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Abstract

Background—The Multiple Endocrine Neoplasia, type 1 (MEN1) locus encodes the nuclear 

tumor suppressor protein menin. MEN1 mutations frequently cause neuroendocrine tumors 

(NETs) such as gastrinomas, remarkable for their predominant duodenal location and local 

metastasis at the time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of 

MEN1 gastrinomas, which develop within submucosal Brunner’s glands. We show here that loss 

of menin in enteric glial cells induces gastrin expression.

Aim—To determine how menin regulates gastrin gene expression and induces the generation of 

submucosal gastrin-expressing cell hyperplasia.
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Methods—Primary enteric glial cultures were generated from the Villin-Cre:Men1FL/FL:Sst−/− 

mice with or without inhibition of gastric acid using omeprazole. In addition, primary enteric glial 

cells from wild type mice were treated with gastrin and were separated into nuclear and 

cytoplasmic fractions. Forskolin and H89 treatments were used to activate or inhibit protein kinase 

A activity. Immunoprecipitation with menin or ubiquitin was used to demonstrate posttranslational 

modification of menin. Primary glial cells were treated with Leptomycin b and MG132 to block 

nuclear export and proteasome activity, respectively.

Results—Gfap+ enteric glial cells expressed gastrin de novo through a feedforward PKA-

dependent mechanism. Gastrin-induced nuclear export of menin through Cckbr-mediated PKA 

activation. Once exported menin was ubiquitinated and degraded by the proteasome. Gfap and 

other enteric glial markers co-localized with gastrin in human duodenal gastrinomas.

Conclusion—Collectively, these results suggest that MEN1-associated gastrinomas, which 

develop in the submucosa might arise from enteric glial cells through hormone-dependent PKA 

signaling that abrogates menin function leading to hypergastrinemia and associated sequelae.
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Introduction

Menin is the protein product of the Multiple Endocrine Neoplasia 1 (MEN1) gene locus at 

11q13 and is a known tumor suppressor that contributes to the development of different 

endocrine tumors 1, 2. Germline mutations in MEN1 cause a clinical syndrome characterized 

by pituitary adenomas, hyperparathyroidism and foregut neuroendocrine tumors (NETs). 

MEN1 mutations are nonsense, missense or in-frame deletions distributed across the MEN1 
gene locus, invariably inactivating its function 3–5. Gastrin-secreting neuroendocrine tumors 

(gastrinomas) comprise one the most frequent MEN1-associated tumors and up to 60% show 

lymph node metastases at the time of diagnosis 6. Approximately 25–33% of MEN1 patients 

develop gastrinomas, which are small, multi-focal lesions present in Brunner’s glands 5, 

tubular structures that secrete mucus, growth factors and bicarbonate located within the 

submucosa of the proximal duodenum 7. Therefore, MEN1-based gastrinomas do not appear 

to develop from the intestinal epithelium but instead arise from glands located in the 

submucosa 8, 9. Less than 50% of MEN1 gastrinomas develop loss of heterozygosity (LOH) 

suggesting that other mechanisms contribute to loss of WT menin protein function 8, 10, 11. 

Although MEN1 is the locus most frequently mutated in the germline of subjects with 

pancreatic neuroendocrine tumors (pNETS) 12 and gastrinomas 8, deletion of Men1 in mice 

does not result in gastrinomas suggesting synergy with other gene loci 2, 13–16.

Given its putative tumor suppressor role in MEN1 gastrinomas, we previously established 

that menin suppresses the human gastrin gene (GAST) 17. Chromatin immunoprecipitation 

(ChiP) confirmed the presence of menin at JUND and Sp1 DNA binding sites within the 

proximal GAST promoter indicating direct regulation of gene expression 17, 18. We recently 

reported the first mouse model of a gut endocrine tumor generated by combining conditional 

deletion of the Men1 locus (Villin-Cre;Men1FL/FL) with deletion of somatostatin (Sst−/−) 
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and gastric acid suppression (omeprazole) to maximally induce gastrin 19. This approach 

resulted in gastric carcinoids, a tumor that develops from enterochromaffin-like (ECL) cells 

in response to hypergastrinemia 20. Furthermore, omeprazole treatment of these Men1ΔIEC; 

Sst−/− (OMS) mice increased their plasma gastrin levels to nearly 16-fold above the levels 

observed in wild type (WT) mice 20.

To determine whether duodenal gastrin also contributed to the hypergastrinemia as observed 

in MEN1 gastrinomas, the proximal duodenum was analyzed and found to contain gastrin-

expressing cells in the lamina propria of the OMS mice. We report here that these gastrin-

expressing cells co-localized with enteric glial cell markers and expressed gastrin in 

response to loss of menin protein in the cell nucleus.

Materials and Methods

Human samples

De-identified surgical samples of human gastrinoma from 1996 to 2007 were obtained from 

the Department of Pathology at the University of Michigan, Center for Tumor Biology Barts 

Cancer Institute, Queen Mary University, London and the Royal Liverpool University 

Hospital, Liverpool, UK and are listed in Table 1. Sample access was approved by 

University of Michigan IRB #HUM00115310.

Animals and Cell Culture

All animal experiments were approved by the University of Michigan’s Committee on the 

Use and Care of Animals. Men1ΔIEC; Sst−/
−; and Men1ΔIEC; Sst−/

− mice were generated as 

previously described 20. Mice were housed in a facility with access to food and water ad 

libitum. Experimental mice were fed omeprazole-laced chow (200 ppm, TestDiet, St. Louis, 

Missouri, USA) for 6 months to 1 year. Male and female mice were equivalently distributed 

across the control and treatment groups. STC-1 cells derived from a mouse intestinal tumor 

were cultured in DMEM (with glutamine, without pyruvate) with 10% FBS 21, 22.

Primary Glial Culture Isolation

Tissues from 2 mice were pooled to isolate duodenal enteric glia. The first 6–8 cm of the 

proximal duodenum was dissected and then flushed with DPBS (without Ca++ or Mg++). 

First, the longitudinal muscle/myenteric plexus (LMMP) attached to the submucosa was 

isolated and discarded as described previously 23. To remove the LMMP, the duodenum was 

threaded onto the opposing end of a cotton swab. A small incision was made vertically, and 

the underlying longitudinal muscle was teased away by applying gentle horizontal strokes 

using a cotton swab wetted with DPBS. This was continued from top to bottom until the 

longitudinal muscle was slowly separated from the circular muscle and then discarded. Next, 

the epithelium was removed by incubating the tissue twice in EDTA/HEPES/DPBS 

(5mM/10 mM) solution at 4°C for 10 min with vigorous shaking, until the residual solution 

remained almost clear. After the last incubation, remnant tissue was removed using a 40μm 

nylon cell strainer and then incubated in Cell Recovery Solution® (Corning) for 30 min at 

4°C with rocking. The cell suspension was vortexed briefly and spun at 2000g for 5 min. 

The pellet was re-suspended in DMEM/F12 medium supplemented with 10% FBS, 100 
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IU/mL penicillin, 100 μg/mL streptomycin, 20μg/mL gentamicin, and seeded in laminin and 

poly-D-lysine coated 6-well plate containing DMEM/F12 medium with 1% FBS, 10 μg/mL 

Glial Derived Neurotrophic Factor (GDNF), 100 IU/mL penicillin, 100 μg/mL streptomycin, 

and 20 μg/mL gentamicin. Cells attach by 6–8 hours and remain viable for 3–4 days.

Laser Capture Micro-dissection

About 8 μM thick frozen sections were mounted onto 2μM PEN membrane slides (Leica, 

Inc) for LCM. Slides were thawed for 15 minutes, fixed in pre-chilled 70% ethanol for 5 

minutes, and blocked with 20% serum for 10 minutes. Sections were incubated with gastrin 

antibody (1:50) for 30 minutes (RT), washed with 0.01% PBST, and incubated with Alexa 

Fluor conjugated secondary (1:200) for 15 minutes (RT). Slides were further washed with 

PBST, dehydrated with 70% ethanol (1 min), 100 % ethanol (1 min), and air-dried in the 

dark. Slides prepared as above were used for micro-dissection on the Leica LCM 

microscope (Leica LMD 7000, Software version V7.6) using the following parameters: 

power-35, aperture–32, speed–close to “Minimum”, specimen balance–<15, offset–130, 

head current – close to “More”, pulse frequency – Close to “less”. Micro-dissectates were 

collected in 0.5 mL PCR tubes (Leica) containing 50μL cold RIPA lysis buffer with protease 

and phosphatase inhibitors, then snap-frozen immediately. Proteins were extracted by 

sonicating the lysates (30 amp, two 30-second pulses separated by 10 second interval on ice) 

and spun at 10,000g for 15 minutes (4°C). A cutting area of ~400,000 (equivalent to ~40 

intact villi) was required to extract 25–75 ng of proteins to enable detection of target 

proteins.

Measurement of Gastrin in plasma, tissues, and cultures

Mice were fasted for 16 h before blood collection in heparin-coated tubes, and plasma was 

obtained by centrifugation at 5000g for 10 min (4°C). About 50 μL of the plasma was used 

for measuring gastrin levels using the Human/Mouse/Rat Gastrin-I Enzyme Immunoassay 

Kit (RayBiotech, Georgia, USA), per manufacturer’s instructions. Tissue gastrin was 

extracted by boiling 10–20 mg of tissue in 300 μL of deionized water and the supernatant 

was used for analyses as described above. For measuring the gastrin content of primary glial 

cultures, cultures were scraped into PBS, pelleted, and boiled in deionized water (volume 

equals 10 times the size of the pellet). The extract was spun briefly and the supernatant was 

used for gastrin measurements. Additional details are provided in Supplementary Materials.

Results

Gastrin-expressing cells identified in duodenal lamina propria

We previously showed that the OMS mice develop gastric carcinoids (GC) in the stomach 

corpus 20. Examination of the duodenums of these mice revealed numerous gastrin-positive 

cells in the lamina propria (LP-Gastrin+; Fig. 1A, B). LP-Gastrin+ cells almost disappeared 4 

months after withdrawal of OM, respectively (Fig. 1C). H&E analysis revealed misshapen 

villi and dilated lamina propria in the OMS mice that returned to normal 4 months after 

withdrawing OM (Supplemental Fig. 1A). The LP-gastrin+ cells in the OMS mice correlated 

with a 3-fold increase in tissue levels of gastrin peptide (Supplemental Fig. 1B, top panel), a 

50% increase in gastrin mRNA (Supplemental Fig. 1B, bottom panel) and a 3-fold increase 
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in plasma gastrin (Supplemental Fig. 1C), compared to untreated MenΔIEC; Sst−/− mice. In 

particular, mRNA increased 200% in isolated LP alone, compared to 50% in the epithelium 

(Supplemental Fig. 1D). Parallel changes occurred in the gastric antrum of OMS mice 

(Supplemental Fig. 1E). Gastrin mRNA was at least 30-fold higher in the duodenum 

compared to the jejunum, and was barely detectable in the ileum and pancreas of MenΔ IEC; 
Sst−/− mice (Supplemental Fig. 2A). Therefore, gastrin expression in the OMS mice 

increased in both the antrum and duodenum, but not in the jejunum, ileum, or pancreas. 

While the number of Gastrin (G) cells increased in the antral epithelium 20, the increase in 

gastrin-expressing cells in the duodenum occurred mainly in the submucosa. Ki67 

expression in G cells did not increase suggesting that expansion of gastrin+ cell numbers in 

both the antral and duodenal lamina propria was not due to increased proliferation 

(Supplemental Fig. 2B, C).

LP-Gastrin+ cells express enteric glial cell markers and secrete gastrin

To determine the type of cells expressing gastrin in the lamina propria, duodenal tissue from 

the OMS mice was stained with markers for epithelial (E-cadherin), neural (Pgp9.5), 

endothelial (Lyve-1) cells and myofibroblasts (Sma). The LP-gastrin+ cells were E-cadherin, 

Sma, Pgp9.5, and Lyve-1 negative, indicating that they did not originate from these cell 

types (Supplemental Fig. 2D, E). Primary glial cells isolated from the OMS mice that 

expressed gastrin were also negative for E-cadherin, Sma and Pgp9.5 (Supplemental Fig. 

3A). By contrast, glial markers 24, 25, i.e., glial fibrillary acidic protein (Gfap), S100b, p75, 

Sox10, and the endocrine marker chromogranin A (CgA) co-localized with gastrin in both 

the duodenal lamina propria (Fig. 1D–F, Supplemental Fig. 3B), and in glial cultures 

isolated from the tissue (Supplemental Fig. 3C). Enteric glial cells originate from the neural 

crest’, consistent with their presence in the lamina propria and submucosa of the gut 26. 

Cultures from untreated WT mice isolated using the same protocol were also enriched in 

glial cells (Gfap+, S100b+, Sox10+) but were negative for gastrin (Supplemental Fig. 3D). 

Using flow cytometry, we determined that 93 percent of the glial cultures generated from 

duodenums of the OMS mice were comprised of Gfap+ glial cells with negligible 

contamination from Pgp9.5+ neural cells, α Sma+ myofibroblasts, and E-cadherin+ 

epithelial cells (Supplemental Fig. 4A–D).

Gastrin is secreted from antral G cells during a meal in response to the neuropeptides 

gastrin-releasing peptide Grp or bombesin (Bmb) released from enteric neurons 27. 

Therefore to determine whether the gastrin-positive enteric glial cells secreted gastrin 

peptide in response to a secretogogue, glial cells isolated from the villus cores of the OMS 
mice were treated with Bmb. Bmb stimulated the secretion of gastrin peptide into the media 

(Supplemental Fig. 5A). By contrast, Bmb did not stimulate gastrin secretion from enteric 

glial cells isolated from untreated MenΔIEC; Sst−/− mice. To demonstrate that glial cells in 

the duodenal mucosa of OMS mice express bombesin receptors, duodenal tissues were co-

stained for GFAP and the Bombesin receptor 2 (BB2). We found that GFAP+ mucosal glia, 

and glia associated with submucosal myenteric plexi express BB2 (Supplemental Fig. 5B). 

Therefore, mucosal enteric glial cells from the OMS mice were capable of synthesizing and 

secreting the hormone gastrin.
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Appearance of LP-Gastrin+ cells in the OMS mice correlates with loss of nuclear Menin

Robust nuclear expression of menin was observed in the epithelium and lamina propria of 

C57 WT mice but was expectedly absent in the epithelium of MenΔIEC and untreated 

MenΔIEC; Sst−/− duodenal villi, due to the targeted deletion of Men1 using the VillinCre 

transgene (Fig. 2A). However, after OM treatment, menin protein expression in the lamina 

propria was suppressed without changes in mRNA (Fig. 2A, Supplemental Fig. 6A), which 

correlated with a dramatic increase in plasma gastrin levels (~700 pg/ml). Upon OM 

withdrawal for 4 months, menin expression in the lamina propria cells was restored (Fig. 

2A) and correlated with reduced plasma gastrin levels of 280 pg/ml (Supplemental Fig. 1C).

To directly assess changes in the villus cores, LP-Gastrin+ cells in the OMS mice were 

micro-dissected using laser-capture and proteins extracted were analyzed using western blot. 

Nearly undetectable levels of E-cadherin confirmed the absence of significant contamination 

from the epithelium (Supplemental Fig. 6B). The decrease in menin protein in the villus 

cores was observed only in the OMS mice, without changes in the levels of the glial 

markers, Gfap, S100b, and Sox10 consistent with changes in cell phenotype and not the 

number of glial cells (Supplemental Fig. 6B, C). These data confirmed that LP gastrin+ glial 

cells in the OMS mice have dramatically low menin expression. To determine whether 

menin loss in glial cells drives gastrin expression, we deleted menin in primary glial cultures 

generated from MenΔIEC mice using AdenoCre, and examined gastrin expression 

(Supplemental Fig. 7). The Cre recombinase protein was detected at an MOI as low as 1 

after 24 hours of infection (Supplemental Fig. 7A). Cre-mediated recombination effectively 

deleted menin in >95% of primary glial cells after 48 hours of infection (Supplemental Fig. 

7B). Deletion of menin led to the appearance of gastrin 24 hours later, which increased dose-

dependently as a function of the viral titer (Supplemental Figure 7C, D). A 4-fold increase in 

gastrin mRNA was also observed in Adeno-Cre infected cells (MOI 4) compared to 

uninfected cells (Supplemental Figure 7E). Taken together, these data demonstrate that 

deletion of menin in mucosal glial cells de-repress gastrin mRNA and subsequently induce 

protein expression. The Adenoviral infection did not affect the viability of primary glial cells 

(P = 0.227, Kruskal–Wallis test) as determined by MTT assay (Supplemental Figure 7F).

To better understand why menin in decreased glial cells in vivo, we next examined menin 

expression in glial cultures isolated from the untreated MenΔIEC;Sst−/− or OMS mice. We 

observed nuclear menin in enteric glial cells cultured from the untreated MenΔIEC;Sst−/− 

mice and loss of nuclear menin in the OMS mice (Fig. 2B) that coincided with gastrin 

peptide expression. Western blot analyses of menin expression in nuclear and cytoplasmic 

fractions of OMS cultures showed a 90% decrease in nuclear menin along with a slight 

increase in cytoplasmic menin (Fig. 2C). In contrast, OM treatment had no effect on menin 

protein levels in C57 WT mice. Therefore, hypergastrinemia in the OMS mice correlated 

with a decrease in nuclear menin levels.

Gastrin induces the nuclear translocation of Menin through CCKBR-mediated PKA 
activation

It is well established that gastrin stimulates the expression of its own receptor 20, 28, 29. 

Indeed, enteric glial cells isolated from the OMS mice exhibited 7-fold higher levels of 
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Cckbr, compared to those from WT or OM treated MenΔIEC mice (Fig. 2D, E). In addition, 

glial cells in their native environment within the duodenal mucosa express Cckbr receptors 

that are potentiated in the OMS mice. Importantly, Cckbr expression was also observed on 

epithelial cells (Supplemental Figure 8A, B). To test whether changes in menin protein 

required Cckbr activation, the glial cultures were treated with the gastrin receptor antagonist 

YM022. Gastrin-mediated reduction of nuclear menin was blocked by YM022 treatment 

(Fig. 2F, Supplemental Fig. 9A, B) demonstrating a requirement for Cckbr activation. Cckbr 

is typically associated with Gαsq/11, intracellular Ca2+ mobilization, and increased PKC, 

Erk, p38 or Jun kinase activity 30. Indeed, increased intracellular Ca2+ transients [iCa2+] was 

observed in cultured glial cells from OMS mice (Supplemental Fig. 10). Gastrin and CCK 

treatment led to 225% and 400% increase in [iCa2+], respectively (Supplemental Fig. 10A–

C). Gastrin induced increase in [iCa2+] was blocked by YM022 (Supplemental Fig. 10C, D), 

confirming that gastrin signaling in these glial cells is dependent on CCKBR. However, no 

change in nuclear menin levels was observed when the glial cultures were treated with PKC 

activator phorbol ester. Moreover, the PKC inhibitor Bis IV, or Erk inhibitor PD98059 

(Supplemental Fig. 11A, B, C,) respectively did not block gastrin induced nuclear 

translocation. Although other GPCRs stimulate PKA signaling 31, this pathway has not been 

reported for Cckbr. However, since Sst stimulates menin expression by inhibiting PKA 17, 

we considered the possibility that Sst deletion in the OMS mice reduces the threshold for 

PKA activation. To determine whether Cckbr activation correlated with elevated PKA 

activity in the OMS mice, the presence of phosphorylated PKA substrates was assessed and 

found to be significantly elevated (Fig. 3A). When PKA is active, the catalytic (PKA-cα) 

and regulatory subunits dissociate leading to the nuclear translocation of the catalytic 

subunit 32, 33. Indeed, a 3-fold increase in PKA-cα was observed in the nuclear fractions of 

glial cultures from OMS mice (Figs. 3B). In addition, PKA enzyme activity was 2-fold 

higher, compared to the untreated MenΔIEC; Sst−/− or C57BL/6 WT mice (Fig. 3C). Taken 

together, our data demonstrated that Cckbr activation in enteric glial cells induces the 

nuclear export of menin via PKA activation.

Next, we examined whether the changes observed in the OMS mice could be recapitulated 

by treating normal enteric glial cells with gastrin or forskolin, a PKA agonist. We observed 

that within 4h, 10μM forskolin or 20nM gastrin decreased levels of nuclear menin and 

increased cytoplasmic levels (Fig. 3D, E). A 70% decrease in nuclear menin along with 

robust increase in cytoplasmic menin was observed after 4 h of gastrin stimulation (Fig. 3F). 

Importantly, both PKA inhibitors H89 or KT blocked gastrin-mediated export of menin 

(Figs. 3D–F), confirming that gastrin induces the nuclear export of menin through PKA.

To study the fate of menin protein in the cytoplasm, enteric glial cells isolated from C57 WT 

mice were treated with increasing concentrations of gastrin peptide for 24h. In the absence 

of any treatment, menin protein was detected in the nucleus of the enteric glial cells 

(Supplemental Fig. 12A). Gastrin-induced export of menin from the nucleus peaked between 

4h and 8h (Supplemental Fig. 12B). By 24 hours, a significant loss of cytoplasmic menin 

was observed, suggesting that sustained gastrin stimulation is associated with loss of menin 

protein in these enteric glial cells.
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Gastrin induces menin ubiquitination and proteasomal degradation in the cytoplasm

To determine if nuclear export and proteasomal degradation accounted for decrease in 

menin, WT enteric glial cells were treated with gastrin peptide (20 nM) for 8 hours resulting 

in a 90% decrease in nuclear menin protein, which was completely blocked by pre-treating 

the cells with the nuclear export inhibitor Leptomycin B (LMB) (Fig. 4A, B; Supplemental 

Fig. 12C). Menin accumulated in the cytoplasm when the enteric glial cells were treated 

with gastrin in the presence of the proteasome inhibitor MG132 (Fig. 4A, B). In the presence 

of both LMB and MG132, menin levels in the cytoplasm were not significantly higher than 

treating with LMB alone, demonstrating that proteasomal degradation of menin occurred in 

the cytoplasm and not the nucleus (Fig. 4A, B; Supplemental Fig. 12C). Unlike nuclear 

menin, cytoplasmic menin appeared as a doublet when the cells were treated with MG132 

plus gastrin (Fig. 4B), which we subsequently determined is ubiquitinated menin protein 

(Ub-Menin). In glial cultures isolated from WT mice, nuclear menin did not co-localize with 

ubiquitin (Fig. 4C). By contrast, gastrin treatment induced the co-localization of ubiquitin 

with menin only in the cytoplasm, which was further enhanced by inhibiting the proteasome 

with MG132 (Fig. 4C). We concluded from these studies that the ubiquitin chain is added to 

menin in the cytoplasm after nuclear export.

To test directly whether menin is ubiquitinated prior to degradation, we performed a time 

course of menin ubiquitination by treating the STC-1 neuroendocrine cell line with gastrin 

±MG132. Cytoplasmic menin was immunoprecipitated and ubiquitin antibody was used to 

detect poly-ubiquitin chains (Poly-Ub) and ubiquitinated menin (Ub-Menin). As observed in 

the immunohistochemical analysis of primary enteric glial cultures, the addition of Ub to 

menin occurred within 2 h after treating the STC-1 cells with gastrin (Fig. 4D, E). Moreover, 

inhibiting proteasomal degradation with MG132 increased the quantity of Ub-Menin 

without changes in input (Fig. 4D, E). Cytoplasmic lysates showed two distinct menin 

immunoreactive bands in the presence of gastrin representing Ub-Menin and poly-Ub 

proteins (upper bands) (Fig. 4D). Blotting for menin after immunoprecipitating with poly-

Ub antibody detected Ub-Menin, which was also enhanced by MG132 treatment (Fig. 4E). 

Ubiquitin was not detected when menin was immunoprecipitated from nuclear extracts and 

vice versa (data not shown). Taken together, STC-1 the data showed that gastrin induces 

ubiquitination of menin prior to proteasomal-dependent degradation in the cytoplasm. To 

determine the half-life of WT menin protein in the absence and presence of gastrin, we 

performed a cycloheximide (CHX) chase experiment to block de novo protein synthesis. 

Prior studies demonstrated that WT menin is normally stable over at least 8 h 34. Performing 

the chase over 8 h showed that the level of menin protein in STC-1 cells is quite stable in the 

absence of gastrin. However, with gastrin treatment, the half-life of WT menin was about 3h 

(Fig. 4F), as reported for menin protein with missense mutations identified in human 

subjects 34, 35. Accelerated degradation of menin eventually led to induction of gastrin gene 

expression, reflected by a 2.5-fold increase in its mRNA in WT cultures after 72 hours of 

gastrin stimulation (Supplemental Fig. 12D). Thus, the nuclear export of menin occurred 

over several hours; while loss of menin from the cell occurred over days eventually leading 

to induction of gastrin gene expression.
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To test whether these mechanisms observed in the glial cultures was replicated in 

neuroendocrine cell lines, mouse proximal intestinal neuroendocrine cells, STC-1 were 

treated with gastrin. Gastrin treatment (20 nM, 24h) was associated with CCKBR activation, 

and the loss of nuclear menin that coincided with an increase in cytoplasmic menin (Fig. 5A, 

B). These effects were reversed 8 h after gastrin was removed from the media (“washout”, 

Fig. 5A, B), suggesting that CCKBR activation and menin export were mediated by gastrin. 

Gastrin treatment in the presence of YM022 and H-89 also reversed the observed effects, 

confirming that like glial cells, gastrin stimulation led to loss of menin in STC-1 cells, and 

was mediated via CCKBR and PKA activation (Fig. 5A, B). A time-dependent reduction in 

total menin was observed with gastrin treatment (Fig. 5C, D), that was blocked by YM022 

(Supplemental Fig. 13A, B), demonstrating that CCKBR activation was essential for menin 

degradation. Moreover, the effects on menin protein were not associated with changes in 

menin mRNA. Although gastrin had no significant effect on menin mRNA (Fig. 5E, 

Supplemental Fig. 13C), it did induce gastrin gene expression (Fig. 5F) after 60 hours of 

stimulation, which was effectively blocked by YM022 (Supplemental Fig. 13D), mimicking 

the effects observed in glial cultures. Furthermore, nuclear export inhibitor LMB 

significantly blocked gastrin-mediated nuclear export of menin and proteosomal degradation 

in the cytoplasm (Supplemental Fig. 14A–C). MG132 treatment led to appearance of 

ubiquitinated menin seen as doublet. In the absence of LMB menin was detected in the 

cytoplasm and subsequently degraded proteosomally, leading to de-repression of gastrin 

mRNA (Supplemental Fig. 14D). Like primary glial cells no changes were observed in 

menin mRNA in response to gastrin in the presence of LMB and/or MG132 (Supplemental 

Fig. 14E). Thus, gastrin stimulation triggers a CCKBR-dependent feed-forward loop that 

eventually leads to its induction, a novel mechanism that could be applied to the 

pathogenesis of neuroendocrine tumors.

Human MEN1 gastrinomas express enteric glial markers and no nuclear menin

Normal human duodenum expresses GFAP in the lamina propria (Fig. 6A). Moreover, 

menin is expressed in the nucleus (Fig. 6B). Gastrinomas from 14 different human subjects 

were examined and demonstrated that most of the duodenal gastrinomas were positive for 

GFAP, SOX10, S100B, and p75 (Fig. 6C, Supplemental Fig. 15A, B). The lymph node 

gastrinomas were also positive for GFAP (Fig. 6D) but only 1 out of 8 pancreatic 

gastrinomas expressed GFAP+ (Fig. 6E, Table 1). Gastrin+ cell clusters showed robust 

CCKBR expression (Supplemental Fig. 15C), compared to normal duodenal tissues. 

Importantly, menin expression in the gastrinomas was cytoplasmic (Fig. 6, Table 1). Thus, 

duodenal gastrinomas exhibited neural crest markers, suggesting that these submucosal 

lesions might originate from enteric glial cells. We speculate that gastrin-induced CCKBR 

upregulation drives menin to the cytoplasm in these human tumors, thereby de-repressing 

gastrin and driving its feed-forward induction.

Collectively, our data demonstrate that gastrin induced nuclear export of menin via CCKBR-

PKA signaling leads to its degradation in the cytoplasm. Loss of menin protein leads to de-

repression of the gastrin gene, subsequently accelerating loss of menin and further induction 

of gastrin (Fig. 6F).
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Discussion

Menin functions as a tumor suppressor in neuroendocrine tumors, including gastrinomas 36. 

Accordingly, we previously showed that modulating menin levels directly regulates gastrin 

gene expression through JUND in cell lines 17, 18. However, deleting Men1 from the 

intestinal epithelium does not induce gastrinomas, suggesting that modulating additional loci 

restricted to the spectrum of tissues developing NETs contribute to the neoplastic 

transformation of gastrin-expressing neuroendocrine cells 2, 13–15. In addition, most 

gastrinomas do not display LOH 8, 10, 11. This long-standing observation provides additional 

evidence supporting the likelihood that loss of menin function occurs by mechanisms other 

than by gene deletion 37. Kloppel et al reported that hyperplastic G cells within the mucosa, 

lamina propria and Brunner’s glands of the proximal duodenum are the precursor lesions 

from which multi-focal MEN1 gastrinomas develop 5. Moreover chronic use of PPIs or 

Helicobacter –induced atrophic gastritis has been reported to increase the occurrence of non-

syndromic duodenal gastrinomas, implicating a possible role for hormonal conditions or the 

foregut microenvironment to support neuroendocrine oncogenesis 38, 39. However, due to 

their small size, scattered location and lack of experimental models, extensive mechanistic 

analysis of these tumors has been hampered. We developed a mouse model that closely 

mimics the early stages of MEN1 gastrinomas, e.g., G cell hyperplasia, hypergastrinemia 

and gastric carcinoids, by conditionally deleting epithelial Men1 on a Sst−/− genetic 

background 20. When these mice were placed on the acid suppressing PPI omeprazole, 

enteric glial cells expressed gastrin coincidently with the nuclear export of menin.

Our results reported here show that Gfap+ enteric glial cells expressed gastrin through a 

ligand-receptor mediated process, demonstrating that changes in the microenvironment of 

these cells is sufficient to decrease nuclear menin and induce gastrin gene expression. 

Moreover, our findings in mice raise the novel idea that these submucosal gastrin-producing 

tumors in the duodenum might arise from GFAP+ enteric glial cells. In MEN1 gastrinomas, 

subjects presumably carry one non-functional MEN1 allele and are haploinsufficient. 

Reduced levels of menin protein might be sufficient for enteric glial cells expressing the 

gastrin receptor to respond to modest changes in circulating gastrin that builds over time to 

create a feedforward mechanism sustaining the nuclear export of menin and chronic de-

repression of the GAST promoter.

Gastrin also stimulates the expression of its own receptor (CCKBR), which serves to further 

amplify CCKBR signaling in receptive cell populations 29. In the OMS mice gastrin directly 

stimulated PKA signaling in Gfap+ enteric glial cells, and subsequently induced the nuclear 

export of menin to the cytoplasm where it was ubiquitinated and degraded by the 

proteasome. GFAP is an intermediate filament protein expressed in CNS astrocytes and 

related lineages such as enteric glia, where in the small intestine they regulate barrier 

function 40. Moreover, GFAP binds and sequesters menin in the cytoplasm during the 

S→G2 phase of the cell cycle 41. Examining the expression of GFAP in human gastrinomas 

revealed that these submucosal duodenal tumors are positive for this enteric glial marker 

suggesting that these tumors could arise from enteric glial cells and not enteroendocrine cell 

populations residing in the epithelium. Although the intestinal Lgr5+ stem cell at the crypt 

base is the origin of enteroendocrine cells 42, 43, this does not preclude the possibility that 
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under defined conditions other cells acquire the ability to express gastrointestinal peptides. 

Indeed, a subset of enteric glial cells exhibits stem cell properties 44. Accordingly, we 

suggest that the enteric glial cell population acquires the ability to express gastrin in 

response to signals from the microenvironment inducing PKA signaling and the nuclear 

export of menin. Gastrinomas overexpress somatostatin receptors e.g., SSTR2, permitting 

their diagnosis and treatment with somatostatin analogues 45, which presumably would 

suppress elevated PKA activity in the tumors. Although the secretin stimulation test used to 

diagnose gastrinomas is imperfect 46, the secretin receptor is coupled to heterotrimeric G 

proteins that stimulate adenylate cyclase, increase cAMP and activate PKA 32, 47. Thus PKA 

signaling appears to play a central role in the biology of gastrinomas akin to our observed 

regulation of gastrin in enteric glial cells.

In summary, we report a mouse model reminiscent of the early changes observed in MEN1-

associated duodenal gastrinomas, suggesting their origin from enteric glial cells. 

Feedforward gastrin signaling in these haploinsufficient cells would abolish residual menin 

protein providing an alternative to genomic silencing as the mechanism for tumor 

development. It remains to be seen whether chronic atrophic gastritis or PPIs affects 

duodenal tumor growth in MEN1 patients, considering that there are anecdotal reports that 

low gastric acidity predispose subjects to non-syndromic gastrinomas 38.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Men1ΔIEC VillinCre;Men1FL/FL

Sst−/− somatostatin null

OMS Omeprazole-treated Men1ΔIEC;Sst−/−

GFAP glial fibrillary acidic protein

PKA protein kinase A

PKC protein kinase C

LOH loss of heterozygosity

PPI proton pump inhibitor

GAST gastrin

Sundaresan et al. Page 11

Gastroenterology. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Agarwal SK, Kester MB, Debelenko LV, et al. Germline mutations of the MEN1 gene in familial 
multiple endocrine neoplasia type 1 and related states. Hum Mol Genet. 1997; 6:1169–75. 
[PubMed: 9215689] 

2. Biondi CA, Gartside MG, Waring P, et al. Conditional inactivation of the MEN1 gene leads to 
pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol 
Cell Biol. 2004; 24:3125–31. [PubMed: 15060136] 

3. Emmert-Buck MR, Lubensky IA, Dong Q, et al. Localization of the multiple endocrine neoplasia 
type I (MEN1) gene based on tumor loss of heterozygosity analysis. Cancer Res. 1997; 57:1855–8. 
[PubMed: 9157974] 

4. Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations 
reported in the first decade following identification of the gene. Hum Mutat. 2007; 29:22–32.

5. Anlauf M, Perren A, Meyer CL, et al. Precursor lesions in patients with multiple endocrine 
neoplasia type 1-associated duodenal gastrinomas. Gastroenterology. 2005; 128:1187–98. [PubMed: 
15887103] 

6. Vanoli A, La Rosa S, Klersy C, et al. Four Neuroendocrine Tumor Types and Neuroendocrine 
Carcinoma of the Duodenum: Analysis of 203 Cases. Neuroendocrinology. 2017; 104:112–125. 
[PubMed: 26910321] 

7. Krause WJ. Brunner’s glands: a structural, histochemical and pathological profile. Prog Histochem 
Cytochem. 2000; 35:259–367. [PubMed: 11148980] 

8. Anlauf M, Perren A, Henopp T, et al. Allelic deletion of the MEN1 gene in duodenal gastrin and 
somatostatin cell neoplasms and their precursor lesions. Gut. 2007; 56:637–44. [PubMed: 
17135306] 

9. Rosentraeger MJ, Garbrecht N, Anlauf M, et al. Syndromic versus non-syndromic sporadic gastrin-
producing neuroendocrine tumors of the duodenum: comparison of pathological features and 
biological behavior. Virchows Arch. 2016; 468:277–87. [PubMed: 26649731] 

10. Zhuang Z, Vortmeyer AO, Pack S, et al. Somatic mutations of the MEN1 tumor suppressor gene in 
sporadic gastrinomas and insulinomas. Cancer Res. 1997; 57:4682–4686. [PubMed: 9354421] 

11. Debelenko LV, Zhuang Z, Emmert-Buck MR, et al. Allelic deletions on chromosome 11q13 in 
multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine 
tumors. Cancer Res. 1997; 57:2238–43. [PubMed: 9187127] 

12. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently 
altered in pancreatic neuroendocrine tumors. Science. 2011; 331:1199–203. [PubMed: 21252315] 

13. Scacheri PC, Crabtree JS, Kennedy AL, et al. Homozygous loss of menin is well tolerated in liver, 
a tissue not affected in MEN1. Mamm Genome. 2004; 15:872–7. [PubMed: 15672591] 

14. Crabtree JS, Scacheri PC, Ward JM, et al. A mouse model of multiple endocrine neoplasia, type 1, 
develops multiple endocrine tumors. Proc Natl Acad Sci U S A. 2001; 98:1118–23. [PubMed: 
11158604] 

15. Veniaminova NA, Hayes MM, Varney JM, et al. Conditional Deletion of Menin Results in Antral G 
Cell Hyperplasia and Hypergastrinemia. Am J Physiol Gastrointest Liver Physiol. 2012

16. Wiedemann T, Pellegata NS. Animal models of multiple endocrine neoplasia. Mol Cell Endocrinol. 
2016; 421:49–59. [PubMed: 26184857] 

17. Mensah-Osman E, Zavros Y, Merchant JL. Somatostatin stimulates menin gene expression by 
inhibiting protein kinase A. Am J Physiol Gastrointest Liver Physiol. 2008; 295:G843–54. 
[PubMed: 18755809] 

18. Huang J, Gurung B, Wan B, et al. The same pocket in menin binds both MLL and JUND but has 
opposite effects on transcription. Nature. 2012; 482:542–6. [PubMed: 22327296] 

19. Mensah-Osman EJ, Veniaminova NA, Merchant JL. Menin and JunD regulate gastrin gene 
expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol. 2011; 
301:G783–90. [PubMed: 21852362] 

20. Sundaresan S, Kang AJ, Hayes MM, et al. Deletion of Men1 and somatostatin induces 
hypergastrinemia and gastric carcinoids. Gut. 2016

Sundaresan et al. Page 12

Gastroenterology. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Rindi G, Grant SG, Yiangou Y, et al. Development of neuroendocrine tumors in the gastrointestinal 
tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol. 1990; 136:1349–
1363. [PubMed: 2162628] 

22. Grant SG, Seidman I, Hanahan D, et al. Early invasiveness characterizes metastatic carcinoid 
tumors in transgenic mice. Cancer Res. 1991; 51:4917–23. [PubMed: 1654206] 

23. Smith TH, Ngwainmbi J, Grider JR, et al. An in-vitro preparation of isolated enteric neurons and 
glia from the myenteric plexus of the adult mouse. J Vis Exp. 2013

24. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament 
system in diseases of the central nervous system. Curr Opin Cell Biol. 2015; 32:121–30. [PubMed: 
25726916] 

25. Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Invest. 2015; 
125:918–25. [PubMed: 25689252] 

26. de Coelho-Aguiar JM, Bon-Frauches AC, Gomes AL, et al. The enteric glia: identity and functions. 
Glia. 2015; 63:921–35. [PubMed: 25703790] 

27. Delle Fave G, Kohn A, de Magistris L, et al. Effect of bombesin-stimulated gastrin on gastric acid 
secretion in man. Life Sci. 1980; 27:993–9. [PubMed: 7432100] 

28. Kovac S, Xiao L, Shulkes A, et al. Gastrin increases its own synthesis in gastrointestinal cancer 
cells via the CCK2 receptor. FEBS Lett. 2010; 584:4413–8. [PubMed: 20932834] 

29. Ashurst HL, Varro A, Dimaline R. Regulation of mammalian gastrin/CCK receptor (CCK2R) 
expression in vitro and in vivo. Exp Physiol. 2008; 93:223–36. [PubMed: 17933865] 

30. Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev. 2006; 
86:805–47. [PubMed: 16816139] 

31. Brinks HL, Eckhart AD. Regulation of GPCR signaling in hypertension. Biochim Biophys Acta. 
2010; 1802:1268–75. [PubMed: 20060896] 

32. Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in 
the adult nervous system. Neurosci Lett. 2016

33. Calebiro D, Bathon K, Weigand I. Mechanisms of Aberrant PKA Activation by Calpha Subunit 
Mutations. Horm Metab Res. 2016

34. Yaguchi H, Ohkura N, Takahashi M, et al. Menin missense mutants associated with multiple 
endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol Cell 
Biol. 2004; 24:6569–80. [PubMed: 15254225] 

35. Canaff L, Vanbellinghen JF, Kanazawa I, et al. Menin missense mutants encoded by the MEN1 
gene that are targeted to the proteasome: restoration of expression and activity by CHIP siRNA. J 
Clin Endocrinol Metab. 2012; 97:E282–91. [PubMed: 22090276] 

36. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional Cloning of the Gene for Multiple 
Endocrine Neoplasia-Type1. Science. 1997; 276:404–407. [PubMed: 9103196] 

37. Pritchard DM. Pathogenesis of gastrinomas associated with multiple endocrine neoplasia type 1. 
Gut. 2007; 56:606–7. [PubMed: 17440178] 

38. Merchant SH, VanderJagt T, Lathrop S, et al. Sporadic duodenal bulb gastrin-cell tumors: 
association with Helicobacter pylori gastritis and long-term use of proton pump inhibitors. Am J 
Surg Pathol. 2006; 30:1581–7. [PubMed: 17122515] 

39. Eyal A, Sueissa A, Braun E, et al. From hypomagnesaemia to Zollinger-Ellison syndrome: an 
adverse effect of a proton pump inhibitor. BMJ Case Rep. 2014; 2014

40. Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and 
inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007; 132:1344–58. [PubMed: 
17408650] 

41. Lopez-Egido J, Cunningham J, Berg M, et al. Menin’s interaction with glial fibrillary acidic 
protein and vimentin suggests a role for the intermediate filament network in regulating menin 
activity. Exp Cell Res. 2002; 278:175–83. [PubMed: 12169273] 

42. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by 
marker gene Lgr5. Nature. 2007; 449:1003–7. [PubMed: 17934449] 

43. Andrew A, Kramer B, Rawdon BB. The origin of gut and pancreatic neuroendocrine (APUD) 
cells--the last word? J Pathol. 1998; 186:117–8. [PubMed: 9924424] 

Sundaresan et al. Page 13

Gastroenterology. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Gershon MD. Behind an enteric neuron there may lie a glial cell. J Clin Invest. 2011; 121:3386–9. 
[PubMed: 21865648] 

45. Krenning EP, Bakker WH, Breeman WA, et al. Localisation of endocrine-related tumours with 
radioiodinated analogue of somatostatin. Lancet. 1989; 1:242–4. [PubMed: 2563413] 

46. Shah P, Singh MH, Yang YX, et al. Hypochlorhydria and achlorhydria are associated with false-
positive secretin stimulation testing for Zollinger-Ellison syndrome. Pancreas. 2013; 42:932–6. 
[PubMed: 23851430] 

47. Ulrich CD 2nd, Holtmann M, Miller LJ. Secretin and vasoactive intestinal peptide receptors: 
members of a unique family of G protein-coupled receptors. Gastroenterology. 1998; 114:382–97. 
[PubMed: 9453500] 

Sundaresan et al. Page 14

Gastroenterology. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Gastrin-positive cells in the mucosal enteric glia of OMS mice
(A) Immunofluorescent (IF) staining of gastrin and E-cadherin in duodenums of untreated 

Men1ΔIEC;Sst−/− mice, Men1ΔIEC;Sst−/− mice treated with (B) OM (OMS) for 6 months and 

(C) 4 months after withdrawal of OM (WD). (D–F) IF staining for gastrin and (D) Gfap, (E) 
S100b, and (F) p75 in duodenums of OMS mice. Scale bars: (A–C) - 50 μm, insets - 20μm, 

(D–F) - 50 μm, insets - 20 μm.
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Figure 2. Gastrin induces nuclear export of menin via CCKBR activation
(A) Left to right, IF staining of menin in duodenums of omeprazole (OM) treated C57 WT, 

Men1Δ IEC mice, untreated Men1ΔIEC;Sst−/−, and OMS mice. Far right panel, 4 months after 

withdrawal (WD) of OM from OMS mice. (B) IF staining of menin and gastrin in glial 

cultures isolated from duodenal lamina propria of untreated Men1ΔIEC;Sst−/− and OMS 
mice. (C) Representative blots showing menin expression (top) in total cell lysates (β-actin 

loading control), nuclear (Sp1 loading control), and cytoplasmic fractions (GAPDH loading 

control) of glial cultures from mice; quantitation of menin expression (bottom) in nuclear 

and cytoplasmic fractions of glial cultures, expressed as integrated band intensities 

normalized to loading controls (n=7–9 mice). (D) IF staining of gastrin and CCKBR in glial 

cultures from untreated Men1ΔIEC;Sst−/− (−OM, top panel) and OMS mice (+OM, bottom 

panel) mice. (E) Representative blot (top) and quantitation of CCKBR expression (bottom) 
normalized to GAPDH in glial cultures isolated from mice (n=7–9 mice). (F) Representative 

blot showing menin expression in nuclear (Sp1 loading control) and cytoplasmic fractions 

(Gapdh loading control) of glial cultures from untreated C57 WT mice treated without or 

with 20 nM gastrin in the presence or absence of YM022. Data shown are the Median ± 

Interquartile Range of median. *** p< 0.001, **** p< 0.0001. Scale bars: (A) - 50 μm, 

(inset in A) – 20 μm, (B, E) – 20 μm.
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Figure 3. Gastrin mediated nuclear export of menin via CCKBR requires PKA
(A) Representative blot showing phospho-PKA substrates in glial cultures isolated from 

mice (GAPDH, loading control). (B) Representative blot (top) and quantitation of PKA-cα 
expression (bottom) in nuclear fractions of glial cultures isolated from mice (n=8–10 mice). 

(C) PKA activity in glial cultures, expressed as units of enzyme activity (U) normalized to 

protein content of cell lysates (mg) (n=8 mice). (D) IF staining of menin in glial cultures 

isolated from duodenal lamina propria of C57 WT mice and treated with or without gastrin 

(20 nM, 8 h) in the presence or absence of 10 μM H-89 and KT5720 (KT), and forskolin (10 

μM, 4 h). (E) Representative blots and quantitation of menin expression (F) in nuclear and 

cytoplasmic fractions of glial cultures isolated from C57WT mice and treated with or 

without gastrin (20 nM, 8 h), in the presence or absence of 10 μM H-89, KT5720 (KT) and 

forskolin (10 μM, 4 h). Data shown are the Median ± Interquartile Range of median. * p< 
0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001. Scale bars: (D) – 20 μm
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Figure 4. Gastrin induced nuclear export leads to its proteasomal degradation in the cytoplasm
(A) IF staining of menin in glial cultures isolated from duodenal lamina propria of C57 WT 

mice and treated without or with gastrin (20 nM, 8 h) in the presence or absence of 

Leptomycin b (LMB, 10 μM), or MG132 (25 μM). (B) Representative blots showing menin 

expression in nuclear and cytoplasmic fractions of glial cultures from C57 WT mice and 

treated as in (a). (C) IF staining of menin and ubiquitin in glial cultures isolated from C57 

WT mice treated with or without gastrin (20 nM, 8 h) in the presence or absence of MG132 

(25 μM). (D, E) Representative blots showing gastrin-induced menin ubiquitination in 

STC-1 cells. STC-1 cells were treated without or with gastrin (20 nM) for 0, 2, or 4 hours in 

the presence or absence of MG132 (25 μM). Menin was immunoprecipitated (IP) from the 

cytoplasmic fraction. Immunoblot (IB) for poly-Ub (top panel), and IB for menin (lower 

panel). Menin versus Ub-menin indicated. Blot for IgH and GAPDH in input lysates are 

loading controls (D). Ubiquitinated proteins were immunoprecipitated from the cytoplasmic 

fraction and detected with Ub antibodies (E). IB for poly-Ub (top panel), and Ub-menin 

(lower panel). (F) Representative blot (top) and quantitation (bottom) showing menin 

expression from Cycloheximide (CHX) chase experiment in STC-1 cells (n= triplicates from 

4 separate experiments). STC-1 cells were treated with or without gastrin in the presence or 

absence of MG132 (25 uM) in the presence of CHX (25μg/mL) for 0, 2, 4, and 8 hours. Data 

shown are the Mean ± SEM. * p< 0.05, ** p< 0.01. Scale bars: (A, C) – 20 μm.
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Figure 5. Gastrin stimulation leads to nuclear export of menin in STC-1 cells, and requires 
activation of CCKBR and PKA
(A) IF staining showing menin and CCKBR expression in STC-1 cells treated with 20 nM 

gastrin, 8 hrs after gastrin “washout”, and gastrin in the presence of YM022, or H-89. (B) 
Representative blot showing CCKBR expression in total cellular lysates, PKA-c in nuclear 

fractions, and menin in nuclear and cytoplasmic fractions of STC-1 cells treated as above in 

(a). (C, D) Representative blot (C), and quantitation (D) showing menin expression in 

STC-1 cells treated with gastrin for 16, 24 and 48 h. Integrated band intensities of menin 

analyzed using LICOR Odyssey software (normalized to Gapdh loading controls) were then 

plotted as a function of time (n=triplicates from 3 independent experiments). (E) Menin and 

gastrin (F) mRNA expression in STC-1 cells treated with or without gastrin for 16–72 h, 

after normalization to Hprt mRNA (n = triplicates from 4 separate experiments). Data shown 

are the Mean ± SEM. Bars with different numbers are significantly different from each other 

(p<0.05).
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Figure 6. Gastrinomas from MEN1 patients express neural crest markers and negligible menin
(A–B) IF staining of gastrin and GFAP (A) and menin (B) in normal human duodenum. (C–
E) IF staining of gastrin with GFAP and menin in duodenal (C), lymph node (D), and 

pancreatic gastrinomas (E) from MEN1 patients. (F) Schematic of chronic hypergastrinemia 

and pre-gastrinoma development. Initial hypergastrinemia activates CCKBR and 

downstream PKA signaling pathway, which exports menin from the nucleus to the 

cytoplasm leading to its proteosomal degradation. Loss of menin de-represses gastrin gene 

expression, and triggers a feed-forward loop leading to further menin degradation and 

chronic hypergastrinemia. Scale bars: (A, B - 50 μm, insets - 20 μm); (C - 500 μm, insets - 

100 μm); (D, E - 100 μm, insets - 50 μm).

Sundaresan et al. Page 20

Gastroenterology. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sundaresan et al. Page 21

Ta
b

le
 1

Su
m

m
ar

y 
of

 I
m

m
un

oh
is

to
ch

em
is

tr
y 

fo
r 

H
um

an
 G

as
tr

in
om

as

P
at

ie
nt

T
is

su
e

G
as

tr
in

G
FA

P
M

en
in

 (
C

yt
op

la
sm

ic
)

03
-3

A
D

uo
de

na
l S

ub
m

uc
os

a
+

+
+

G
A

-0
7-

 1
A

,B
D

uo
de

na
l S

ub
m

uc
os

a
+

+
+

97
-B

4
D

uo
de

na
l S

ub
m

uc
os

a
+

+
+

03
-A

38
D

uo
de

na
l S

ub
m

uc
os

a
+

+
+

03
-A

19
Ly

m
ph

 N
od

e
+

+
+

08
-B

12
Ly

m
ph

 N
od

e
+

+
+

05
-1

X
,Y

D
uo

de
na

l S
ub

m
uc

os
a

+
−

+

02
-1

A
Pa

nc
re

as
+

−
+

03
-1

B
Pa

nc
re

as
+

−
+

02
-1

M
Pa

nc
re

as
+

−
+

G
A

-0
9-

2A
Pa

nc
re

as
+

−
+

06
-4

C
Pa

nc
re

as
+

−
+

96
-7

A
Pa

nc
re

as
+

+
+

04
-7

B
Pa

nc
re

as
+

−
+

Gastroenterology. Author manuscript; available in PMC 2018 December 01.


	Abstract
	Introduction
	Materials and Methods
	Human samples
	Animals and Cell Culture
	Primary Glial Culture Isolation
	Laser Capture Micro-dissection
	Measurement of Gastrin in plasma, tissues, and cultures

	Results
	Gastrin-expressing cells identified in duodenal lamina propria
	LP-Gastrin+ cells express enteric glial cell markers and secrete gastrin
	Appearance of LP-Gastrin+ cells in the OMS mice correlates with loss of nuclear Menin
	Gastrin induces the nuclear translocation of Menin through CCKBR-mediated PKA activation
	Gastrin induces menin ubiquitination and proteasomal degradation in the cytoplasm
	Human MEN1 gastrinomas express enteric glial markers and no nuclear menin

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

