cells. Akt has been shown to function by
either enhancing or reducing the cell migration (Chin and
Toker 2009). Its opposing dual functionality depends on the
cell type. Our results show that Akt is differentially involved
in the motility of normal and cancer epithelial cells, which
supports its possible cell type dependent multiple functional
role. Observed increase in cell motility upon Akt or JNK in-
hibition was negated when either Erk or p38 was also
inhibited (compare Erk + Akt, Erk + JNK and p38 + JNK dual
inhibition cases to Akt or JNK inhibition cases in Table 7).
Dual inhibition of Erk and p38 also decreased the motility of
184A1L5 HME cells (Table 7). iv) Like STAT3, Erk strongly

Table 7 Motility of MDA-MB-
231 breast cancer and human
mammary epithelial cells

Inhibitor treatment Normal Cancer

vins (μm/min) RMSD (μm) vins (μm/min) RMSD (μm)

No inhibitor 0.086 ± 0.038 3.99 ± 4.72 0.228 ± 0.155 8.25 ± 9.98

Erk 0.100 ± 0.050 4.31 ± 4.99 0.119 ± 0.113 5.80 ± 8.75

p38 0.089 ± 0.043 3.82 ± 4.53 0.197 ± 0.155 8.67 ± 11.43

JNK 0.187 ± 0.093 11.76 ± 12.95 0.216 ± 0.126 10.16 ± 12.85

Akt 0.134 ± 0.057 8.74 ± 9.61 0.205 ± 0.135 8.52 ± 11.92

STAT3 0.057 ± 0.051 2.15 ± 3.52 0.105 ± 0.097 4.40 ± 6.94

STAT3 + p38 0.051 ± 0.071 1.72 ± 3.20 0.123 ± 0.131 4.11 ± 6.70

STAT3 + JNK 0.046 ± 0.035 1.79 ± 2.28 0.115 ± 0.109 3.66 ± 5.98

p38 + JNK 0.080 ± 0.061 3.61 ± 5.07 0.200 ± 0.161 7.50 ± 10.01

Erk + p38 0.087 ± 0.099 2.78 ± 5.07 0.103 ± 0.094 4.63 ± 6.36

Erk + JNK 0.087 ± 0.069 4.56 ± 6.26 0.129 ± 0.125 5.10 ± 7.16

Erk + Akt 0.098 ± 0.110 4.55 ± 5.05 0.093 ± 0.081 3.55 ± 5.26

How vins and RMSD were computed is explained in the Methods section. They were computed for each cell
individually and then averaged over the cells to obtain the tabulated values. Cases that show significant differ-
ences from the no inhibitor control case are highlighted in bold. Plain bold marks significantly different than
control where motility decreased upon inhibition. Italicized bold marks significantly different from control where
motility increased upon inhibition

Fig. 5 Cellular proliferation of a MDA-MB-231 and b 184A1L5 cells
over 7-day duration when Akt was inhibited alone or together with other
proteins. Plots show the proliferation profiles when no protein was
inhibited (solid black line), Akt was inhibited alone (solid red line), Akt
and another protein (listed in the legends) were inhibited (dashed lines),
and Akt, p38 and JNK were inhibited simultaneously (dotted line). The
vertical axis shows cell counts normalized with respect to the starting
seeding. Typical error bars for this type of experiments can be seen in
Fig. 3

EGFR signaling network is rewired upon cellular transformation 353



decreased the motility of MDA-MB-231 cells when it was
inhibited by itself or together with other proteins (Table 7).

These results parallel the results of the proliferation studies
discussed earlier. In particular, as in the proliferation case: i)
STAT3 is a key regulator of cell motility in both cells, and ii)
pathway substitutionwhich results from alternative interaction
pathways between signaling elements has a more pronounced
effect on the motility of 184A1L5 cells compared to MDA-
MB-231 cells. The dominant role of Erk in regulating the
motility of MDA-MB-231 cells is likely due to its position
as the most upstream element of the almost linear Erk-p38-
JNK pathway (Fig. 2b) while the complex topology of the
regulatory network in 184A1L5 cells (Fig. 2a) requires simul-
taneous inhibition of multiple elements to negate the effects of
pathway substitution.

Discussion and conclusion

We have used an integrated reverse engineering approach to
infer regulatory interactions from perturbation datasets. It is
anticipated that the use of such integrated approaches to
model-based computational analysis of the biological data
will lead to more rapid advancement in the understanding of
cellular signaling networks involved in oncogenesis and other
diseases. We have combined the BVSA and MRAmethods to
infer network models from experimental perturbation data for
EGFR signaling networks that regulate increased cell
proliferation/viability and motility processes, which are hall-
marks of cancer. Based on the inferred networks, we have
developed new hypotheses about the differential role of path-
way crosstalk and substitution in normal 184A1L5 HME and
MDA-MB-231 breast cancer cells and then successfully val-
idated these hypotheses in in vitro experiments. This enabled
us to establish the major differences in the regulatory interac-
tions between key kinases and STAT3 in 184A1L5 andMDA-
MB-231 cells and the effects of identified differences on the
cellular proliferation and motility responses. We have found
that there are substantial differences in how the Akt-STAT3
and Erk-JNK-p38 pathways are cross-wired inMDA-MB-231
breast cancer and normal 184A1L5 epithelial cells. The ob-
served differences and their in vitro validation have provided
new ideas that may lead to improved therapeutic strategies:
For example, instead of inhibiting STAT3, which has severe
toxic side effects (Banerjee and Resat 2015), simultaneous
inhibition of JNK together with Erk or p38 could be equally
effective in imposing cell death in MDA-MB-231 (and possi-
bly other triple-negative breast cancer) cells while only reduc-
ing the survival of the normal epithelial cells but not killing
them (Fig. 6). Identification of such new therapy ideas that use
multiple targets to significantly reduce toxicity and other side
effects could have a wide impact in oncology and other dis-
eases. More detailed and targeted studies that will further

extend and validate our results in vivo can allow the establish-
ment of carefully designed inhibition conditions which mini-
mize toxicity to normal cells while effectively causing the
death of cancer cells by taking advantage of the network
models such as the one derived in this study.

It should be noted that this study utilized a defined small set
of molecules and signaling pathways. Although this may bias
the outcomes, there were two main reasons for this selection:
i) Use of a larger protein set could be beneficial but the re-
quired effort increases steeply as N2 with increasing set size
because all combinations of inhibition (perturbation) and pro-
tein activities need to be measured. ii) Ability to predict the
phenotypic response of cells with the minimal amount of re-
quired information is more desirable. Therefore, in addition to
keeping the involved effort manageable, investigating a small
set of proteins was intentional. As our results show, selected
group of proteins were suitable to successfully predict the
response differences between 184A1L5 HME and MDA-
MB-231 breast cancer cells.
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