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Abstract

Gap junction channels facilitate the intercellular exchange of ions and small molecules. While this 

process is critical to all multicellular organisms, the proteins that form gap junction channels are 

not conserved. Vertebrate gap junctions are formed by connexins, while invertebrate gap junctions 

are formed by innexins. Interestingly, vertebrates and lower chordates contain innexin homologs, 

the pannexins, which also form channels, but rarely (if ever) make intercellular channels. While 

the connexin and the innexin/pannexin polypeptides do not share significant sequence similarity, 

all three of these protein families share a similar membrane topology and some similarities in 

quaternary structure. This article is part of a Special Issue entitled: Gap Junction Proteins edited 

by Jean Claude Herve.
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1. Introduction

Intercellular communication through gap junction channels is critical for coordinating the 

functions of cells in the tissues of all multicellular organisms by allowing direct exchange of 

ions and small molecules (including second messengers like Ca2+, IP3 and cyclic nucleotides 

and oligonucleotides). Gap junction mediated coupling allows groups of cells to respond to a 

ligand synchronously, even when only a few cells express the ligand receptor. During 

development, gap junctions form communication compartments in which coupled cells 

differentiate together, while those that are not coupled acquire a different fate.

2. Connexins

In vertebrates, gap junctions are formed by members of a family of proteins that are called 

connexins (Cx). Twenty connexins are expressed in humans and in mice (Table 1). The 

corresponding genes are identified with a symbol starting with “GJ” (for gap junction), 

while the most commonly used protein nomenclature employs an abbreviation beginning 
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with “Cx” (for connexin) followed by a number corresponding to the molecular mass of the 

predicted polypeptide in kilodaltons [10]. The connexins form a closely related family 

exhibiting extensive amino acid identity and similarity within their transmembrane and 

extracellular domains. The similarities in their extracellular loops can be described by two 

connexin signatures (PS00407 and PS00408, http://prosite.expasy.org/PDOC00341). 

Differences and similarities in the connexin sequences have been used to define connexin 

subfamilies [7,30], and sequence comparisons between different species have been used to 

identify orthologs [18]. Currently, five connexin subfamilies are recognized (α, β, γ, δ, and 

ε or GJA, GJB, GJC, GJD, and GJE) (Table 1).

A wide range of genetic diseases have been mapped to mutations of the connexin encoding 

genes (including deafness, neuropathies, cataracts, skeletal abnormalities, and skin diseases) 

(reviewed in [9,31,37,38,46,48,53,55]). Connexins have sometimes been identified by 

abbreviations corresponding to these diseases, such as ODDD (oculodentodigital dysplasia), 

CMTX (X-linked Charcot-Marie-Tooth disease), and Erythrokeratoderma variabilis (EKV). 

Many of these abbreviations are included as synonyms in Table 1.

The ability of connexins to form intercellular channels is well documented in many different 

tissues and expression systems. Connexins can also form plasma membrane channels in 

unapposed cells [36]; these connexin “hemi-channels” have been implicated in a variety of 

physiological and pathological processes (reviewed in [47]).

3. Innexins

Cell-to-cell junctions and the process of direct intercellular communication are present even 

in some of the most primitive multicellular organisms [22,23,25,26]. Indeed, some of the 

first demonstrations of direct intercellular communication came from studies in invertebrates 

[22]. Although they perform similar functions to their vertebrate counterparts, invertebrate 

gap junctions are encoded by members of a very different gene family, the innexins 

(reviewed in [5,42]). The innexins do not exhibit significant sequence similarity to the 

connexins.

The innexins have been most extensively studied in model organisms like the fruit fly 

(Drosophila melanogaster), the nematode (Caenorhabditis elegans), and the medicinal leech 

(Hirudo verbana). Their members are listed in Tables 2–4. Unlike most of the connexin 

genes (which usually contain the full coding sequence in a single exon), several innexin 

genes contain the coding region in more than one exon. The number of introns can vary 

among members of the family (e.g., innexin genes from Hirudo verbana [28] and Drosophila 
melanogaster [51]). The presence of multiple introns within the DNA encoding the coding 

region allows the generation of different protein products through alternative RNA splicing 

(e.g., the Drosophila shak-B locus [17]). Interestingly, the Drosophila melanogaster inx2 
gene locus localizes in opposite orientation in the longest intron of the inx7 gene; this 

structural organization has been proposed to serve for reciprocal control of gene expression 

of these innexins [16].
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Like the connexins, the innexins are expressed with overlapping patterns allowing the 

formation of heteromeric hemichannels and heterotypic gap junction channels. Their wide 

expression in many different tissues reflects their involvement in many different cellular 

processes. Studies of innexins in invertebrates have particularly emphasized the importance 

of innexins in the nervous system. Many different innexins are expressed in the nervous 

system of invertebrates (at least 15 in the leech [28] and 8 in the octopus [2]). Mutations of 

some invertebrate innexins cause characteristic behavioral changes like shaking mutants in 

Drosophila melanogaster and uncoordinated mutants in Caenorhabditis elegans (reviewed in 

[42]). Innexins are differentially expressed during development [20]. The spatial and 

temporal expression differences may establish communication compartments that contribute 

to developmental patterning [45,54].

4. Pannexins

Surprisingly, genes and expressed transcripts with substantial sequence similarity to the 

invertebrate innexins have also been identified in vertebrates [35]. These genes and proteins 

are called pannexins [35]. Three different pannexins are expressed in human and mouse 

tissues (Table 5). For human PANX2, two mRNA variants have been reported that encode 

proteins with different C-terminal amino acids (loci, NM_001160300.1 and NM_052839.3).

Like the connexins, the pannexins form oligomeric polypeptide assemblies and traffic to the 

plasma membrane, where they can form channels that connect the cytoplasm to the 

extracellular space [13]. Although PANX1 can form functional gap junction channels when 

expressed in Xenopus oocytes [13], pannexins do not form intercellular channels in 

transfected mammalian cells [50].

Unlike the connexins, pannexins undergo glycosylation within their extracellular regions. 

This modification may be important for the targeting of pannexins to the plasma membrane 

[11,39]. Pannexin glycosylation may effectively impede cell-to-cell channel formation and 

regulate pannexin intermixing [40]. Some innexins may also be glycosylated; for example, 

two yellow fever mosquito (Aedes aegypti) innexins (AeInx3 and AeInx7) contain predicted 

N-glycosylation sites, and immunoblots of AeInx3 show multiple immunoreactive bands. 

This similarity to the pannexins suggests that some innexins might have other functional 

roles besides intercellular communication [15].

Pannexins have been implicated in several pathologies including cardiovascular diseases, 

inflammation, cancer and neuropathies [6,41,57]. Due to their wide expression in many 

tissues and organs, deleterious pannexin gene mutations might be expected. The only human 

gene mutation reported to date encodes a non-functional PANX1 variant that does not inhibit 

the function of wild type PANX1; it was found in a patient (homozygous for this allele) with 

disorders in several organs [49]. Investigations of pannexin-null mice have also implicated 

pannexins in contributing to protection from ischemic stroke injury [4,21], modulation of 

neuronal excitability and learning [43,44], bone development [27], narcotic withdrawal [14], 

and sleep-wake cycle regulation and behavior [29].
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5. Shared features of connexins, innexins, and pannexins

Despite their lack of amino acid sequence similarities, the connexins and the innexins/

pannexins share structural and functional commonalities. All of these genes encode 

polytopic membrane proteins that have similar topologies within the membrane (Fig. 1). 

They each contain four transmembrane domains with their N- and C-termini on the 

cytoplasmic side of the membrane, leading to the formation of two extracellular loops and 

one intracellular loop. The connexin topologies were originally predicted from hydropathy 

plots of the cloned sequences and supported by mapping of regions using site-directed 

antibodies [24,56]. Determination of the crystal structures of some connexins and innexins 

supported the topological models [32,33,34,52]. Studies confirm that connexins, pannexins 

and innexins form channels with similar quaternary structures [3,12,19,32,33,52]. However, 

while connexin hemi-gap junction channels contain 6 subunits regardless of the connexin 

isoform, innexin hemi-gap junction channels and pannexin channels can have 6 or 8 subunits 

depending on the isoform (e.g. C. elegans inx-6 forms octamers, rat Panx1 forms hexamers 

and rat Panx2 most likely forms octamers) [3,33,34].

The connexins, innexins and pannexins all contain cysteines in their extracellular loops, but 

they differ in the numbers of cysteines in each loop: connexins contain three, whereas 

innexins and pannexins contain two. The connexins, innexins and pannexins contain an 

invariant proline residue in the second transmembrane domain. This proline forms part of a 

motif (PXXXW) that is conserved between vertebrate pannexins and most innexins. The 

connexins, innexins, and pannexins are all multi-member families; within the families, 

sequence differences between members confer unique channel and regulatory properties.

Both connexins and pannexins participate in several processes including propagation of 

calcium waves, inflammation, memory consolidation and neurodegeneration. Knowledge of 

the sequences and structures of the connexins, pannexins, and innexins is facilitating 

elucidation of their individual, shared, and complementary roles in physiology and 

pathophysiology.
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Fig. 1. 
Membrane topology of a connexin/innexin/pannexin. Transmembrane domains are depicted 

as cylinders that span the plasma membrane (boundaries indicated by teal lines). NT, N-

terminus; CT, C-terminus.
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Table 1

The connexin protein and gene families in humans and mice.

Human Mouse

Gene
symbol

Protein
name

Synonyms Gene
symbol

Protein
name

GJB1 CX32 CMTX1, CMTX Gjb1 Cx32

GJB2 CX26 DFNB1, DFNA3, NSRD1 Gjb2 Cx26

GJB3 CX31 DFNA2, EKV Gjb3 Cx31

GJB4 CX30.3 Gjb4 Cx30.3

GJB5 CX31.1 Gjb5 Cx31.1

GJB6 CX30 DFNA3, ED2, EDH, HED Gjb6 Cx30

GJB7 CX25 – –

GJA1 CX43 ODDD, ODOD, SDTY3 Gja1 Cx43

GJA3 CX46 CZP3 Gja3 Cx46

GJA4 CX37 Gja4 Cx37

GJA5 CX40 Gja5 Cx40

– – Gja6 Cx33

GJA8 CX50 CAE1, CZP1, CAE Gja8 Cx50

GJA9 CX59 – –

GJA10 CX62 Gja10 Cx57

GJC1 CX45 Gjc1 Cx45

GJC2 CX47 SPG44 Gjc2 Cx47

GJC3 CX30.2/31.3 Gjc3 Cx29

GJD2 CX36 Gjd2 Cx36

GJD3 CX31.9 Gjd3 Cx30.2

GJD4 CX40.1 Gjd4 Cx39

Gje1 Cx23

Modified from Beyer and Berthoud [8] and from http://www.genenames.org/genefamilies/GJ. Cx has been generally used as an abbreviation for 
Connexin. Many of the synonyms refer to genetic diseases or syndromes linked to mutations of the connexins.
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Table 2

Drosophila melanogaster innexins.

Gene
symbol

Gene name Synonyms

inx2 Innexin 2 kropf, prp33, l(1)G0043, l(1)G0035, l(1)G0118

inx3 Innexin 3 Dm-Inx3, inx-3

inx5 Innexin 5

inx6 Innexin 6 prp6

inx7 Innexin 7 prp7

ogre Optic ganglion reduced 1(1)ogre, inx1

shakB Shaking B Pas, shak-B, R-9-29, shB, R9-29, inx8

zpg Zero population growth inx4

Modified from http://flybase.org/reports/FBgg0000112.html and based on Abascal and Zardoya [1]. These proteins are also identified as Passover 
protein homologs (http://www.membranetransport.org/other_family.php?fFID=Innexin&oOID=dmel1).

Biochim Biophys Acta. Author manuscript; available in PMC 2018 July 01.

http://flybase.org/reports/FBgg0000112.html
http://www.membranetransport.org/other_family.php?fFID=Innexin&oOID=dmel1


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Beyer and Berthoud Page 11

Table 3

Caenorhabditis elegans innexins.

Locus Sequence Synonyms

inx-1 C16E9.4 CELE_C16E9.4, opu-1, pcr55

inx-2 F08G12.10 CELE_F08G12.10, XL914, opu-2

inx-3 F22F4.2 opu-3, CELE_F22F4.2

inx-5 R09F10.4 CELE_R09F10.4, opu-5

inx-6 C36H8.2 CELE_C36H8.2, opu-6

inx-7 K02B2.4 CELE_K02B2.4, opu-7

inx-8 ZK792.2 opu-8, CELE_ZK792.2

inx-9 ZK792.3 opu-9, CELE_ZK792.3

inx-10 T18H9.5 opu-10, CELE_T18H9.5

inx-11 W04D2.3 CELE_W04D2.3, opu-11

inx-12 ZK770.3 opu-12, let-368, CELE_ZK770.3

inx-13 Y8G1A.2 CELE_Y8G1A.2, let-585, opu-13

inx-14 F07A5.1 CELE_F07A5.1, opu-14

inx-15 R12E2.9 opu-15, CELE_R12E2.9

inx-16 R12E2.5 CELE_R12E2.5, opu-16

inx-17 R12E2.4 opu-17, CELE_R12E2.4, 1E733

inx-18 C18H7.2 opu-18, CELE_C18H7.2

inx-19 T16H5.1 nsy-5, CELE_T16H5.1, opu-19

inx-20 T23H4.1 CELE_T23H4.1, opu-20

inx-21 Y47G6A.1 CELE_Y47G6A.1, opu-21

inx-22 Y47G6A.2 CELE_Y47G6A.2

unc-9 R12H7.1 CELE_R12H7.1

unc-7 R07D5.1 unc-124, unc-12, CELE_R07D5.1

eat-5 F13G3.8 CELE_F13G3.8

che-7 F26D11.10 inx-4, CELE_F26D11.10

Modified from http://www.wormbase.org/resources/gene_class/inx#01–10, http://www.wormbase.org/species/c_elegans/gene/
WBGene00006749#0-9g-3, http://www.wormbase.org/species/c_elegans/gene/WBGene00006747#0-9g-3, http://www.wormbase.org/species/
c_elegans/gene/WBGene00001136#0-9g-3, and http://www.wormbase.org/species/c_elegans/gene/WBGene00000488#0-9g-3.
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Table 4

Hirudo verbana innexins.

Symbol Name

inx1 Innexin 1

inx2 Innexin 2

inx3 Innexin 3

inx4 Innexin 4

inx5 Innexin 5

inx6 Innexin 6

inx7 Innexin 7

inx8 Innexin 8

inx9A Innexin 9A

inx9B Innexin 9B

inx10 Innexin 10

inx11A Innexin 11A

inx11B Innexin 11B

inx12 Innexin 12

inx13 Innexin 13

inx14 Innexin 14

inx15 Innexin 15

inx16 Innexin 16

inx17 Innexin 17

inx18 Innexin 18

inx19 Innexin 19

Based on Kandarian et al. [28].
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Table 5

Pannexins.

Symbol Name Synonyms

PANX1 Pannexin 1 MRS1, UNQ2529, PX1

PANX2 Pannexin 2 hPANX2, PX2

PANX3 Pannexin 3 Px3

Modified from http://www.genenames.org/cgi-bin/genefamilies/set/228 and http://www.genenames.org/genefamilies/PANX
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