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Summary

Adenosine 5′-triphosphate (ATP) mediates a variety of biological functions following nerve-

evoked release, via activation of either G-protein-coupled P2Y- or ligand-gated P2X receptors. In 

smooth muscle, ATP, acting via P2Y receptors (P2YR), may act as an inhibitory neurotransmitter. 

The underlying mechanism(s) remain unclear, but have been proposed to involve the production of 

inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] by phospholipase C (PLC), to evoke Ca2+ release from 

the internal store and stimulation of Ca2+-activated potassium (KCa) channels to cause membrane 

hyperpolarization. This mechanism requires Ca2+ release from the store. However, in the present 

study, ATP evoked transient Ca2+ increases in only ~10% of voltage-clamped single smooth 

muscle cells. These results do not support activation of KCa as the major mechanism underlying 

inhibition of smooth muscle activity. Interestingly, ATP inhibited Ins(1,4,5)P3-evoked Ca2+ release 

in cells that did not show a Ca2+ rise in response to purinergic activation. The reduction in 

Ins(1,4,5)P3-evoked Ca2+ release was not mimicked by adenosine and therefore, cannot be 

explained by hydrolysis of ATP to adenosine. The reduction in Ins(1,4,5)P3-evoked Ca2+ release 

was, however, also observed with its primary metabolite, ADP, and blocked by the P2Y1R 

antagonist, MRS2179, and the G protein inhibitor, GDPβS, but not by PLC inhibition. The present 

study demonstrates a novel inhibitory effect of P2Y1R activation on Ins(1,4,5)P3-evoked Ca2+ 

release, such that purinergic stimulation acts to prevent Ins(1,4,5)P3-mediated increases in 

excitability in smooth muscle and promote relaxation.
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Introduction

The purinergic agonist, adenosine 5′-triphosphate (ATP), is an important and ubiquitous 

extracellular signalling molecule that mediates diverse physiological effects in numerous cell 

types and is pivotal in regulating smooth muscle activity, ranging from gastrointestinal 
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motility to vascular tone (Abbracchio et al., 2006; Burnstock, 2006; De Man et al., 2003; 

Gallego et al., 2006). Alterations in ATP signalling are implicated in several pathological 

conditions of smooth muscle, including inflammatory bowel disease, partial bladder outlet 

obstruction and hypertension (Burnstock, 2006; Calvert et al., 2001; Neshat et al., 2009) and 

there is an emerging role of purinergic receptors as therapeutic targets in such conditions. A 

major regulator of smooth muscle function is the cytoplasmic Ca2+ concentration [Ca2+]c 

(Berridge et al., 2003; Himpens et al., 1995). Ca2+ release from the intracellular Ca2+ store, 

the sarcoplasmic reticulum (SR), provides a significant mechanism by which agonists such 

as ATP may regulate [Ca2+]c and thus, smooth muscle activity. Release occurs via two 

ligand-gated channel–receptor complexes, the inositol 1,4,5-trisphosphate receptor 

[Ins(1,4,5)P3R] and the ryanodine receptor (RyR) (Bootman et al., 2001; McCarron et al., 

2004). In several cell types, such as smooth muscle, Ins(1,4,5)P3R is the predominant Ca2+ 

release mechanism and is activated by Ins(1,4,5)P3, generated via G-protein- or tyrosine 

kinase-linked receptor-dependent activation of phospholipase C (PLC) (Bootman et al., 

2001; Iacovou et al., 1990; Marks, 1992).

Smooth muscle cells express ligand-gated P2X receptors (P2XR) and G-protein-coupled 

P2Y receptors (P2YR). Many of the physiological effects of neuronally released ATP in 

smooth muscle are influenced by the relaxant actions of P2YR (Abbracchio et al., 2006; 

Burnstock, 2009; Gallego et al., 2006; King et al., 1998), which are largely coupled to Gαq 

proteins and thus to the activation of PLC. Indeed, the direct inhibitory response to ATP on 

smooth muscle has been proposed to involve PLC-mediated phosphoinositide hydrolysis and 

the subsequent ATP-dependent production of Ins(1,4,5)P3 to evoke local Ca2+ release near 

the plasma membrane via Ins(1,4,5)P3Rs. The [Ca2+]c rise, it is proposed, may activate 

Ca2+-activated K+ (KCa) channels to hyperpolarize the plasma membrane and decrease bulk 

average [Ca2+]c (Bakhramov et al., 1996; Burnstock, 1990; Gallego et al., 2006; Koh et al., 

1997; Strøbaek et al., 1996a; Zizzo et al., 2006). Yet, the frequency with which ATP-induced 

[Ca2+]c rises are observed varies substantially. For example, a recent study reported that 

[Ca2+]c rises to ATP were not observed in colonic smooth muscle cells (Kurahashi et al., 

2011) and in other preparations approximately one-third of cells failed to respond to ATP 

with a rise in [Ca2+]c (Dockrell et al., 2001; Friel and Bean, 1988; Liu et al., 2002) or ATP-

induced Ca2+ responses may be either limited or not observed at all (Bardoni et al., 1997; 

Fukushi, 1999; Kimelberg et al., 1997; Oshimi et al., 1999). These observations suggest that 

activation of KCa channels, following Ca2+ store release, may not be a universal mechanism 

of P2YR-mediated signal transduction.

In the present investigation, the effect of ATP on Ins(1,4,5)P3R-mediated Ca2+ release was 

initially examined to characterise the release of Ca2+ from the SR by ATP. Freshly isolated 

single colonic smooth muscle cells were selected, which provide a robust model for studying 

Ins(1,4,5)P3R activity. The use of flash photolysis of caged Ins(1,4,5)P3 minimised the 

activation of second messenger systems, to give a clearer understanding of the control of 

Ca2+ release via Ins(1,4,5)P3R. The study shows that ATP failed to evoke a rise in [Ca2+]c in 

most cells, but instead inhibited Ins(1,4,5)P3-evoked Ca2+ release. This effect was dependent 

on G-protein-coupled P2Y1R activation, but independent of PLC. Thus we propose here, a 

novel mechanism by which ATP regulates Ins(1,4,5)P3-evoked Ca2+ release in smooth 

muscle.
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Results

Initial experiments were designed to characterise the release of store Ca2+ by ATP. 

Unexpectedly, however, ATP (1 mM) transiently increased [Ca2+]c (ΔF/F0=2.0±0.4) in only 

~10% of single smooth muscle cells (Fig. 1A, 9 of 87 cells) voltage-clamped at −70 mV, but 

did not evoke any resolvable current responses in these cells (Fig. 1A). ATP failed to evoke 

Ca2+ release in the remaining cells (Fig. 1B). The absence of a Ca2+ rise in response to ATP 

cannot be explained by clamping the cells at −70 mV since the agonist also failed to evoke 

Ca2+ release at −30 mV (Fig. 1C, n=11).

ATP inhibits Ins(1,4,5)P3R-mediated Ca2+ release

We hypothesised that ATP may inhibit Ins(1,4,5)P3R-mediated Ca2+ signalling in cells that 

did not display an increase in [Ca2+]c in response to purinergic stimulation. Therefore, the 

effect of ATP on Ins(1,4,5)P3R-mediated Ca2+ release from the store was examined. In these 

experiments, the Ins(1,4,5)P3 generating agonist, carbachol (CCh), was applied in a Ca2+-

free bath solution to prevent Ca2+ influx and record purely store Ca2+ release. CCh (100 

μM) elicited reproducible transient [Ca2+]c increases in single myocytes (Fig. 2A) which is 

routinely observed in ~50% of cells. ATP (1 mM), applied 2 seconds before CCh, failed to 

release Ca2+ from the store, but significantly (P<0.05) inhibited CCh-evoked [Ca2+]c 

increases (ΔF/F0) by 76±7% (from 2.28±0.2 to 0.61±0.1, n=6, Fig. 2A). Since ATP did not 

release Ca2+, neither activation of KCa channels nor depletion of the store of Ca2+ can 

explain these results. In fact, if the reduction in Ins(1,4,5)P3R-mediated Ca2+ release arose 

by depletion of the store of Ca2+, then ATP would be expected to inhibit RyR-mediated Ca2+ 

release, because both Ins(1,4,5)P3R and RyR access a single common Ca2+ store in this 

smooth muscle preparation (McCarron and Olson, 2008). Hence, SR Ca2+ release was 

evoked by the RyR activator, caffeine (10 mM), which reproducibly increased [Ca2+]c (Fig. 

2B). ATP (1 mM), applied 2 seconds before caffeine, did not alter caffeine-evoked [Ca2+]c 

increases [(ΔF/F0) from 2.01±0.4 (control) compared with 2.04±0.3 (following ATP), n=4]. 

Together, the results suggest that ATP inhibits Ins(1,4,5)P3R-mediated Ca2+ signalling.

The inhibition of CCh-evoked Ca2+ release by ATP may arise from either inhibition of 

Ins(1,4,5)P3 synthesis or alternatively, Ins(1,4,5)P3R-mediated Ca2+ release. To distinguish 

between these possibilities, Ins(1,4,5)P3R were activated directly using caged Ins(1,4,5)P3 

which obviates the synthesis of Ins(1,4,5)P3. In these experiments, photo release of caged 

Ins(1,4,5)P3 elicited reproducible transient [Ca2+]c elevations in voltage-clamped single 

myocytes (Fig. 2C). Again, ATP (1 mM), applied 2 seconds before Ins(1,4,5)P3, 

significantly (P<0.05) decreased Ins(1,4,5)P3-evoked [Ca2+]c increases (ΔF/F0) by 87±5% 

(from 1.17±0.04 to 0.15±0.01, n=5, Fig. 2C). A similar inhibition was observed when ATP 

was applied at up to 10-fold lower concentrations. Since the [Ca2+]c increase evoked by 

photolysis of caged Ins(1,4,5)P3 does not require Ins(1,4,5)P3 synthesis, these results 

suggest that ATP inhibited Ins(1,4,5)P3R-mediated Ca2+ release.

ATP inhibits Ins(1,4,5)P3R-mediated Ca2+ release via P2Y1R

A structural analogue of ATP, adenosine 5′-diphosphate (ADP, 1 mM), also significantly 

decreased Ins(1,4,5)P3-evoked [Ca2+]c increases (ΔF/F0) by 76±7% (from 1.76±0.3 to 
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0.40±0.1, n=3, P<0.05, Fig. 3A) indicating that the purinergic inhibitory response may be 

mediated by P2YR. Again, a similar inhibition was observed when ADP was applied at up 

to 10-fold lower concentrations. In contrast, adenosine (1 mM), applied 2 seconds before 

Ins(1,4,5)P3, did not however, alter Ins(1,4,5)P3-evoked [Ca2+]c rises (ΔF/F0 from 1.95±0.2 

to 2.02±0.2, n=4, Fig. 3B), excluding a role for adenosine receptors. Consistent with these 

data, the inhibitory effect of ATP on Ins(1,4,5)P3-evoked Ca2+ release was blocked by the 

selective P2Y1R antagonist, MRS2179 (Boyer et al., 1998). ATP (1 mM), applied 2 seconds 

before Ins(1,4,5)P3, significantly (P<0.05) decreased Ins(1,4,5)P3-evoked Ca2+ release 

(ΔF/F0 from 1.12±0.04 to 0.38±0.09, n=5, Fig. 4). The inhibitory response to ATP was 

abolished by MRS2179 (10 μM) (ΔF/F0 1.17±0.04, n=5, P>0.05 compared to control, Fig. 

4), confirming a role of P2Y1R in this response.

Role of G proteins in ATP-evoked inhibition of Ins(1,4,5)P3R-mediated Ca2+ release

Although P2Y1R classically couple to Gαq/11 G proteins (Abbracchio et al., 2006), agonist 

stimulation of P2Y1R can lead, in some instances, to physiological responses that are 

independent of G protein activation (Fam et al., 2005; Hall et al., 1998; Lee et al., 2003; 

O’Grady et al., 1996). The potential role of G proteins in the ATP-mediated inhibition of 

Ins(1,4,5)P3-evoked Ca2+ release was therefore, examined using the membrane-impermeable 

G protein inhibitor, GDP 5′-O-(2-thio-diphosphate) (GDPβS), introduced into the cell via 

the patch electrode (Fig. 5). GDPβS (10 μM) abolished the inhibitory effect of ATP on 

Ins(1,4,5)P3-evoked Ca2+ release [ΔF/F0 from 1.79±0.1 (control) compared with 1.85±0.1 

(following ATP), n=8], indicating that the inhibitory response to ATP requires G protein 

activation.

ATP-evoked inhibition of Ins(1,4,5)P3R-mediated Ca2+ release does not require PLC

G-protein-coupled P2YR-mediated effects are mainly mediated by activation of PLC 

(Abbracchio et al., 2006). Thus, to investigate the role of PLC in mediating the ATP-

dependent inhibition of Ins(1,4,5)P3-evoked Ca2+ release, we examined the effects of the 

PLC inhibitor, edelfosine. ATP (1 mM), applied 2 seconds before Ins(1,4,5)P3, significantly 

(P<0.05) decreased Ins(1,4,5)P3-evoked [Ca2+]c increases (ΔF/F0 from 2±0.39 to 0.14±0.01, 

n=4, Fig. 6A) and remained effective in decreasing Ins(1,4,5)P3-evoked [Ca2+]c rises in the 

presence of the PLC inhibitor, edelfosine (10 μM) (ΔF/F0 from 2±0.39 to 0.17±0.01, n=4, 

P<0.05, Fig. 6A). On the other hand, edelfosine significantly inhibited Ca2+ release evoked 

by the Ins(1,4,5)P3 generating agonist, CCh, (ΔF/F0) by 93±2% (from 1.88±0.3 to 

0.12±0.03, n=6, P<0.05; Fig. 6B), a result that is consistent with the proposed mechanism of 

action of the drug (Powis et al., 1992).

Having previously demonstrated that the commonly used PLC inhibitor, U-73122, exerts 

non-selective effects on SR Ca2+ pumps in this tissue (MacMillan and McCarron, 2010), it 

was necessary to confirm the selectivity of edelfosine as a PLC inhibitor. Edelfosine affected 

neither Ins(1,4,5)P3- [ΔF/F0 from 1.70±0.3 (control) to 1.73±0.3 (edelfosine), n=4, Fig. 7A] 

or RyR- [ΔF/F0 from 2.84±0.1 (control) to 3.06±0.2 (edelfosine), n=4, Fig. 7B] evoked Ca2+ 

release nor the rate of Ca2+ removal from the cytoplasm following release. The 80–20% 

decay interval following Ins(1,4,5)P3- and caffeine-evoked Ca2+ release was 3.1±0.4 s and 

3.6±0.5 s in controls and 3.2±0.5 s and 3.4±0.5 s in edelfosine (n=4 and 4), respectively.
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In conclusion, these results suggest that P2Y1R inhibition of Ins(1,4,5)P3-evoked Ca2+ 

release is G-protein dependent. A product of the PLC-mediated signalling pathway is not 

responsible for ATP-dependent inhibition of Ca2+ release.

Discussion

At present the mechanism by which ATP mediates smooth muscle relaxation is contentious. 

The present study demonstrates that ATP induced Ca2+ release in only a minority of smooth 

muscle cells. Instead, in cells that did not show a [Ca2+]c rise in response to purinergic 

stimulation, ATP inhibited Ins(1,4,5)P3-evoked Ca2+ release. This response was mediated by 

P2Y1R and was G protein dependent, but did not involve activation of PLC. Thus we 

propose a novel mechanism for smooth muscle relaxation whereby stimulation of a G-

protein-coupled receptor inhibits Ins(1,4,5)P3-evoked Ca2+ release to promote relaxation.

Our initial experiments found that ATP increased [Ca2+]c in only ~10% of voltage-clamped 

single smooth muscle cells. The absence of an increase in [Ca2+]c in response to ATP was 

not influenced by changes in membrane potential and so, cannot be accounted for by voltage 

control of Ins(1,4,5)P3 production or Ins(1,4,5)P3-dependent Ca2+ release (Billups et al., 

2006; Ganitkevich and Isenberg, 1993; Itoh et al., 1992; Mahaut-Smith et al., 1999; 

Martinez-Pinna et al., 2004; Mason et al., 2000). This is intriguing because it is generally 

believed that purinergic activation leads to the mobilization of Ins(1,4,5)P3-sensitive Ca2+ 

stores and hyperpolarization of smooth muscle (Gallego et al., 2006; Hata et al., 2000; Koh 

et al., 1997; Lecci et al., 2002; Strøbaek et al., 1996a; Strøbaek et al., 1996b; Zizzo et al., 

2006). Evidently, a requirement for this mechanism is Ca2+ release from the internal store. 

However, recent evidence from another group, although having previously been in support 

of this model, also suggest that ATP failed to elicit increased responses in isolated smooth 

muscle cells (Kurahashi et al., 2011), while the relatively small purinergic KCa current 

evoked by ATP or the inability to elicit KCa currents in smooth muscle (Kurahashi et al., 

2011) is inconsistent with previous studies supporting the concept of purinergic signalling 

via intracellular Ca2+ release and subsequent activation of KCa channels in smooth muscle. 

Thus, it appears that only a sub-population of smooth muscle cells may be organised to 

hyperpolarize in response to ATP.

Our results provide an additional mechanism by which ATP may evoke smooth muscle 

relaxation, that is by modulation of Ins(1,4,5)P3R-mediated Ca2+ signalling. ATP suppressed 

[Ca2+]c increases evoked by CCh (Ins(1,4,5)P3 generating agonist) and by photolysis of a 

caged form of the inositide, to release Ins(1,4,5)P3, in all cells that failed to respond to 

purinergic activation with an increase in [Ca2+]c. Since ATP did not evoke Ca2+ release from 

the store, neither KCa channel activation nor Ca2+ store depletion can explain the inhibitory 

response to ATP. Neither can the inhibitory response to ATP be attributed to inhibition of 

Ins(1,4,5)P3 synthesis since Ins(1,4,5)P3 was released by photolysis and so synthesis was not 

required. Consistent with our data, ATP exerted an inhibitory effect on muscarinic-mediated 

increases in intracellular Ca2+ release in platelets and acinar cells (Fukushi, 1999; Hurley et 

al., 1993; Jørgensen et al., 1995; Métioui et al., 1996; Soslau et al., 1995). These studies also 

concluded that the mechanism underlying the ATP-dependent inhibition of Ins(1,4,5)P3R-

mediated Ca2+ release appears to extend beyond the plasma membrane, but is not due to 
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depletion of the store. ATP, at a concentration which fully inhibits Ca2+ store release, 

affected neither the interaction of agonists with their respective cell surface receptors nor 

Ca2+ store content (Hurley et al., 1993; Jørgensen et al., 1995).

In the present study the ATP-mediated inhibitory response was mimicked by ADP and 

blocked by the P2Y1R antagonist, MRS2179, in accordance with previous studies which 

demonstrate that ATP mediates its relaxant actions through the activation of P2Y1R 

(Brizzolara and Burnstock, 1991; Gallego et al., 2006; Gallego et al., 2008; Mathieson and 

Burnstock, 1985). Furthermore, ATP was not being hydrolysed to adenosine by 

ectonucleotidases (Guibert et al., 1998; Kadowaki et al., 2000; Liu et al., 1989; Moody et al., 

1984), as demonstrated by the lack of effect of the nucleoside on Ins(1,4,5)P3-evoked Ca2+ 

release. The inability of ATP to elicit inward currents in these cells also excludes a role of 

P2XR. Thus, it appears that the inhibitory response to ATP may be ascribed to the inhibition 

of Ins(1,4,5)P3-evoked Ca2+ release via P2Y1R activation.

The inhibitory effects of ATP in these experiments were abolished by the G protein inhibitor, 

GDPβS, indicating that activation of P2Y1R led to downstream stimulation of G proteins. 

This is important as in some cases P2Y1R stimulation can evoke responses that are G protein 

independent (Fam et al., 2005; Hall et al., 1998; Lee et al., 2003; O’Grady et al., 1996). 

However, P2Y1R characteristically couple to the Gαq/11 G proteins (Abbracchio et al., 

2006), which in turn stimulate PLC. Thus, we focused on a role of PLC in this inhibition. 

However, the actions of ATP were unaffected by the PLC inhibitor, edelfosine, at a 

concentration that inhibited CCh-evoked [Ca2+]c increases. This is consistent with our 

conclusion that ATP did not act by inhibiting Ins(1,4,5)P3 synthesis, as has been proposed in 

glandular cells (Jørgensen et al., 1995; Métioui et al., 1996). We have also demonstrated that 

the PLC inhibitor used in the former study to confirm a contribution of PLC attenuates 

Ins(1,4,5)P3-evoked Ca2+ release by depleting the store of Ca2+, a mechanism unrelated to 

inhibition of PLC activity (MacMillan and McCarron, 2010).

A likely candidate is activation of the cAMP second messenger pathway since P2Y1R can 

couple to cAMP pathways in addition to phosphoinositide pathways (del Puerto et al., 2012). 

However, studies carried out previously by us (Flynn et al., 2001) have demonstrated that 

cAMP does not regulate Ins(1,4,5)P3R activity in these cells. Elevation of intracellular 

cAMP levels by either forskolin (which stimulates adenylate cyclase) or IBMX (which 

inhibits phosphodiesterase) did not significantly affect Ins(1,4,5)P3-evoked Ca2+ release. We 

also examined the involvement of kinase activation, since Ins(1,4,5)P3R can be greatly 

affected by phosphorylation. However, Ins(1,4,5)P3-evoked Ca2+ release was not altered by 

the broad spectrum kinase inhibitor, H7 (100 μM; data not shown), and ATP remained 

effective in decreasing Ins(1,4,5)P3-evoked Ca2+ release in the presence of the broad 

spectrum PI3K (phosphoinositide 3-kinase) inhibitor, wortmannin (10 μM; data not shown), 

which is consistent with our previous work confirming that neither kinase (i.e. PKA, PKG 

and PKC) inhibition nor activation modulated Ins(1,4,5)P3-mediated Ca2+ release 

(McCarron et al., 2002; McCarron et al., 2004).

The intracellular signalling cascade downstream of G protein receptor-coupled (GPRC) 

activation clearly exhibits greater diversity than previously appreciated. Purinergic signalling 
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is further complicated by the fact that P2Y1R may couple directly to more than one G 

protein isoform (Hermans, 2003; Ostrom and Insel, 2004; Rashid et al., 2004) and each G 

protein isoform may also activate multiple signalling pathways (Maudsley et al., 2005; 

Ostrom, 2002), resulting in a wide range of cellular responses (Boeynaems et al., 2000; 

Communi et al., 1997; Murthy and Makhlouf, 1998; Neary et al., 1999; Qi et al., 2001). This 

may also be influenced by the physical proximity of the P2Y1R and its signalling 

components, which can be partitioned into specialised membrane microdomains. For 

example, GPCR (Norambuena et al., 2008), G proteins (Oh and Schnitzer, 2001) and G 

protein effector enzymes (Ostrom et al., 2002) localise to these structures. Moreover, 

membrane organisation may be critically important for ATP to release store Ca2+ in a 

subpopulation of cells, despite being a potent inhibitor of Ins(1,4,5)P3R-mediated Ca2+ 

release. Thus, the microenvironment may permit selective cellular responses (Delmas et al., 

2002; Haley et al., 2000; Segawa et al., 2002; Takemura and Horio, 2005) by providing a 

mechanism for achieving specificity of the receptor-mediated Ins(1,4,5)P3 pathway.

The complexity of purinergic signalling pathways constitute a formidable obstacle to the 

complete understanding of the molecular mechanism of this inhibition. Equally perplexing is 

the very rapid speed of onset of the inhibition of Ca2+ release (i.e. 2 seconds) which likely 

excludes signalling through slower second messenger systems. We speculate that a such a 

rapid time course of inhibition may more likely be explained by the modulation of proteins 

which interact directly with the Ins(1,4,5)P3R such as IRBIT [Ins(1,4,5)P3R binding protein 

released with Ins(1,4,5)P3] or Ca2+ binding proteins (CaBP), and which can inhibit the Ca2+ 

release activity of the Ins(1,4,5)P3R channel. Further studies are necessary to characterise 

the precise molecular mechanism underlying inhibition of Ins(1,4,5)P3R activity by ATP, but 

may prove challenging.

In conclusion, purinergic relaxation of smooth muscle has largely been attributed to the 

mobilization of Ins(1,4,5)P3-sensitive Ca2+ stores to hyperpolarize the cell, but we propose 

quite the reverse, that P2Y1R activation at the plasma membrane inhibits direct activation of 

Ins(1,4,5)P3R in the SR by Ins(1,4,5)P3 to inhibit smooth muscle activity. Smooth muscle 

may be under dual, inhibitory control by purinergic nerves. Thus, we report here for the first 

time that ATP can regulate the mobilization of Ins(1,4,5)P3-sensitive Ca2+ stores by two 

diametrically opposed mechanisms which are mediated by the same receptor. Although the 

biological significance of this divergence in ATP signalling is not yet clear, it is tempting to 

speculate that this novel mode of regulation may reflect complementary mechanisms of 

smooth muscle relaxation which have developed to acquire the ability of coordinated 

contraction and relaxation under a variety of circumstances and in response to a variety of 

stimuli. The existence of multiple regulatory mechanisms represents an advantageous 

strategy that allows impairment of one or more of its components. It is therefore 

understandable that several complementary and cooperating mechanisms are in place to 

control smooth muscle relaxation. Nevertheless, this study highlights the differential ability 

of ATP to regulate Ins(1,4,5)P3R-mediated mobilization of intracellular Ca2+ which may 

provide the molecular basis for such heterogeneous responses to ATP which are recognised 

in a variety of cells.

MacMillan et al. Page 7

J Cell Sci. Author manuscript; available in PMC 2017 November 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Materials and Methods

Cell isolation

All animal care and experimental procedures complied with the Animal (Scientific 

Procedures) Act UK 1986. Male guinea pigs (500–700 g) were sacrificed by cervical 

dislocation and immediate exsanguination. A segment of distal colon was immediately 

removed and transferred to an oxygenated (95% O2, 5% CO2) physiological saline solution 

of the following composition (mM): NaCl 118.4, NaHCO3 25, KCl 4.7, NaH2PO4 1.13, 

MgCl2 1.3, CaCl2 2.7 and glucose 11 (pH 7.4). Following the removal of the mucosa from 

this tissue, single smooth muscle cells, from circular muscle, were isolated using a two-step 

enzymatic dissociation protocol (McCarron and Muir, 1999), stored at 4°C and used the 

same day. All experiments and loading of cells with fluorescent dyes were conducted at 

room temperature (20±2°C).

Electrophysiological experiments

Cells were voltage clamped using conventional tight seal whole-cell recording (MacMillan 

and McCarron, 2010; Rainbow et al., 2009). The composition of the extracellular solution 

was (mM): Na glutamate 80, NaCl 40, tetraethylammonium chloride 20, MgCl2 1.1, CaCl2 

3, HEPES 10 and glucose 30 (pH 7.4 adjusted with NaOH 1 M). The Ca2+-free extracellular 

solution additionally contained (mM): MgCl2, 3 (substituted for Ca2+); and EGTA, 1. The 

pipette solution contained (mM): Cs2SO4 85, CsCl 20, MgCl2 1, HEPES 30, pyruvic acid 

2.5, malic acid 2.5, KH2PO4 1, MgATP 3, creatine phosphate 5, guanosine triphosphate 0.5, 

fluo-3 penta-ammonium salt 0.1 and caged Ins(1,4,5)P3-trisodium salt 0.025 (pH 7.2 

adjusted with CsOH 1 M). Whole cell currents were amplified by an Axopatch amplifier 

(Axon instruments, Union City, CA, USA), low pass filtered at 500 Hz (8-pole bessel filter; 

Frequency Devices, Haverhill, MA, USA), and digitally sampled at 1.5 kHz using a Digidata 

interface, pCLAMP software (version 6.0.1, Axon Instruments) and stored on a personal 

computer for analysis.

[Ca2+]c measurement

[Ca2+]c was measured as fluorescence using either the membrane-impermeable dye fluo-3 

(penta-ammonium salt), introduced into the cell via the patch pipette (MacMillan and 

McCarron, 2009), or the membrane-permeable dye, fluo-3 acetoxymethylester (AM) 

(McCarron et al., 2004; Rainbow et al., 2009). Where [Ca2+]c measurements were made 

using the AM dye, cells were loaded with fluo-3 AM (10 μM) in the presence of wortmannin 

(10 μM; to prevent contraction) for 30 minutes prior to the beginning of the experiment 

(n=10). Fluorescence was quantified using a microfluorimeter which consisted of an inverted 

microscope (Nikon, Surrey, UK) and a photomultiplier tube with a bi-alkali photo cathode. 

Fluo-3 was excited at 488 nm (bandpass 9 nm) by a PTI Delta Scan (Photon Technology 

International Inc., London, UK) through the epi-illumination port of the microscope (using 

one arm of a bifurcated quartz fibre optic bundle). Excitation light was passed through a 

field stop diaphragm to reduce background fluorescence and reflected off a 505 nm long-

pass dichroic mirror. Emitted light was guided through a 535 nm barrier filter (bandpass 35 

nm) to a photomultiplier in photon counting mode (Photon Technology International Inc., 
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London, UK). Interference filters and dichroic mirrors were obtained from Glen Spectra 

(London, UK).

Caged Ins(1,4,5)P3 was photolysed to the uncaged compound by ultraviolet light, which was 

selected by passing the output of a xenon flash lamp (Rapp Optoelektronik, Hamburg, 

Germany) through a UG-5 filter to select UV light and merging into the excitation light path 

of the microfluorimeter using a quartz bifurcated fibre optic bundle. The nominal flash lamp 

energy was 57 mJ, measured at the output of the fibre optic bundle and the flash duration 

was ~1 ms.

Statistical analysis

Changes in [Ca2+]c were expressed as the ratio (F/F0) of fluorescence counts (F) relative to 

baseline (control) values (taken as 1) before stimulation (F0). Summarised data are 

expressed as mean ± s.e.m. for n cells. Student’s paired t-tests were applied to test and 

control conditions; a value of P<0.05 was considered significant.

Materials

Caged Ins(1,4,5)P3-trisodium salt and fluo-3 AM were each purchased from Invitrogen 

(Paisley, UK). Fluo-3 penta-ammonium salt was purchased from TEF labs (Austin, Texas, 

USA). Edelfosine and MRS2179 were purchased from Tocris Bioscience (Bristol, UK). 

Papain and collagenase were purchased from Worthington Biochemical Corporation 

(Lakewood, NJ, USA). All other reagents were purchased from Sigma (Poole, Dorset, UK). 

Ins(1,4,5)P3 was released from its caged compound by flash photolysis. ATP (100 μM–1 

mM), ADP (100 μM–1 mM), adenosine (1 mM), carbachol (100–250 μM) and caffeine (10 

mM) were each applied by hydrostatic pressure ejection using a pneumatic pump (PicoPump 

PV 820, World Precision Instruments, Stevenage, Herts, UK). With pressure ejection, the 

concentration of the ejected drug at the cell is unknown, but will be significantly lower than 

that in the pipette owing to dilution in the bathing solution. Possible ejection artefacts were 

excluded by pressure ejection of the vehicle solution alone. The concentration of GDPβS 

and caged, non-photolysed Ins(1,4,5)P3 refers to that in the pipette. ATP, ADP, adenosine, 

carbachol and caffeine were each dissolved in extracellular bathing solution. Edelfosine was 

dissolved in water and GDPβS was dissolved in pipette solution. MRS2179 was dissolved in 

DMSO (final bath concentration of the solvent, 0.05%, was by itself ineffective). MRS2179 

(10 μM) and edelfosine (10 μM) were each perfused into the solution bathing the cells (~5 

ml per min).
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Fig. 1. ATP evoked [Ca2+]c rises in only a minority of single voltage-clamped myocytes.
(A,B) ATP (1 mM by pressure ejection; ii) evoked transient [Ca2+]c increases in only ~10% 

of cells voltage-clamped at –70 mV (iii) as indicated by F/F0 (Ai) and did not elicit any 

discernible current responses in these cells (iv). ATP failed to evoke Ca2+ release in the 

remaining cells (Bi). (C) Although photolysed caged Ins(1,4,5)P3 (▲) increased [Ca2+]c (i), 

ATP (1 mM by pressure ejection; ii), however, failed to evoke [Ca2+]c rises as indicated by 

F/F0 (i) in cells voltage clamped at –30 mV (iii).
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Fig. 2. ATP inhibited Ins(1,4,5)P3R- but not RyR-mediated [Ca2+]c increases in voltage-clamped 
single myocytes.
(A) The Ins(1,4,5)P3-generating agonist, CCh (100–250 µM by pressure ejection; ii), 

increased [Ca2+]c (i) as indicated by F/F0. CCh was applied in a Ca2+-free bath solution to 

ensure that [Ca2+]c rises arose by Ca2+ release from the SR. ATP (1 mM), applied by 

pressure ejection 2 s before CCh (iii), decreased CCh-evoked [Ca2+]c increases. (B) Ca2+ 

release was evoked using the RyR activator, caffeine. Caffeine (CAF, 10 mM by pressure 

ejection; ii) increased [Ca2+]c (i) as indicated by F/F0. ATP (1 mM), applied by pressure 
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ejection 2 s before caffeine (iii), did not alter caffeine-evoked [Ca2+]c increases. (C) Photo 

release of caged Ins(1,4,5)P3 (▲), which activated Ins(1,4,5)P3R directly, increased [Ca2+]c 

(i) as indicated by F/F0. ATP (1 mM), applied by pressure ejection 2 s before Ins(1,4,5)P3 

(ii), decreased Ins(1,4,5)P3-evoked [Ca2+]c increases (VM −70 mV).

MacMillan et al. Page 16

J Cell Sci. Author manuscript; available in PMC 2017 November 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. The inhibitory effect of ATP on Ins(1,4,5)P3-evoked [Ca2+]c increases was mimicked by 
ADP, but not by adenosine in voltage-clamped single myocytes.
At –70 mV photolysed caged Ins(1,4,5)P3 (▲) increased [Ca2+]c (i) as indicated by F/F0. 

ADP (1 mM; A) and adenosine (1 mM; B) were each applied by pressure ejection 2 s before 

Ins(1,4,5)P3 (ii). ADP decreased, whereas adenosine did not alter Ins(1,4,5)P3-evoked 

[Ca2+]c increases.
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Fig. 4. The inhibitory response to ATP was blocked by the P2Y1R antagonist, MRS2179, in 
voltage-clamped single myocytes.
At –70 mV photolysed caged Ins(1,4,5)P3 (▲) increased [Ca2+]c (i) as indicated by F/F0. 

ATP (1 mM), applied by pressure ejection 2 s before Ins(1,4,5)P3 (ii), decreased 

Ins(1,4,5)P3-evoked [Ca2+]c increases. The inhibitory effect of ATP on Ins(1,4,5)P3-evoked 

Ca2+ release was blocked by MRS2179 (10 μM).MRS2179 was perfused into the solution 

bathing the cells.
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Fig. 5. The G protein inhibitor, GDPβS, blocked the inhibitory effect of ATP on Ins(1,4,5)P3-
evoked [Ca2+]c increases in voltage-clamped single myocytes.
Photolysed caged Ins(1,4,5)P3 (▲) increased [Ca2+]c (i) as indicated by F/F0. GDPβS (1 

mM, introduced via the patch pipette; pretreated for 7–15 mins) blocked the inhibitory effect 

of ATP (1 mM by pressure ejection, applied 2 s before Ins(1,4,5)P3; ii) on Ins(1,4,5)P3-

evoked Ca2+ release (VM –70 mV).
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Fig. 6. The PLC inhibitor, edelfosine, did not alter the ATP-mediated reduction in Ins(1,4,5)P3-
evoked Ca2+ release in voltage-clamped single myocytes.
(A) Photolysed caged Ins(1,4,5)P3 (▲) increased [Ca2+]c (i) as indicated by F/F0. ATP (1 

mM by pressure ejection, applied 2 s before Ins(1,4,5)P3; ii) decreased Ins(1,4,5)P3-evoked 

[Ca2+]c increases. Edelfosine (10 μM, n=4) did not alter the inhibitory effect of ATP on 

Ins(1,4,5)P3-evoked Ca2+ release (VM –70 mV). (B) The Ins(1,4,5)P3-generating agonist, 

CCh (100–250 μM by pressure ejection; ii), increased [Ca2+]c (i) as indicated by F/F0. 

Edelfosine (10 μM) decreased CCh-evoked [Ca2+]c increases (i), which is consistent with 
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the proposed mechanism of action of the drug. Edelfosine was perfused into the solution 

bathing the cells.
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Fig. 7. The PLC inhibitor, edelfosine, neither altered Ins(1,4,5)P3R- nor RyR-mediated [Ca2+]c 
increases in voltage-clamped single myocytes.
Photolysed caged Ins(1,4,5)P3 (▲; A) and the RyR activator, caffeine (CAF, 10 mM by 

pressure ejection; Bii), each increased [Ca2+]c as indicated by F/F0. Edelfosine (10 μM) 

neither altered Ins(1,4,5)P3-evoked [Ca2+]c increases (A) nor caffeine-evoked [Ca2+]c 

increases (Bi; VM –70 mV). Edelfosine was perfused into the solution bathing the cells.
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