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Abstract

Noncovalently condensed complexes of genetic material, cell penetrating peptides (CPPs), and 

calcium chloride present a nonviral route to improve transfection efficiency of nucleic acids (e.g., 

pDNA and siRNA). However, the exact mechanisms of membrane insertion and delivery of 

macromolecule complexes to intracellular locations as well as their stability in the intracellular 

environment are not understood. We show that calcium condensed gene complexes containing 

different hydrophilic (i.e., dTAT, K9, R9, and RH9) and amphiphilic (i.e., RA9, RL9, and RW9) 

CPPs formed stable cationic complexes of hydrodynamic radii 100 nm at neutral pH. However, 

increasing the acidity caused the complexes to become neutral or anionic and increase in size. 

Using zwitterionic and anionic phospholipid monolayers as models that mimic the membrane 

composition of the outer leaflet of cell membranes and intracellular vesicles and pHs that mimic 

the intracellular environment, we study the membrane insertion potential of these seven gene 

complexes (CPP/pDNA/Ca2+ complexes) into model membranes. At neutral pH, all gene 

complexes demonstrated the highest insertion potential into anionic phospholipid membranes, 

with complexes containing amphiphilic peptides showing the maximum insertion. However, at 

acidic pH, the gene complexes demonstrated maximum monolayer insertion into zwitterionic 

lipids, irrespective of the chemical composition of the CPP in the complexes. Our results suggest 
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that in the neutral environment the complexes are unable to penetrate the zwitterionic lipid 

membranes but can penetrate through the anionic lipid membranes. However, the acidic pH 

mimicking the local environment in the late endosomes leads to a significant increase in 

adsorption of the complexes to zwitterionic lipid headgroups and decreases for anionic 

headgroups. These membrane–gene complex interactions may be responsible for the ability of the 

complexes to efficiently enter the intracellular environment through endocytosis and escape from 

the endosomes to effectively deliver their genetic payload.

Graphical abstract

1. INTRODUCTION

Efficient intracellular delivery of genetic material (DNA and RNAi) suffers from several 

bottlenecks. Unlike micromolecules that can enter the cell by passive diffusion or through 

specific channels, the larger size and anionic nature of the macromolecules prevent them 

from penetrating through the plasma membrane. As a result, most macromolecules enter the 

cell through the endocytosis mechanism.1,2 However, this process suffers from bottlenecks 

of its own, including effective cellular uptake as well as timely escape from the endosomal 

pathway to prevent enzymatic degradation of the nucleic acids in lysosomes.3–6 The plasma 

membranes as well as the membranes in the intracellular compartment serve as barriers that 

prevent penetration or escape of macromolecules and are the principal deterrents to efficient 

intracellular delivery.7,8 Subsequently, tremendous efforts have been made to develop gene 

vectors (both viral and nonviral) that can easily penetrate the plasma membrane as well as 

effectively avail of the cell’s intracellular transport mechanism to enable intracellular 

delivery of genetic material. Vector unpacking at the intracellular site is also a necessary step 

in this process.9 Viral vectors are highly efficient in this process, but safety concerns (e.g., 

immunogenicity) still persist.10–12 Nonviral vectors, on the other hand, offer several 

advantages over viral vectors, such as ease of synthesis, low cost, and low degree of 

immunogenicity. 12–14 Therefore, efficient design of nonviral vectors for intracellular gene 

delivery necessitates an understanding of the mechanisms through which the nonviral 

vectors can effectively trigger cellular uptake as well as escape from late endosomes to 

deliver their payload.
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The main structural component of the plasma membrane as well as the various 

compartments in the intracellular trafficking pathway is phospholipids. While the 

zwitterionic phosphatidylcholine (PC) headgroups make up the major phospholipid content 

of all eukaryotic cell membranes, anionic phospholipids such as phosphotidylserine (PS) are 

present in the inner leaflet of the plasma membrane as well as the lipid membranes that 

make the endosomes.7,15 Cell membranes also contain very small amounts of anionic 

phosphotidylglycerol (PG), while late endosomes are unique in their composition of bis-

(monoacylglycero)phosphate (BMP), which is a structural isomer of PG. In fact, compared 

to the outer leaflet of the cell membrane, the endosomes are significantly enriched in anionic 

lipids such as PS and BMP.16 In addition to the change in the lipid headgroup moieties, the 

intracellular pH also decreases along the endocytic pathway, from the early endosome to the 

lysosomes.15 Therefore, understanding the mechanisms of nonviral gene delivery vectors 

requires an understanding of their interactions with these biological barriers.

Noncovalent complexation of genetic material (e.g., DNA and siRNA) using polycations has 

received attention as potential nonviral gene vectors that can deliver larger genetic payloads 

at the required delivery site.12 Unfortunately, the most efficient polycations, such as 

polyethylenimine (PEI), are also the most toxic. Further, while high molecular weight 

polycations are often essential to condense larger genetic material such as plasma DNA 

(pDNA) into small particles, the increase in molecular weight often increases cytotoxicity as 

well.17 We and others have shown that the use of synthetic cell penetrating peptides (CPPs) 

is a potentially interesting method for condensation of genetic material as well as their 

delivery across the cell membrane.6,11,12,18–20 CPPs consist of low molecular weight 

cationic or amphiphilic sequences of about 30 residues.12,17,18,21 Since their discovery in the 

early 1990s, they have attracted a lot of attention as potential candidates for delivery of 

biomolecules to cells.12,22,23 In general, CPPs can be classified into three types, depending 

on their origin: natural CPPs (protein-derived) (e.g., TAT peptide), synthetic CPPs (e.g., 

polyarginine), and chimeric CPPs (e.g., transportan).12 Simple polyarginine or polylysine 

molecules influenced by a highly basic minimal transduction domain of the protein-derived 

TAT protein, typically consisting of nine amino acids (RKKRRQRRR), were shown to cross 

the plasma membrane even more readily than the TAT peptide.2,24 Because of the faith in 

“arginine’s magic”, several groups, including us, have previously reported on the ability of 

using these polypeptides as CPPs.25–27 It has also been shown that the membrane insertion 

potential of synthetic peptides is dependent on the positive charge on the CPPs interacting 

with anionic phospholipids within the membrane.28 Particularly, synthetic CPPs with 7–9 

amino acids have demonstrated the best cell penetration efficiency, and this efficiency has 

been found to go down as the residue sequence length is either increased or 

decreased.17,29,30 Further, we and others have shown that the presence of hydrophobic 

moieties, such as tryptophan, can also enhance phospholipid penetration.2,31 Particularly, the 

properties of the guanidyl group were extremely efficient in increasing the membrane 

penetration behavior of arginine polypeptides.25

Numerous studies have also demonstrated that adding calcium chloride (CaCl2) to CPP/

siRNA or pDNA complexes produced stable and small nanoparticles that improved the 

transfection efficiency of these gene complexes in vitro and in vivo.6,11,14,20,32 It was also 

found that adding 100 mM CaCl2 to the CPP/pDNA samples yielded the highest gene 
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expression compared to 50, 150, and 300 mM,17 possibly by enhancing their endosomal 

release before degradation by lysosomes.33,34 However, how does complexing CPPs with 

genetic material in the presence of CaCl2 impact their cell insertion potential has not been 

previously reported. While the calcium condensed CPP/pDNA complex uptake may be aided 

by endocytosis or cell penetration, which in turn involves interactions with specific cell 

membrane lipids or possibly interactions with membrane associated proteoglycans, the 

desirable goal of endosomal escape is typically destabilization of the endosomal membrane, 

to allow timely escape of genetic material.22,35–37 Therefore, understanding the mechanism 

of cell penetration (or cellular uptake) of these CPP-induced condensed complexes as well 

as the mechanisms of escape of these nonviral gene vectors from endosomal compartments 

is essential for designing efficient CPP/pDNA vectors.2,38,39

In order to better understand the stability of gene complexes and their interactions with 

phospholipid membranes in the endocytic pathway (plasma, endosome, and lysosome 

membranes), the mechanisms of interactions between the condensed gene complexes with 

phospholipid membranes forms the focus of this study. In particular, we report on the 

interactions of seven different gene complexes with model PC, PS, and PG phospholipid 

monolayers at two pHs (7.4 and 4.4). Based on previous studies, our choice of CPPs consists 

of four hydrophilic CPPs (i.e., dTAT, K9, R9, and RH9) and three amphiphilic arginine-rich 

peptides (RW9, RL9, and RA9) (Table 1). Positively charged synthetic polypeptides—

polyarginine R9 and polylysine K9—were used to study the effect of specific amino acids 

on gene complex formation and interaction with the plasma membrane. Arginine-rich CPPs 

where the arginine residues at positions 3, 4, and 7 are replaced with tryptophan, leucine, 

alanine, and histidine (RW9, RL9, RA9, and RH9) were used to study the effect of a 

combination of positively charged and hydrophobic residues on the insertion efficiency of 

the CPP/gene complexes.2 dTAT (double-TAT) is a natural HIV protein derived CPP that 

was used as a control. In our studies, unsaturated fatty acids with mixed alkyl chains were 

used as simple models of the phospholipid barriers. POPC monolayers were used as model 

zwitterionic monolayers, while POPS and POPG phospholipids were used as model anionic 

monolayers (Table 2) to study the effect of lipid headgroup charge density on the 

phospholipid insertion potential of gene complexes. One of the advantages of using model 

membranes is that their packing can be easily controlled and varied. Additionally, model 

membranes have previously been used to study the individual interactions of DNA as well as 

CPPs to better understand their mechanisms of interaction. The two pHs represent the 

extreme limits in the acidic nature of the environment in the endocytic pathway. Finally, 

since several previous in vitro and in vivo studies have shown that calcium improves the 

transfection efficiency of gene complexes, 6,11,14,17,20,32,40,41 here we also present the effect 

of the addition of calcium on the stability and membrane insertion potential of our gene 

complexes.

2. MATERIALS AND METHODS

2.1. Materials

Plasmid DNA (pDNA) encoding firefly luciferase (pGL3, 4818 bp) was obtained from 

Promega (Madison, WI). The pDNA purity level was determined by UV-spectroscopy and 
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agarose gel electrophoresis. dTAT (RKKRRQRRRHRRKKR; Mw = 2201.7 Da) peptide, K9 

(KKKKKKKKK; Mw = 1170.65 Da) peptide, R9 (RRRRRRRRR; Mw = 1422.74 Da) 

peptide, RH9 (RRHHRRHRR; Mw = 1365.62 Da) peptide, RA9 (RRA ARRARR; Mw = 

1167.41 Da) peptide, RL9 (RRLLRRLRR; Mw = 1293.68 Da) peptide, and RW9 

(RRWWRRWRR; Mw = 1512.83 Da) peptide were purchased from Biomatik Corporation 

(Cambridge, Ontario, Canada) (purity >95%). 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-

glycero-3 phosphocholine (sodium salt) (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-L-serine (sodium salt) (POPS), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

(1′-rac-glycerol) (sodium salt) (POPG) were purchased from Avanti Polar Lipids (Alabaster, 

AL) as organic mixtures in chloroform. Agarose (medium-EEO/protein electrophoresis 

grade) was purchased from Fisher Scientific. Bench Top DNA Ladder was purchased from 

Promega (Madison, WI). SYBR Green I Nucleic Acid Gel Stain was obtained from 

Invitrogen (Carlsbad, CA). Calcium chloride dehydrate (CaCl2·2H2O) was purchased from 

Fisher Scientific. Other organic chemicals used for this work was purchased from Fisher 

Scientific. Petri dishes (Falcon 1008, Becton-Dickinson Labware, Franklin Lakes, NJ) were 

purchased from Fisher Scientific. All samples and lipid mixtures were stored at −20 °C 

when not in use.

2.2. Methods

2.2.1. Preparation of CPP/PDNA/Ca2+ Complexes—CPP/pDNA complexes were 

prepared by adding 15 µL of CPPs solution (0.28 µg/µL) to 10 µL (0.1 µg/µL) of pDNA 

(TAE Buffer (1×) was used as a solution for DNA storage), followed by fast pipetting for 20 

s. At that point, 15 µL of CaCl2 of desired molarity (100 mM in most cases) was added and 

mixed by fast pipetting for a further 20 s. This process resulted in the formation of 

condensed complexes containing pDNA and the CPP. After preparing the gene complexes, 

they were stored at 4 °C for 15–20 min and then used for further analysis. The peptide-to-

lipid (P/L) molar ratio at an initial SP of 20 and 30 mN/m was 0.25.

2.2.2. Agarose Gel Electrophoresis—4 µL (1×) of Tris-acetate-EDTA (TAE) buffer 

was added to the solution containing the gene complexes of interest. EDTA interacts with 

the divalent metal ions in solution and thus inhibits metal-dependent nucleases. 4 µL of 

SYBR Green 1 (a highly sensitive DNA gel stain used for visualization of DNA in agarose 

or acrylamide gels) was mixed with the gene complexes. The mixture was well-mixed and 

stored at 4 °C for 15–20 min. After the storage, 7 µL of 6× DNA loading dye (dye used to 

prepare DNA markers and samples for loading on agarose gels) was added to allow visual 

tracking of DNA migration during electrophoresis. A 1 kb DNA ladder was used. The 

presence of glycerol ensures that the DNA in the ladder and sample forms a layer at the 

bottom of the well. The approximate mass of DNA in each of the bands is provided for 

approximating the mass of DNA in comparatively concentrated samples of similar size. The 

mixture solutions were loaded onto a 1% agarose gel and electrophoresed for 30 min at 110 

V.

2.2.3. Particle Size—The particle size (effective diameter (nm)) of CPP/pDNA complexes 

with calcium chloride was determined by dynamic light scattering (Brookhaven Instruments, 

Alhakamy et al. Page 5

Langmuir. Author manuscript; available in PMC 2017 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Holtsville, NY). All samples intended for particle size measurements were prepared using 

PBS at pH 7.4 and 4.4.

2.2.4. Zeta Potential—The zeta potentials of the complexes were measured by Zeta PALS 

dynamic light scattering (Brookhaven Instrument, Holtsville, NY). All samples intended for 

particle size measurements were prepared using PBS, Nuclease Free Water (NFW), and 

Serum Free Media (SFM). All samples intended for zeta-potential measurements were 

prepared using PBS at pH 7.4 and pH 4.4.

2.2.5. Langmuir Trough Experiments—The insertion potential of the different 

synthetic complexes and CPPs was measured using model phospholipid monolayers (PMs) 

containing different amounts of a zwitterionic (POPC) or negatively charged phospholipid 

(POPS, and POPG) at the air–PBS buffer interface. SP changes were recorded by a 

Wilhelmy plate sensor, which is part of the KSV-NIMA Langmuir trough purchased from 

Biolin Scientific, while Petri dishes (volume 4 mL, 35 × 10) were used as “mini-troughs” for 

the experiments. Insertion of the gene complexes and CPPs into pre-formed monoalyers was 

recorded in the presence of phospholipid membranes. A wet calibrated filter paper flag was 

dipped into this buffer solution and used as a probe to monitor changes in the surface 

pressure due to adsorption of surface active material. The phospholipid membranes were 

spread from chloroform solutions, on PBS subphase, at pH 7.4 and 4.4, using a Hamilton 

microsyringe (Hamilton Co., Reno, NV). The spreading phospholipid solvents were allowed 

to evaporate for 20 min prior to adding of the gene complexes (or free CPPs). The gene 

complexes (and free CPPs) aqueous solutions were injected underneath the surface of lipid 

membranes, and the changes in surface pressure with respect to time were measured 

immediately. Precaution was taken to ensure that the injection did not disrupt the 

phospholipid monolayer. Adsorption to a bare air/buffer interface was recorded for all the 

gene complexes (and free CPPs) studied here to ensure that the changes in the SP of the 

monolayers were due to interaction of the gene complexes (or free CPPs) with the cell 

membrane. Each experiment was run for 60 min at 22 ± 2 °C. All figures were normalized 

by subtraction of the control [the phospholipids (POPC, POPS, and POPG) without 

complexes or free CPPs] at pH 7.4 and 4.4 to ensure that the differences in the SP of the 

monolayers were due to interaction of complexes and peptides.

2.2.6. Statistical Analysis—Data were analyzed by using the GraphPad software. 

Statistical evaluation between the means of the data was performed using an unpaired t-test. 

One-way ANOVA, Tukey post test was used to analyze the differences when more than two 

data sets were compared. Each experiment was repeated three times (n = 3).

3. RESULTS AND DISCUSSION

3.1. Physical Characterization of the CPP/PDNA/Ca2+ Complexes

Two important characteristics of CPP/pDNA/Ca2+ complexes are their particle size and 

overall charge. Figure 1A illustrates the particle size of the seven CPP (dTAT, K9, R9, RH9, 

RA9, RL9, and RW9)/pDNA/Ca2+ complexes in PBS (ionic strength, 185 mM) at pH 7.4 

and 4.4. Overall, the particle size of the complexes was around 250 nm at pH 7.4 (with 

Alhakamy et al. Page 6

Langmuir. Author manuscript; available in PMC 2017 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relatively narrow polydispersity (<0.2)), irrespective of the CPP used, suggesting that the 

choice of CPP has little effect on the particle size at normal pH. Further, an increase in 

particle size was noted at low pH (4.4), compared to the physiological pH (7.4), suggesting 

that an acidic environment reverses the condensing effect of Ca2+. Moreover, a reduction in 

the photon counting rate (kilocounts per second; kcps), at the more acidic pH also supports 

the argument that these gene complexed may be partially dissociated or are no longer 

condensed at pHs that are relevant to the late endosomal or lysosomal environment. Such 

acidic pH-induced dissociation has previously been reported for DNA/calcium 

complexes.17,42 Figure 1B presents the zeta-potential of these gene complexes at normal and 

acidic pHs. We find that at the neutral pH the zeta-potential values are positive, although 

there are small differences in the individual values. This is possibly due to the charge on the 

CPPs making up the condensed gene complexes. The net positive zeta-potential of our 

condensed complexes verifies the cationic nature of the complexes and confirms that while 

there is a core of pDNA, the CPP, being in excess form the shell of these gene complexes. 

Figure 1B also shows that the net charge on the particles is switched when the pH is 

lowered, and the gene complexes become anionic or neutral. These observations confirm 

that a lowering of the environmental pH destabilized the noncovalently condensed pDNA 

complexes, allowing the pDNA to be exposed or released from the complex.

To further prove that at pH ~ 7.4 the pDNA is immobilized with the CPP to form complexes, 

we ran agarose gel electrophoresis assay for these complexes. Figure 2 illustrates the results 

of this assay for these complexes. Free pDNA was used as a control, while the leftmost 

column shows the molecular weight marker. When an electric field is applied across the 

cells, the appearance of different bands along the column corresponds to the migration of 

any free DNA. Our results show that most of the gene complexes completely immobilized 

the pDNA (no bands were observed during electrophoresis), except RA9 containing 

complexes, which looked slightly unstable.

3.2. Insertion of the CPP/PDNA/Ca2+ Complexes into Model Membranes

As cell membranes are complex systems, many model membranes have become commonly 

used for studying the membrane activity of various natural and synthetic compounds (e.g., 

peptides, drugs, and surfactants). Lipid monolayers are the most common biomimetic 

systems used to study the insertion of biomolecules into cell membranes. These monolayers 

can be considered as models for one leaflet of the cell membrane. These two-dimensional 

models show many advantages compared to other models (e.g., lipid vesicles). Some 

parameters (e.g., the composition of the subphase (pH and ionic strength), temperature, and 

the packing of the molecules) can be easily varied in a controlled manner allowing several 

biophysical studies of the phospholipid–gene complex interactions. However, one of the 

limitations of the monolayer system is that they represent only one leaflet of the cell 

membranes without any other components such as membrane proteins Therefore, they do 

not reflect the complexity of cell structures.2,43 Yet, these simple models are often used to 

understand the biophysical interactions governing molecular interactions in phospholipid 

membranes. For example, it is well-known that if the area of the monolayer is kept constant 

(constant area assay), adsorption followed by insertion of molecules into the hydrophobic 

region of phospholipid monolayers (tails) can cause a significant increase in the surface 

Alhakamy et al. Page 7

Langmuir. Author manuscript; available in PMC 2017 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pressure. On the other hand, particles that interact with the hydrophilic region (head groups) 

typically induce only slight changes in surface pressure.2,44 In order to understand the 

physical mechanisms of interactions of calcium condensed gene complexes with cell 

membranes in the endosomal environment, the membrane insertion potential of seven 

different complexes was recorded using two model phospholipid monolayers. Zwitterionic 

phospholipid (POPC) and anionic phospholipids (POPS and POPG) were used as simple 

mimics of the cell membranes. PC is the most common phospholipid in the cell membrane 

of eukaryotic cells,45 whereas anionic PS are normally found in the inner leaflet of the 

plasma membrane as well as endosomal membranes.7,46,47 Even though PG headgroups are 

present at 1–2% in the plasma membrane, they have often been used as model anionic lipids 

to study the function of CPP.7,46 More relevant to this study, BMP, an isomer of PG with the 

same headgroup charge,48,49 but differences in the position of the glycerol units on the 

phosphate moiety, is a unique anionic lipid found in significant fractions in the late 

endosomes.7,49,50 Since BMP was not stable as a monolayer in our experimental setup 

because of its high solubility and tendency to form vesicles,51–53 we chose to use PG 

headgroups as model lipid system that remains anionic at the pHs relevant to this study, in 

order to understand the interactions of the CPPs with anionic headgroups that are enriched in 

the late endosomes.48–50

The effect of hydrophobic interactions vs electrostatic interactions on the phospholipid 

membrane insertion potential of gene complexes was monitored using gene complexes that 

contained both hydrophilic and amphiphilic peptides. Additionally, we have studied the 

effect of pH of the cytoplasm/early endosome vs late endosome/lysosome on this insertion 

process by monitoring the changes in the surface pressures at two different pHs, 7.4 and 4.4. 

Therefore, by studying the insertion potential of these different cationic gene complexes into 

phospholipids at different pHs, we expect to develop a mechanistic understanding of 

interactions of the gene complexes with phospholipids in the endosomal pathway. While the 

insertion potential of the gene complexes was initially measured for different monolayer 

surface pressures (20–40 mN/m), our previous2 and current work indicate that the maximum 

difference in the results between the samples was monitored at a surface pressure of 20 

mN/m (Supporting Information Figure S1). Therefore, in this work, we report the insertion 

of our gene complexes into monolayers held at an initial surface pressure of 20 mN/m.

Figure 3 shows the changes in surface pressure of the three phospholipid monolayers as a 

function of time, following interactions with the seven complexes at pH 7.4. Figure 3A 

presents the change in surface pressure with time while Figure 3D presents the maximum 

change in surface pressure [Δsurface pressure, the maximum absolute value of the surface 

pressure recorded during the 60 min period] for each of the seven complexes, when injected 

below the POPC monolayer. The change in surface pressure with time is significantly higher 

for gene complexes condensed using the CPPs and calcium when compared with the control 

(pDNA alone), indicating that the gene complexes have significantly higher insertion 

efficiency into the model zwitterionic phospholipid monolayer, when compared with an 

equal amount of free pDNA. However, no significant difference in the surface pressure was 

observed between the different cationic gene complexes. Since the sizes of these condensed 

complexes are comparable, our results suggest that at physiological pH the gene complexes 

do not show significant insertion into the zwitterionic phospholipids. However, the 
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significant difference in the insertion potential of the complexes when compared to the 

change in surface pressure of the PC monolayer in the presence of free pDNA suggests that 

condensing the complex with CPPs enabled increased interactions of the genetic material 

with the plasma membrane. Further, this observation also confirms that the increased 

interactions in the presence of gene complexes cannot be associated with pDNA 

phospholipid monolayer interactions that occur in lipoplexes.54 To further verify that the 

increase in surface pressure was not due to the presence of cations, we also performed 

control experiments in the presence of 100 mM calcium chloride without any complexes, 

even though we do not expect such a high concentration of free ions (the calcium is added 

during the complexation process and is expected to associate with the pDNA/CPP complex). 

As shown in Figure 3A, the increase in surface pressure in the presence of gene complexes 

was highly significant, when compared with calcium chloride alone, verifying that the 

change in the surface pressure is due to phospholipid–gene complex interactions and not due 

to the presence of calcium ions.

Figures 3B and 3E show the recorded changes in the surface pressure for the seven 

complexes, when injected below the anionic POPS monolayer. Similarly, changes in the 

surface pressure with time and the maximum change in surface pressure, of a POPG 

monolayer, due to insertion of the seven complexes, are shown in Figure 3C,F. Our results 

demonstrated that for both anionic lipids studied here the increase in surface pressure with 

time was significantly higher for all the complexes, when compared with the free pDNA. 

Moreover, the amphiphilic RL9 and RW9 containing complexes demonstrated a significant 

increase in the surface pressure of the anionic phospholipid monolayer, when compared with 

the hydrophilic complexes. Therefore, Figure 3 provides conclusive evidence that gene 

complexes containing amphiphilic RL9 and RW9 peptides show enhanced insertion into 

anionic lipid monolayers at neutral pH.

We and others have previously shown that electrostatic interactions between CPP and 

phospholipids are enhanced by hydrophobic interactions, if the peptide is also able to 

penetrate the phospholipid membrane.2,55 To elucidate if this cooperative interaction is also 

true for our gene complexes, Figure 4 presents a comparison of the maximum change in 

surface pressure of each of the seven complexes with the three monolayers (POPC, POPS, 

and POPG) at pH 7.4. The hydrophilic, positively charged dTAT, K9, R9, and RH9 

containing gene complexes as well as the amphiphilic RA9 containing complex showed a 

slight increase in the maximum surface pressure change in the case of POPS monolayers, 

when compared to the POPC monolayers. However, unlike the gene complexes containing 

hydrophilic CPPS, the complexes composed of amphiphilic RW9 and RL9 peptides 

demonstrated a significantly higher increase in surface pressure, when they were injected 

below a POPS monolayer, compared to a POPC monolayer. Further, POPG showed the 

maximum increase in surface pressure for all the gene complexes. The overall increase in the 

insertion potential of gene complexes into anionic POPS and POPG phospholipids can be 

attributed to electrostatic interactions between the anionic phospholipid monolayers and the 

cationic gene complexes. However, the significant increase in surface pressure for anionic 

lipid monolayers in the presence of gene complexes containing RL9 and RW9 supports the 

idea that addition of hydrophobic amino acids potentially enhances the insertion potential of 

these complexes. On the basis of our results, we conclude that for the cationic gene 
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complexes studied here the initial surface activity of the complexes in the presence of 

anionic lipids is probably driven by electrostatic interactions between the charged amino 

acids and the anionic lipid headgroups, while the insertion is controlled by the hydrophobic 

nature of the tryptophan and leucine residues. Complexes containing RW9 present the 

highest insertion into the anionic lipids, possibly because of the strong hydrophobicity or the 

aromatic ring of tryptophan amino acids in RW9. Complexes with amphiphilic RA9 peptides 

do not follow this trend, possibly because of the weak hydrophobicity and the small size of 

the alanine amino acid, which prevents the complexes from penetrating deeper into the 

monolayer. Therefore, we conclude that calcium condensed gene complexes containing 

hydrophilic cationic peptides do not disrupt the phospholipid monolayers, but the presence 

of large hydrophobic amino acid moieties can increase the insertion potential of condensed 

gene complexes.

However, the difference in the maximum surface pressure of the anionic POPS and POPG 

lipids in the presence of the gene complexes cannot be explained by electrostatic or 

hydrophobic interactions. To understand the difference in the insertion into POPS and POPG 

monolayers, differences in the organization of the phospholipid headgroups should also be 

considered. Even though both POPS and POPG are anionic phospholipids, the dipole 

moment P−–N+ for the PS and PG headgroups are different. The polar PS headgroup has 

both a positive charge due to the NH3
+ and a negative charge due to the presence of COO− 

groups. As a result, the cationic gene complexes can interact with the phospholipid 

headgroup without significant insertion into the membrane. On the other hand, the polar PG 

headgroup is itself uncharged. The negative charge on PG is due to the phosphate moiety 

that binds the polar headgroup with the glycerol backbone. This implies that the gene 

complexes would have to insert deeper into the PG membranes to interact with the 

negatively charged phosphate moeity, which was indeed found to be the case.

3.3. Insertion of the CPP/PDNA/Ca2+ Complexes into POPC, POPS, and POPG PMs at 
Acidic pH

Cytoplasmic delivery of genetic material to subcellular targets can be achieved by initiating 

endosomal escape of the macromolecules and thus preventing their enzymatic degradation in 

the lysosome.56 One possible route of endosomal escape is via disruption of the endosomal 

membranes, which would result in leakage of the genetic payload.12,25 Since the 

transmembrane pH has been proposed to play a significant role in endosomal escape of 

peptides, we hypothesized that changes in the subphase pH (from a neutral pH in the plasma 

membrane to an acidic pH in endosomes) can also effect the interactions of our gene 

complexes with model phospholipid membranes.25 Since the pH decreases along the 

endocytic pathway from the early endosome (pH 6) via the late endosome (pH 5.0) to the 

lysosome (pH 4.5), we have chosen to study the effect of the most acidic pH on the 

penetration potential and stability of our CPP/pDNA complexes.15

Figure 5 shows the changes in surface pressure of a phospholipid monolayer as a function of 

time, following interactions with the seven complexes at a subphase pH of 4.4. Figure 5A 

represents the measured change in surface pressure with time while Figure 5D shows the 

maximum change in surface pressure that was measured for each of the complexes, when 
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injected below a POPC monolayer. We found that there was no statistically significant 

difference in the insertion potential of the gene complexes compared with pDNA. On the 

other hand, Figures 5B and 5E show that both the measured change in surface pressure with 

time and the maximum change in surface pressure are significantly higher for the gene 

complexes containing arginine based CPPs compared to the free pDNA, when injected 

below the POPS monolayers. The other complexes also exhibit higher surface activities 

compared to the free pDNA. Similarly, Figures 5C and 5F show that both the measured 

change in surface pressure with time and the maximum change in surface pressure of POPG 

monolayers is significantly higher for the gene complexes compared to the free pDNA, 

although the change is lower than for the POPS monolayers. In order to explore the role of 

electrostatics on the insertion potential of each gene complex into different phospholipid 

membranes at acidic subphase pH, Figure 6 presents a comparison of the maximum change 

in surface pressure of each of the seven complexes, when injected below POPC, POPS, or 

POPG monolayers at a subphase pH of 4.4. Further, Figure 7 presents a comparison of the 

maximum change in surface pressure of the seven complexes, when injected below POPC, 

POPS, or POPG monolayers at the two pHs, to develop a fundamental understanding of the 

effect of pH on the change in the surface pressure of different phospholipid monolayers. 

Complexes containing hydrophilic peptides show an increase in membrane insertion in a 

more acidic pH compared to neutral pH. However, as seen in Figure 7C, the gene complexes 

showed a reduced tendency to change the surface pressure when injected below POPG 

monolayers at a subphase pH of 4.4.

To interpret the differences in the pH-induced changes in the membrane insertion potential 

of our condensed CPP/pDNA complexes, we first discuss the effects of pH on the 

phospholipid headgroup charge. While the zwitterionic PC headgroups are stable at both 

pHs, the acidic environment can lower the relative charge on the anionic lipids. The POPS 

phospholipid has three pKas ~ 11.55, 5.5, and 2.6 (R–NH3, R–COOH, and R–H2PO, 

respectively), whereas the POPG phospholipid has one pKa ~ 3.5 (R2-HPO4) at an ionic 

strength of 0.1 M NaCl.57 Therefore, both PS and PG lipids undergo a decrease in the 

relative headgroup charge at lower pHs, although this effect is more pronounced for the PS 

monolayers. For the PS and PC monolayers, the net headgroup charge is zero (i.e., the lipid 

headgroups are zwitterionic) at a pH of 4.4, while the PG headgroup has a negative relative 

charge. Since the charge on the zwitterionic PC headgroup remains unaltered by a drop in 

the subphase pH, the increase in phospholipid insertion potential of the complexes at pH 4.4 

is unclear at this time. It can be attributed to the physical characteristics of the gene 

complexes at pH 4.4. Particle size analysis shows that the gene complexes become larger at 

the lower pH, while zeta-potential measurements demonstrate that the particles become 

neutral or anionic. Previous results with gold nanoparticles show that positively charged 

nanoparticles penetrate into a zwitterionic bilayer at a neutral pH, while negatively charged 

particles do not.58 Applying this knowledge to our system would imply that the gene 

complexes demonstrate a lowering of the surface pressure change, contrary to results 

presented here. Therefore, we conclude that the increase in the environmental acidity helps 

the ability of the gene complexes to penetrate the zwitterionic phospholipid monolayer by 

increasing the size of the complex. In the case of the PS phospholipid, a pure electrostatic 

interaction based argument would imply a decrease in the maxium surface pressure in the 
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acidic pH, which is contrary to the observed results. Therefore, on the basis of our results, 

we conclude that even for the PS lipids, the increased size of the gene complexes helps with 

their insertion potential. In fact, even for complexes that seem to dissociate at lower pHs 

(RA9 and RL9), a significant increase in the insertion was noted, further validating our 

conclusion that for phospholipid with a net neutral headgroup charge, unstable complexes or 

complexes with large size increase the insertion potential of the complex into phospholipids 

when compared with condensed complexes. However, the behavior of the complexes when 

interacting with the POPG lipids is possibly controlled by the electrostatic repulsion 

between the anionic gene complexes and the anionic lipid headgroup, which results in a 

decrease in the insertion potential into the POPG monolayers. It must be noted that while PG 

headgroups are not common in the late endosome membranes, late endosomes are 

characterized by an increase in the composition of anionic lipids including BMP, which is a 

structural isomer of PG. Our results imply that for the calcium condensed gene complexes 

studied here the enrichment of anionic lipids in the late endosome would prevent the 

insertion and escape of the genetic payload, but early endosomes rich in anionic lipids can 

enable endosomal escape and delivery of the genetic material in the cytosol.

To further understand if the insertion is due to the pDNA, the CPPs or both, we have also 

measured the changes in the surface pressure of the seven CPPs alone at pH 7.4 and 4.4, 

when injected below the POPC, POPS, and POPG monolayers (Supporting Information 

Figures S2 and S3). Our results are summarized in Figure 8, which presents a comparison of 

the maximum change in the SP of the seven complexes and the seven CPPs at pH 7.4 and 

4.4. Generally, the maximum change in surface pressure of the phospholipids was found to 

be higher for the gene complexes compared to the free CPPs when they were injected below 

the anionic phospholipids (i.e., POPS and POPG) (Figure 8B,C,E,F), particularly for the 

complexes containing amphiphilic peptides RW9 and RL9. On the other hand, no difference 

was noted when the different complexes were injected below the zwitterionic lipid (POPC) 

(Figure 8A,D). Since the total CPP concentration was kept constant in both the experiments 

(free CPPs vs condensed complexes), and we expect most of the CPP to exist as a condensed 

complex with the pDNA, the increase in the surface pressure of the phospholipids in the 

presence of gene complexes can be attributed to the presence of CPPs on the complexes.

Therefore, our results suggest that the mechanisms of interactions of gene complexes with 

phospholipid membranes during cellular uptake and intracellular delivery are determined by 

both the changes in the physical characteristics of the gene complexes and the phospholipid 

headgroup charge. Further, our results also confirm that among all the polypeptides used as 

CPPs, condensed complexes of pDNA with amphiphilic CPPs show the maximum 

membrane insertions into anionic phospholipids at normal pH. However, no difference is 

noted in the insertion potential of the seven peptides into zwitterionic POPC monolayers. A 

schematic of our proposed mechanism of gene complex action is shown in Figure 9. On the 

basis of our results, we propose that the CPP/pDNA complexes initially interact with the 

zwitterionic PC headgroups and trigger cellular uptake, regardless of the composition of the 

CPP. Once endocytosed, the complexes undergo a pH induced partial disassembly of the 

complex. This uncondensed gene complex induces changes in the membranes, possibly by 

interacting with the CPP, allowing the pDNA to escape into the cytosol. Surprisingly, we 

found that at the more acidic pH the insertion potential of the gene complexes did not 
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depend on the composition of the CPPs. Analysis of kinetics of adsorption of the complexes 

into different phospholipid systems will provide additional understanding of the nature of 

the adsorption and insertion of the complexes into different monolayer systems at neutral 

and acidic pHs and is the topic for a future publication. The findings described here make 

the noncovalently condensed gene complexes interesting candidates as nonviral gene 

delivery vectors. Future studies will focus on in vitro and in vivo performance of these gene 

delivery vectors.

4. CONCLUSION

Understanding the interactions of gene complexes with phospholipid membranes can be an 

important first step in predicting the membrane insertion efficiency of calcium condensed 

gene complexes containing CPPs and efficiently delivering genetic material to the cytosolic 

environment. In this study, phospholipid membranes POPC, POPS, and POPG have been 

used to study the membrane insertion of the seven CPP/pDNA/Ca2+ complexes, containing 

hydrophilic (i.e., dTAT, K9, R9, and RH9) and amphiphilic (i.e., RA9, RL9, and RW9) 

CPPs, at different pHs (pH 7.4 and 4.4). Our results showed that using CPPs with 

differences in the net charge and hydrophobicity did not alter their ability to form complexes 

with pDNA. In fact, the complexes had the same size at neutral pH. Further, the complexes 

were found to be cationic due to an excess of the CPP during the synthesis process. 

However, an increase in the acidity of the environment did cause an increase in the particle 

size, possibly because of partial dissociation of the gene complex, which also caused a 

decrease in the surface charge on the particles. Using Langmuir monolayers as our model 

phospholipid membranes, we also showed that there was no difference in the insertion 

potential of gene complexes of different composition, when interacting with a zwitterionic 

phospholipid at a neutral pH. However, when interacting with anionic phospholipid 

membranes, all complexes showed an increase in their insertion potential, although there 

was a significant difference in the membrane insertion potential of complexes containing 

amphiphilic CPPs. This suggests that while the initial interactions of our calcium condensed 

gene complexes with phospholipid membranes are facilitated by electrostatic interactions, 

the hydrophobic amino acids further facility membrane insertion. However, in more acidic 

environments such as those in the intracellular vesicles (endosomes/lysosomes) all gene 

complexes show a greater insertion into the POPC and POPS membranes, irrespective of the 

composition. Since both POPC and POPS are zwitterionic at the acidic pH, we conclude that 

the acidic pH induced an increase in the size of the gene complexes possibly due to a 

reversal of the condensing effect of Ca2+. This increase in the complex size may trigger the 

disturbance and even disruption of endosomal membranes, leading to escape of the genetic 

payload into the cytosol. In conclusion, the Langmuir monolayer technique can help to 

determine the type and degree of interaction of gene complexes with membrane systems. We 

believe that measuring the insertion potential of gene complexes into model membranes will 

serve as a screening method to test the potential insertion ability of gene complexes, before 

they are tested in cells or in more involved therapeutic situations. Our results also suggest 

that, overall, designing gene complexes with amphiphilic peptides may not necessarily 

demonstrate more transfection efficiency because of the differences in the insertion potential 

of the amphiphilic peptides at neutral and acidic pH, even though the amphiphilic peptides 

Alhakamy et al. Page 13

Langmuir. Author manuscript; available in PMC 2017 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have the potential to disrupt anionic membranes at neutral pH. However, additional 

experiments with in vitro cell assays are essential to obtain a complete understanding on the 

mechanism of action of the full transfection mechanism. Ultimately, our results will aid in 

the design of the next generation of CPP-based nonviral gene complexes and is a first step in 

our overall goal of using short synthetic CPPs for efficient intracellular delivery of nucleic 

acids. Further, our results also propose the potential of synthetic CPPs with hydrophobic 

amino acid sequences for use in designing antibacterial membranes, where the CPPs will 

interact with anionic PG headgroups and may enable membrane disruptions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Particle size of the seven CPPs (dTAT, K9, R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ 

complexes, which was measured in phosphate buffer saline and at pH 7.4 and 4.4. For 

missing data points, the diameter was undetectable. (B) Zeta-potentials of CPPs (dTAT, K9, 

R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ complexes in phosphate buffer saline and at pH 

7.4 and 4.4. Results are presented as mean ± SD (n = 3).
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Figure 2. 
Agarose gel electrophoresis study of the seven CPPs (dTAT, K9, R9, RH9, RA9, RL9, and 

RW9)/pDNA/Ca2+ complexes. “M” refers to DNA molecular weight marker.
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Figure 3. 
Changes in surface pressure as a function of time following injection of the seven CPPs 

(dTAT, K9, R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ complexes below POPC (A), POPS 

(B), and POPG (C) monolayers held at an initial surface pressure of 20 mN/m and at pH 7.4. 

The maximum change in surface pressure (plateau values) of the seven complexes when 

inserted below (D) POPC, (E) POPS, and (F) POPG monolayers. Results are presented as 

mean SD (n = 3) (***p < 0.0001, **p < 0.001, and *p < 0.05, one-way ANOVA, Tukey post 

test).
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Figure 4. 
Maximum change in the surface pressure (plateau values) following injection of the seven 

CPPs ((A) dTAT, (B) K9, (C) R9, (D) RH9, (E) RA9, (F) RL9, and (G) RW9)/pDNA/Ca2+ 

complexes below POPC, POPS, and POPG monolayers held at an initial pressure of 20 

mN/m and at pH 7.4. Results are presented as mean SD (n = 3) (***p < 0.0001 and **p < 

0.001, one-way ANOVA, Tukey post test).
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Figure 5. 
Changes in the surface pressure as a function of time following injection of the seven CPPs 

(dTAT, K9, R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ complexes below POPC (A), POPS 

(B), and POPG (C) monolayers held at an initial surface pressure of 20 mN/m and at pH 4.4. 

The maximum change in the surface pressure (plateau values) of the seven complexes upon 

interaction with (D) POPC, (E) POPS, and (F) POPG monolayers. Results are presented as 

mean SD (n = 3) (***p < 0.0001, **p < 0.001, and *p < 0.05, one-way ANOVA, Tukey post 

test).
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Figure 6. 
Maximum change in surface pressure (plateau values) following injection of the seven CPPs 

(((A) dTAT, (B) K9, (C) R9, (D) RH9, (E) RA9, (F) RL9, and (G) RW9)/pDNA/Ca2+ 

complexes below POPC, POPS, and POPG PMs held at an initial SP of 20 mN/m and at pH 

4.4. Results are presented as mean SD (n = 3) (***p < 0.0001 and **p < 0.001, one-way 

ANOVA, Tukey post test).
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Figure 7. 
Maximum change in surface pressure (plateau values) of (A) POPC, (B) POPS, and (C) 

POPG held at an initial SP of 20 mN/m and at pH 7.4 and 4.4. in the presence of the seven 

CPPs (dTAT, K9, R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ complexes. Results are 

presented as mean SD (n = 3).
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Figure 8. 
Maximum change in surface pressure (plateau values) of (A) POPC at pH 7.4, (B) POPS at 

pH 7.4, (C) POPG at pH 7.4, (D) POPC at pH 4.4, (E) POPS at pH 4.4, and (F) POPG at pH 

4.4 due to interactions with the seven CPPs (dTAT, K9, R9, RH9, RA9, RL9, and RW9) and 

the seven CPPs (dTAT, K9, R9, RH9, RA9, RL9, and RW9)/pDNA/Ca2+ complexes. The 

initial surface pressure of the monolayers was 20 mN/m. Results are presented as mean SD 

(n = 3).
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Figure 9. 
Schematic of our proposed mechanism of gene complex action at neutral pH (cytoplasm) 

and acidic pH (late endosome and lysosome).
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