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Abstract

Measures of whole-brain activity, from techniques such as functional Magnetic Resonance 

Imaging, provide a means to observe the brain’s dynamical operations. However, interpretation of 

whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain 

activity. The present research addresses this challenge through a series of scale transformations in 

the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first 

developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a 

representative set of spatially independent components. The correlation distance over the 

instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-

dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to 

a large sample of resting and task data (acquired through the Human Connectome Project), we 

segment the empirical state space into a continuum of stimulus-dependent brain states. We also 

demonstrate that resting brain activity includes brain states that are very similar to those adopted 

during some tasks, as well as brain states that are distinct from experimentally-defined tasks. 
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Back-projection of segmented brain states onto the brain’s surface reveals the patterns of brain 

activity that support each experimental state.
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1. Introduction

The advent of functional Magnetic Resonance Imaging (fMRI) has launched the brain 

sciences into an exciting frontier by allowing the direct observation of systems-wide activity 

from healthy human brains (Rosen and Savoy, 2012). The richness of data this technology 

generates is the subject of cutting-edge research to interpret spontaneous signal fluctuations 

as indicators of preferential information exchange among the brain’s intrinsic networks—

i.e., its functional connectivity (FC) (Biswal et al., 1995; Hutchison et al., 2013). Brain FC 

networks were first defined over relatively long periods of time. Such static FC studies 

reveal that brain FC naturally develops a small-world topology, where densely connected 

local modules communicate with one another via richly interconnected hubs (Achard et al., 

2006; Bullmore and Sporns, 2009). But the brain is not a static system. Rather, differential 

information exchange among neurons, circuits, and networks enable brains to deal flexibly 

with ever-changing environmental stimuli. The availability of rapid (< 1s), whole-brain 

imaging prompted researchers to look for shorter term dynamics of brain FC (Deco et al., 

2011).

Early efforts to characterize brain dynamics observed that intra-network membership and 

internetwork communication possessed statistically significant differences when samples 

were drawn from short time windows during various epochs of an fMRI scan (Chang and 

Glover, 2010; Keilholz et al., 2013; Smith et al., 2012; Zalesky et al., 2014). While these 

short time window studies confirmed the expectation that the Blood-Oxygen Level 

Dependent (BOLD) fMRI signal may convey information about short-term brain-state 

dynamics, the large effect that a priori choices in window length had on study results 

lessened the method’s analytic utility (Shakil et al., 2016). The effort to identify rapidly 

changing dynamics is also hampered by the drop-off in bold SNR at short window lengths.

To avoid the problems inherent in windowed analysis techniques, we present a method that 

provides a 2D map of the relative similarity of the brain’s activity for all time points in the 

scan. The signal from each voxel first undergoes wavelet decomposition, making use of the 

BOLD signal’s natural spectral scaling to characterize each time point as a summation of 

activations at multiple frequencies (Billings et al., 2015; Chang and Glover, 2010; Yaesoubi 

et al., 2015). This multispectral interpretation has been suggested to provide a parsimonious 

representation of the dynamic properties of complex systems like brains (Bullmore et al., 

2004; Ciuciu et al., 2012; Mallat, 1989; Mandelbrot, 1983). To reduce the redundancy of 

spatial information and improve the SNR, voxel-wise signals are aggregated into a lower-

dimensional spatial parcellation using Independent Component Analysis (ICA). In the 
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present study, we treat the collected vectors of multispectral activations from all of the ICA 

networks at each time point as samples of instantaneous brain states.

The dimensionality of the resulting data set is high (equal to the product of the number of 

functional networks and the number of spectral filters) and difficult to interpret. In order to 

explore the dynamics of brain activity, we apply t-distributed stochastic neighbor embedding 

(t-SNE) to represent the data from each time point in a two dimensional space (van der 

Maaten and Hinton, 2008), using correlation as a distance measure to ensure that similar 

states are grouped together. t-SNE is a state of the art data-driven dimensionality reduction 

algorithm that maintains local distance structure and has found wide application in the data-

driven sciences to produce visualizations of drosophila behavior, machine learning hidden 

layers, static functional connectivity networks, and a host of other multidimensional 

structures (Berman et al., 2014; Mnih et al., 2015; Plis et al., 2014). In comparison to 

clustering based approaches that segment the time course into a number of predefined states, 

the map created by t-SNE produces a continuous distribution that can then be segmented 

empirically (using the watershed algorithm in this study). Information about the timing and 

the relative similarity of different states is preserved.

Towards the goal of detailing a map of brain-state dynamics, the present study analyzes the 

wide-ranging states 446 normal volunteers adopt as part of the Human Connectome Project 

(HCP)(Van Essen et al., 2012b). BOLD fMRI scans from 7 distinct tasks (EMOTION, 

GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and WORKING 

MEMORY (WM)), and from repeated resting conditions (REST1, and REST2) provide a 

basis to segment a t-SNE embedding of brain-state dynamics across experimentally defined 

events. We demonstrate the utility of the t-SNE mapping to characterize the human brain’s 

coordination across time, space, and spectra during rest and in the negotiation of changing 

experimental stimuli.

2. Methods

Data Acquisition and Preprocessing

The data for this study was obtained from the HCP (Van Essen et al., 2012b). Whole-brain, 

BOLD-weighted, gradient-echo EPI data were acquired with a TR = 0.720 ms, and 2.0 mm 

isotropic voxels. Volunteers were scanned under 9 conditions, including: REST, EMOTION, 

GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and WORKING 

MEMORY (WM). The SOCIAL scan was examined in more detail during our analysis and 

is briefly described as follows: volunteers were presented 5 rounds of 20 s movies showing 

abstract objects making either random motions (random) or engaging in socially relevant 

movements (mentalizing). Each movie is followed by a 15 s fixation period where 

volunteers are asked to fix look at a ‘+’ symbol. Each scan was performed twice.

A total of 446 volunteer datasets were included in the present study. Minimal data 

preprocessing was performed by HCP researchers. Steps included: spatial artifact and 

distortion removal, surface generation, anatomical registration, and alignment to 

grayordinate space. Voxel time series were normalized to zero mean and unit variance to fit 

the isotropic noise model expected by the ICA spatial filters. Each volunteer’s fMRI data 
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was concatenated, across time, into a single matrix to minimize edge effects from spectral 

filtering. Scan order was randomized across volunteers.

Analysis

Previous studies have suggested that static functional connectivity networks segment into 

multiple frequency-specific architectures (Billings et al., 2015; Chang and Glover, 2010; 

Yaesoubi et al., 2015). Therefore, concatenated fMRI datasets were spectrally filtered into 

an octave of spectral bands, log-spaced over the low-frequency fluctuation range (0.1 to 0.01 

Hz). Using the continuous wavelet transform schema, the filterbank was constructed from a 

low-order wavelet (Daubechies 4-tap wavelet) to provide optimal segmentation in the time 

domain with full coverage of the frequency domain (Daubechies, 1992). Brain images from 

each spectral band were multiplied by a 50 component group ICA spatial decomposition 

matrix. ICA filters were calculated as part of the HCP beta-release of group-ICA maps 

(Human Connectome Project, 2014). The number of components was chosen to just exceed 

the number needed for the eigenvalues of real and randomly shuffled data to be equal (data 

not shown). Time points were thus modeled as 400-dimensional states (8 spectral bands by 

50 functional networks).

The state vectors for each time point were compared, pairwise, using the Pearson correlation 

distance. This choice highlights coordinated deviations from mean values. The correlation 

graph was then injected onto a 2-dimensional Euclidean surface using t-SNE. The t-SNE 

algorithm proceeds in two steps: first, the local neighborhood of each node is emphasized by 

normalizing inter-node distances via an adaptive Gaussian filter. Second, a 2-dimensional 

Euclidean version of the graph is constructed by minimizing the KL-divergence between the 

high-dimensional stochastic distribution and the low-dimensional stochastic distribution. A 

key innovation to t-SNE is to utilize a heavier tail in the low-dimensional probability 

distribution—a t-distribution rather than a Gaussian distribution. Doing so causes points that 

are only moderately far away in the high-dimensional space are pushed further apart in the 

low-dimensional representation. This feature allows for naturally affiliative clusters to 

emerge from an otherwise more compressed state space. Inherent similarities among 

sequentially sampled points will, none-the-less, cause these points to form their own distinct 

neighborhood. One way to encourage piecemeal-sequential points to arrive a group-level 

neighborhood is to embed points individually onto a group-level training embedding 

constructed from a sparse subsampling of each individual’s scan data. We generated the 

training embedding in three steps. First, concatenated time series from each volunteer’s full 

set of scans were t-SNE embedded into their own low-dimensional space. Second, ~2% (200 

points) were selected from each volunteer’s map to construct a group-level subsample. 

Third, the group-level subsample was t-SNE embedded to construct the training embedding. 

Subsequently, out-of-sample time points were injected onto the training embedding by 

satisfying the same symmetrized KL-divergence as used in to generate the training 

embedding. This subsampling procedure has the added benefit of reducing the 

computational load of embedding a large number of data points. (For additional details, 

please see van der Maaten and Hinton (2008), Berman and Shaevitz (2014), and the 

supplemental materials).
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Quantitative Interpretation Methods

Density maps were constructed by convolving embedded point distributions by a 2-

dimensional Gaussian filter. Density maps were compared using the structural similarity 

index (SSIM). SSIM is a robust measure of inter-image similarity as it is a product of three 

separate terms to account for salient image features, luminance, variance, and structure 

(Zhou et al., 2004). SSIM values range between 0 and 1, with 1 denoting identical images. 

Bootstrapped distributions of these comparisons provided sample statistics for ANOVA and 

multiple comparisons testing (see the section entitled, “Comparing Embeddings,” in the 

supplemental material).

To characterize the t-SNE embedding as disjoint brain states, the watershed transform of an 

(inverted) density map was used to establish boundaries around peaks (the catchment basins 

of the inverted image) (Meyer, 1994). The granularity of the watershed map is easily 

adjusted by changing the width of the Gaussian curve used to make the density maps. Given 

a discrete segmentation of brain states into watershed regions, a rudimentary count of the 

amount of time participants dwell in any given region is a measure of the stability of the 

regionally-bounded brain state. The map space is also amenable to group-level statistical 

testing. For example, we constructed a null model over the hypothesis that particular 

experimental conditions do not have a preference for any map region. Thereby, we 

investigated the preference that experimentally defined conditions have for the population of 

brain states embedded into each map region. Finally, brain state data were projected onto the 

midthickness Conte69 surface-based atlas to visualize anatomical characteristics (Van Essen 

et al., 2012a).

Additional methodological details, including the relevant equations, may be found in the 

supplemental information.

3. Results

To test the degree to which resting and tasked brains develop distinct dynamics, we 

segmented time points during the REST1 and REST2 scans from all task-scan time points. 

The results are displayed as density maps in part A of figure 1. The resting brain tends to 

adopt a range of states in the map’s periphery, while the task-active brain tends to develop 

brain states at the map’s interior. To represent the brain’s dynamic transitions across the 

embedded state space, part B displays point-to-point state changes as a velocity field. The 

results demonstrate that the resting brain’s most rapid transitions occur in regions densely 

populated during tasks. In the task-active segmentation, the highest velocities are found at 

the map’s center, between two interior regions densely populated during tasks. Regions of 

low velocity are distributed in patches throughout the task segmentation.

While the embedding is a continuous state space, the presence of multiple densely populated 

regions suggests an ensemble of discrete states that the brain adopts. Figure 2 takes on a 

discretized perspective by tracing boundaries around the resting-state segmentation’s dense 

regions. Formally, each state-space parcel is a catchment basin formed by taking the 

watershed transform of the density map’s inverse (Meyer, 1994). Part A of the figure codes 

regions in terms of the percentage of points in each parcel. Owing to its sheer size, a 
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sprawling domain in the map’s interior contains the largest proportion of samples (4% to 

5%, magenta boarder). The brain’s propensity for adopting configurations within this parcel 

increases during task scans, when 6% to 7% of points form a similar density (see 

supplemental figure S1). The average brain state within this region sustains relatively slow 

(~0.019 Hz), low-amplitude, in-phase activations across most of the brain’s static networks 

(part A, right) (see supplemental figure S2 for a description of each network). The region is 

often populated during the fixation periods of most tasks (see supplemental movies).

To gain a better understanding of the dynamic characteristics of resting-state parcels, part B 

of figure 2 displays the median time volunteers continuously dwelt in each parcel. Although 

maximum resting-state dwell times reached as high as 30 s (see supplemental figure S3), 

median dwell times did not exceed 2.5 s during rest. This finding is a confirmation that the 

resting brain often transitions between states. Dwell times tended to increase in duration 

during tasks (see supplemental figure S1). The mean brain state of one region having a long 

dwell time (magenta boarder) shows the brain to sustain activations in the same ICA 

networks as the state highlighted in part A. However, the second region’s activations 

increase in magnitude. Further, they occur in two separate frequency bands, with either 

band’s activations flipped to the opposite phase from the other.

The wide range of experimental states adopted during HCP scans provides a natural means 

to segment instantaneous brain-states. Figure 3 displays group-level map densities produced 

by such a segmentation. Bootstrap sampling provided a sample distribution to assess 

structural image similarity within-states, and also between-states (figure 4). Larger within-

scan SSIM values indicate that the brain adopts a tighter range of states during the scan. 

Comparatively large between-scan SSIM values indicate that the two scans evoke similar 

varieties of brain states. Multiple comparisons statistics performed on these results 

determined that the repeated resting-state scans, alone, bear statistically similar continuous 

state distributions (see supplemental figure S4). Supplemental figure S5 displays the results 

of the same analysis when data are segmented against all block-design contrasts and task-

related events.

The block design of HCP task scans—where stimuli are presented in rigidly timed 

sequences over several blocks—makes it possible to identify significant differences in the 

point-wise evolution of brain-states during the navigation of contrasting tasks, i.e., fine-scale 

brain dynamics. While the main text of the present manuscript uses the SOCIAL scan as an 

example, similar results are found for each set of block-design contrasts. (Movies illustrating 

the time-locked brain state distributions for all block-design contrasts may be found in the 

supplemental materials). Figure 5 outlines the point-wise state transitions during each 

SOCIAL task contrast’s 35 s block. A bar chart of the mean SSIM at each time point surveys 

the focality of the progression of brain states evoked by either stimuli. Comparing the SSIM 

between stimuli provides a metric of state colocalization. The results demonstrate that, 

during the first 4 to 5 seconds of the stimulus, brain states in both conditions are incoherent. 

After ~7 s, both conditions achieve focal brain states, with the mentalizing condition being 

much more compactly delineated. After ~12 s, both conditions assume similar brain states. 

The onset of the fixation block causes brain states to, again, disperse across the embedding. 

In the latter half of the fixation block, participants who witnessed a mentalizing condition 
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tend to linger in a very tightly localized brain state. This suggests that a more characteristic 

variety of rumination occurs in response to the mentalizing stimulus. Density maps from 

time points having focal brain states are shown in the insets of figure 5 and close up in figure 

6.

To check the uniqueness of each contrast’s associated brain states, figure 6 magnifies the 

most densely populated regions in each contrast’s embedding at those time points presented 

in figure 5. After ~8 s, volunteers’ brains are observed to adopt adjacent and disjoint states. 

A short time later (~15 s), participants may adopt similar states albeit with the mentalizing 
stimulus inducing brains to adopt a more focal subset of the random stimulus’ state space. A 

similar observation obtains during the fixation block (~32 s) with the mentalizing stimuli 

evoking a focal subset relative to the random stimuli’s state space.

The extremely focused distribution of brain states during particular moments of block-

design tasks motivated a closer investigation of the statistical distribution of embedded 

points at particular moments in time. To conduct this analysis, we generated a watershed 

segmentation of the embedded space after convolving all points on the embedded map with a 

very narrow Gaussian filter (figure 7, part A). We then labeled each embedded point in terms 

of the experimental condition under which the brain-state was generated, as well as in terms 

of the time that state was generated relative to the start of each experimental block. Next, we 

randomly permuted the point labels 100 times to generate a null distribution of the 

embedded point locations for each condition, at each time point. Finally, we calculated the z-

statistic of the probability that the number of embedded points in each watershed region was 

greater in the real data than in the permuted data. The significance threshold was initially set 

to a p-value of 5%. With Bonferroni correction for multiple comparisons across ~5000 

watershed regions and ~1000 individual time points, the significance threshold was set to a 

p-values less than 1e-8. Part B of figure 7 color-codes fine-grained watershed regions in 

terms of the most probable state associated with that region. For simplicity, all time points 

from a given condition share the same color coding. Part C of the figure addresses the 

inference from figures 5 and 6 that the contrasting conditions in the SOCIAL task result in 

highly stereotypical brain states at especially t ≅ 8s after the start of the block. As inferred 

from figure 6, the social stimulus induces highly focal brain states in the map space below 

and to the right of grid location e3 (green borders). While some brain states generated by the 

random stimulus overlap this region (yellow border), these brain states mostly lie above grid 

line e or to the left of grid line 3 (red borders).

We can gain insights into how the brain responds to the contrasting stimuli by projecting a 

local averaging of the state space (magenta points) onto a model brain surface. Figure 8 

displays the contrast between the mentalizing and random stimuli at 7.92 s (TR = 11). 

Whereas higher frequency (>=0.037 Hz) activations are similar, the lower frequency 

(<=0.019 Hz) brain states bear marked differences. At infra-slow frequencies (0.01 Hz) the 

mentalizing stimuli induces in-phase oscillations between the visual, parietal, sensorimotor, 

and lateral prefrontal cortices. This contrasts with brains experiencing the random stimulus 

for which the visual and left parietal cortex are out-of-phase relative to the anterior 

prefrontal, left orbitofrontal, and left parietal networks. Slow (0.019 Hz) activations are 

similar between block contrasts save for, 1) the inclusion of the medial prefrontal cortex 
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within the positive-phase network during the mentalizing condition, and 2) stronger 

negative-phase activation in the anterior prefrontal cortex among volunteers receiving the 

random stimulus. Task-based activation studies of the same task-contrasts identified similar 

areas of contrasting brain activity, including the medial prefrontal cortex, lateral parietal 

cortices, and the visual cortex (Barch et al., 2013; Castelli et al., 2000).

4. Discussion

The present analytical framework, where BOLD dynamics are interpreted as multiscalar, 

instantaneous events overcomes many of the challenges faced in the study of brain 

dynamics. Unlike methods based on sliding window correlation, it avoids the challenges 

involved in choosing a window length (Hindriks et al., 2016; Shakil et al., 2016). 

Additionally, whereas previous studies using clustering tended to delineate brain states into a 

fixed number, k, of categories (Calhoun et al., 2014), manifold embedding optimizes a low-

dimensional representation of the high-dimensional data, allowing a continuous distribution. 

Nevertheless, it remains possible to identify discrete state categories via subsequent analyses 

(e.g., through a watershed transformation of the continuous state space).

The statistically significant differences between the state-space distributions of each task 

provides assurance that the embedded state space effectively differentiates between 

activation patterns related to different tasks (figures 3 and 4). On the other hand, the 

statistically insignificant differences between the state-space distributions of the repeated 

resting-state scans provide assurance that the embedded state space does not overspecify 

differences between brain states. The identification of fine-grained differences between the 

brain states of task contrasts confirms our hypothesis that common stimuli result in short 

distances between embedding points. Our qualitative and quantitative analysis shows that the 

random and mentalizing portions of the social task inhabit adjacent but disjoint map regions 

(figures 5 through 8).

The segmentation of the embedded space allows the identification of networks whose 

coactivations (or lack there-of), at particular frequencies and phases, are predominant in any 

given state (figure 2). Our analysis of the SOCIAL scan demonstrates this point when brain 

regions involved in attention (lateral prefrontal) mental representation (parietal cortex) and 

somatic representation (somatomotor cortex) are slowly driven, in-phase, with activations of 

the visual system.

One of the advantages of the 2D representation obtained from t-SNE is the ease of 

exploratory data analysis. From the distribution of the data, one can hypothesize about the 

similarities of different tasks, identify common trajectories, identify states and substates, etc. 

The resulting hypotheses can be addressed through further statistical analysis as 

demonstrated for the social task, or they might motivate more specific experiments designed 

to address the questions in other ways. Regardless of the following analysis, t-SNE provides 

a powerful tool for characterizing functional neuroimaging data.
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Insight into resting state fMRI

Given the success of t-SNE at differentiating between tasks, the present study’s embedded 

state space may offer new insights into lingering questions on the character of the resting 

state (Lowe, 2012). The wide spatial extent, absence of low velocity regions, and overall 

short dwell times, converge on the finding that the resting-state is not a singular condition. 

As the only difference between rest and task is the absence of an explicit stimuli, the 

preference resting brains display for peripheral map regions marks the resting-state as 

mostly distinct from each of the 7 task states. One notable exception is the interior map 

region roughly bounded by grid vertices f5, f7, e5 and e7. Details of the region’s 

contribution from each task contrast (supplemental figure 5) the LANGUAGE scan’s story 
condition, the EMOTION scan’s neutral stimulus, WM 0 back challenges, and the collection 

of time points when no stimulus information was explicitly provided (labeled rest). The 

region may therefore relate to times when volunteers are externally oriented albeit with low 

cognitive demands. Indeed, volunteer brains often populate this region during the fixation 

blocks of most tasks (see supplemental videos of especially the GAMBLING and 

RELATIONAL scans). Another notable exception is the projection of MOTOR and SOCIAL 

brain states to locations further out in the map’s periphery than the significant REST regions 

in figure 7 part B. Despite the general lack of overlap between the REST and TASK 

conditions, the REST condition itself exhibits several dense concentrations of time points 

similar to those observed during the tasks, suggesting that these network configurations 

constitute common brain states during the resting condition.

Limitations

The generation of the embedding’s features comes directly from a combination of the input 

data and the analytical model. As always, the BOLD signal’s lack of direct sensitivity to 

neural activity limits our ability to infer the underlying neurophysiology from the functional 

imaging data. Noise in the BOLD signal (from residual physiological noise, motion, or the 

scanner) will affect the embedding of the data.

Regarding the analysis itself, the symmetric distribution of contrasting brain-states across 

the map may owe itself to the use of signed wavelet coefficients. Like all spectral 

decompositions, the wavelet transform inherently generates phase information as complex 

coefficients. The present study projects complex coefficients onto the set of real numbers, 

thus limiting the analysis to account for two phases, separated by 180°. Other studies have 

found good segmentation when comparing BOLD signals across additional phases (Chang 

and Glover, 2010; Yaesoubi et al., 2015). The utility of incorporating phase information 

supports the notion that regional activations bear some degree of phase-coupling (Thompson 

GJ, 2014; Tort et al., 2010). Future studies may appropriate this natural feature of brain 

activity by characterizing the data in alternative metric spaces that better utilize complex-

valued data in the high-dimensional space, and better distribute their states into a low-

dimensional space.

Furthermore, it should be noted that while using as a wavelet kernel for the spectral 

transform is expected to result in improved time frequency localization relative to a short-

time Fourier transform, it is possible to tune the kernel function to extract additional 
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information about BOLD dynamics. In addition to requiring that the transform kernel decay 

smoothly to 0 after a short time, we might also require that the kernel somehow better 

represent the BOLD signal’s underlying impulse waveform. Such kernels may be developed 

by directly “lifting” the temporal shape from the data itself (Sweldens, 1998). Such a 

procedure would provide better localization of the BOLD signal’s energy into fewer wavelet 

coefficients, and thus improve the ability to differentiate between states.

Future directions

This study demonstrates an analytical technique to observe BOLD dynamics that performs 

well in segmenting contrasting activities. This approach provides a simple way to summarize 

patterns of brain state dynamics across various tasks as well as when participants are at rest. 

The ready capacity to chart brain-state dynamics against experimental stimuli raises the 

interest for demarcating the functional space of other varieties of conditions. Indeed, study 

methods are readily amenable to describing brain state dynamics of differing populations 

and animal models including patient populations. One potential application for the t-SNE 

embedding is to determine whether it can identify specific states that are present in patients 

but not in healthy controls. Another area of interest utilizes the preserved timing information 

to determine common trajectories of brain activity across states during task and rest. The t-

SNE embedding facilitates exploratory analysis but can also be used to identify significant 

differences between tasks or populations using additional analysis. While permutation was 

applied for most of the statistical analyses shown in this manuscript, more sophisticated 

approaches should also be pursued.

The subsampling procedure reduces the computational complexity of fitting an out of 

sample point from O(n^2) operations to O(n). This feature enables future research to chart 

increasingly detailed and comprehensive maps of the brain’s dynamical state space from an 

ever-increasing pool of shared data. One future area of investigation should examine whether 

data acquired on different scanners or with different parameters (TR, for example) can be 

added to the existing embedding or should be handled separately.

5. Conclusion

The BOLD signal’s multispectral components, developed naturally among the brain’s many 

networks, constitute a robust descriptor of instantaneous brain states. High-dimensional 

datasets containing point-to-point brain state dynamics are made interpretable by embedding 

the graph onto a 2-dimensional sheet. Our analysis of a dynamical brain-state embedding 

from a large population (N=446) concludes that the resting brain actively pursues a range of 

distinctive states from those adopted during explicit tasks. The realization of both resting 

and task-active states involves large-scale, and often phase-locked coordination’s among 

multiple brain regions at particular frequencies. The tools described in this manuscript 

should enable further analysis of the brain’s dynamic trajectories during both tasks and rest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We demonstrate the construction and interrogation of a continuous, two-

dimensional map of fMRI dynamics.

• Map points represent an individual’s multispectral, and multispectral BOLD 

state centered at a single point in time.

• Task-based scans occupy focal state-spaces, reinforcing the utility of study 

methods to capture salient BOLD dynamics evoked by experimental stimuli.

• Resting-state scans occupy a broad state-space, reinforcing the view that the 

resting mind is highly active.
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Figure 1. 
compares 2D Euclidean embeddings of instantaneous brain states, separated for the resting 

state and the task-active state. For ease of reference, the embedding space is divided into an 

8×8 grid. Alphanumeric labels mark grid vertices. Part A displays the distribution of 

embedded points as a Gaussian cloud. The Gaussian filter radius equaled 1/32 the maximum 

point displacement from the embedding’s center. Part B displays the velocity field from an 

aggregation of points within a 32×32 grid in each of the 4 cardinal directions across the map 

space. All results were normalized to unit magnitude.

Billings et al. Page 15

Neuroimage. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
highlights the brain states adopted within watershed regions of the embedding space as 

participants reside in the resting-state. Part A (left) displays the percentage of points lying 

within each region. Part B (left) displays the median amount of time participants dwelled in 

each region. A similar analysis is performed for the task data in supplemental figure S1. The 

mean spatio-spectral brain state from the regions highlighted in magenta (left) are charted to 

the right. Each of the 50 ICA resting-state networks are categorized into one of five classes: 

‘Vis,’ visual network; ‘SMN,’ somatomotor network; ‘OFN,’ orbito-frontal network; ‘VFN,’ 

ventral-frontal network.
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Figure 3. 
displays t-SNE embeddings of instantaneous brain states, segmented by scan, and 

represented as the normalized density of each scan’s embedded points. Task datasets include 

BOLD images during all periods of the scan, including any cue events, all contrasting task 

stimuli, any responses from volunteers, and any fixation blocks. The Gaussian filter radius 

equaled 1/32 the maximum point displacement from the embedding’s center
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Figure 4. 
plots the mean structural similarity index (SSIM) between normalized density embeddings, 

segmented across scans. For each scan type, the sample distribution was bootstrapped from 

50 realizations of 2500 timepoints, randomly sampled from the group-level data set. The 

number of time points provides a representative sampling of each scan’s embedded 

distribution. Asterisks indicate between-scan comparisons whose mean SSIM was not 

significantly less than either within-scan mean SSIM.
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Figure 5. 
analyzes 2D Euclidean embeddings of instantaneous brain states segmented in terms of both 

block-design task contrasts, and by the acquisition time of temporally aligned task blocks 

during the SOCIAL scan. The bar chart shows the mean value of the bootstrapped structural 

similarity index of the within (blue=mentalizing, and yellow=random) and the between 

(green) block-design-contrast embeddings. For each task contrast, the sample distribution 

was bootstrapped from 25 realizations of 250 timepoints, randomly sampled from the group-

level data set. Fewer bootstrap time points are used to accommodate the reduced sample size 

in each segmentation. Daggers above the bar chart point to the aligned block times whose 

embedding density images are displayed in the inset images. Red boxes define the boundary 

regions given closer scrutiny in figure 6.
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Figure 6. 
details the brain-state differences between task contrasts by displaying close-up views of the 

boxed areas from figure 5. Boxed areas are 1/8 the total map space, on a side. Each column 

is from the same map boundary region. Data are displayed as 2-dimensional histograms 

from a 32×32 grid inside each box. Column colorbars share the same upper limits.
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Figure 7. 
displays the statistical affinity of time-resolved and condition-dependent brain-states for a 

set of watershed map region. Map regions were segmented using a fine-grained density map 

generated from all studied time points. This granularity was motivated by the focal 

organization of map points in figure 6. Here, the filter width was set to 1/256th the distance 

of the furthest map point from the map’s center. Part B displays the most probable state 

associated with each watershed map region. Regions where no significantly associated state 

was found were marked in black. Part C pursues the hypothesis that volunteers adopt 

different brain states around the 11th image of the SOCIAL task when presented with either 
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the mentalizing (green) or the random (red) stimulus. Map regions significantly populated in 

response to either stimuli, at this instant, are outlined in yellow, while regions statistically 

populated by only one stimulus are outlined in their respective colors. Part C’s density map 

is from only SOCIAL scan data. The red boxes in parts A and B outline the range of part C.
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Figure 8. 
displays the difference between the brain states of participants at ~8 seconds after being 

given either a mentalizing (A) or the random (B) visual stimulus during the SOCIAL scan. 

The brain state is an average from the maximally populated embedding region from within a 

32×32 grid (magenta points).
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