Skip to main content
. 2017 Oct 24;25:112–121. doi: 10.1016/j.ebiom.2017.10.018

Table 3.

Association of baseline biomarker levels with baseline microbiological characteristics.

[A]
Smear grade > 1 at baseline

Unadjusted model
Adjusted (demographics)
Assay Est (95%CI) P value AUC Est (95%CI) P value AUC
SAA1 1.68 (1.45, 1.95) 0.0004 0.62 1.52 (1.32, 1.74) 0.0027 0.60
IL-1β 1.57 (1.38, 1.78) 0.0004 0.62 1.39 (1.24, 1.56) 0.0033 0.60
IL-6 1.52 (1.34, 1.72) 0.0008 0.62 1.37 (1.22, 1.54) 0.0060 0.59
PTX-3 1.49 (1.36, 1.63) 0.0000 0.64 1.37 (1.26, 1.48) 0.0002 0.63
TNF-RI 1.19 (1.14, 1.24) 0.0001 0.62 1.15 (1.11, 1.20) 0.0006 0.61
[B]
MGIT time-to-detection

Unadjusted model
Adjusted (demographics)
Assay Est (95%CI) P value AUC Est (95%CI) P value AUC
IFN-γ 1.82 (1.56, 2.12) 0.0001 0.67 1.48 (1.28, 1.70) 0.0062 0.63
IL-15 1.27 (1.19, 1.34) 0.0001 0.67 1.19 (1.12, 1.27) 0.0038 0.63

The estimated association (Est) is 10coeff, where coeff is the coefficient of a linear model for the effect of the indicated baseline microbiological characteristics on log10 transformed baseline biomarker levels. The Est value can be interpreted as the expected factor change in baseline biomarker level for patients with [A] baseline smear grade > 1 relative to patients with smear grade < 1; [B] baseline MGIT time-to-detection ≤ 5 days relative to patients with MGIT time-to-detection > 5 days. The tables show values for an unadjusted model as well as a model that is adjusted for demographic covariates (gender, age, BMI, HIV status, region (Africa vs. Not-Africa) and study arm). The AUC value for ROC curves is a non-parametric indicator of effect size, comparing the distributions of biomarker ratios for the two outcome classes (either unadjusted or adjusted for the covariates). Only biomarkers with statistically significant associations (p < 0.05/62 assays = 0.0008) in at least one of the models are shown.