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Abstract

Worldwide increase incidences of allergic diseases have heightened the interest of clinicians and 

researchers to understand the role of neuroendocrine cells in the recruitment and activation of 

inflammatory cells. Several pieces of evidence revealed the association of neuropeptides in the 

pathogenesis of allergic diseases. Importantly, one such peptide that is secreted by neuronal cells 

and immune cells exerts a wide spectrum of immunological functions as cytokine/chemokine is 

termed as Vasoactive Intestinal Peptide (VIP). VIP mediates immunological function through 

interaction with specific receptors namely VPAC-1, VPAC-2, CRTH2 and PAC1 that are expressed 

on several immune cells such as eosinophils, mast cells, neutrophils, and lymphocytes; therefore, 

provide the basis for the action of VIP on the immune system. Additionally, VIP mediated action 

varies according to target organ depending upon the presence of specific VIP associated receptor, 

involved immune cells and the microenvironment of the organ. Herein, we present an integrative 

review of the current understanding on the role of VIP and associated receptors in allergic 

diseases, the presence of VIP receptors on various immune cells with particular emphasis on the 

role of VIP in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, and atopic 

dermatitis. Being crucial signal molecule of the neuroendocrine-immune network, the 

development of stable VIP analogue and/or antagonist may provide the future therapeutic drug 

alternative for the better treatment of these allergic diseases. Taken together, our current review 

summarizes the current understandings of VIP biology and further explore the significance of 

neuroendocrine cells derived VIP in the recruitment of inflammatory cells in allergic diseases that 

may be helpful to the investigators for planning the experiments and accordingly predicting new 

therapeutic strategies for combating allergic diseases. Summarized graphical abstract will help the 

readers to understand the significance of VIP in allergic diseases.
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1. Introduction

In the last few decades, the allergic diseases have become more prevalent affecting up to 20–

30% of the world population that results in lower life quality [1, 2]. The condition becomes 

worse as the occurrence of one allergic disease leads to predisposition for another [3]. 

Importantly, the recent advances to understand the pathogenesis of allergic diseases have 

highlighted the neuroimmune interaction as a crucial player in the development of allergic 

diseases; therefore, the understanding of neuroimmune communication is particularly 

required for gaining the better knowledge in the context of allergic diseases [4]. The link 

between the neuroendocrine system and the immune system depends upon the several key 

factors such as the secretion of neuropeptides by immune cells and cytokines by 

neuroendocrine cells, the presence of shared receptors on the cells for both the systems, the 

effect of neuropeptides and cytokines on immunological and neurological functions 

respectively. All these regulatory processes provide the basis for neuropeptides to function 

as cytokine or chemokine in the immune system thereby modulating the provoked immune 

responses [5]. Interestingly, the large number of neuropeptides such as Calcitonin Gene-

Related Peptide (CGRP), Substance P (SP), Protein gene product 9.5, Neuropeptide Y, 

Nerve growth factor, and Vasoactive Intestinal Peptide (VIP) have been implicated in the 

pathogenesis of the allergic diseases [6, 7]. However, in the last decade, VIP has emerged as 

one such potent neuropeptide that exerts a wide spectrum of immunological functions 

controlling both innate and adaptive immunity. VIP exerts its biological function by 

regulating the production of both anti- and pro-inflammatory mediators. In terms of innate 

immunity, VIP inhibits the production of inflammatory cytokines and chemokines from 

immune cells as well as reduces the expression of co-stimulatory molecules on antigen-

presenting cells that reduces the stimulation of antigen-specific CD4+T cells. Additionally, 

in adaptive immunity, VIP promotes T-helper (Th)2 type immune responses and reduces 

inflammatory Th1 type responses [8].

VIP is 28-amino acid peptide hormone that was originally isolated as a vasodilator peptide 

from the intestine [9, 10]. VIP is reported as one of the most abundant neuropeptides of the 
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human body and secreted in the significant amount in the central and peripheral nervous 

systems as well as in various peripheral tissues and organs [11]. Although VIP is primarily 

secreted by neuronal tissue, it is also produced by several immune cells such as eosinophils, 

mast cells and lymphocytes [12–14]. The secreted VIP like cytokine or chemokine has the 

ability to regulate the homeostasis of the immune system. The expression of VIP is noticed 

in the brain, heart, lungs, kidney, urinary bladder, pancreas and gastrointestinal tract [15]. 

Importantly, the sequence of VIP peptide is well conserved among the different species and 

is identical in human, mice, cow, pig and dog species suggesting the significance of this 

neuropeptide in immunomodulation [16]. Further, the presence of VIP-containing nerves 

near the elements of the immune system and the presence of VIP receptors on immune cells 

indicate the interaction of VIP with immune system [11]. The immunological responses of 

VIP are mediated through interaction with specific receptors namely Vasoactive Intestinal 

Peptide Receptor Type 1 (VPAC-1), Vasoactive Intestinal Peptide Receptor Type 2 

(VPAC-2), Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells 

(CRTH2) and Pituitary adenylate cyclase-activating polypeptide (PACAP) receptors (PAC1) 

that are present on different types of immune cells [17, 18]. In addition, the emerging pieces 

of evidence have indicated that VIP and its receptors mediated signaling plays the decisive 

role in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, dermatitis and 

food allergy [18–20]. Therefore, it will be of great significance to explore the mechanistic 

pathways involved in VIP mediated biological effect on the immune system that may open 

the novel avenues for therapeutic intervention in allergic diseases. The review provides most 

current knowledge and understanding of VIP mediated diverse biological functions on the 

immune system, the interaction of VIP with specific receptors that are expressed on various 

immune cells, further to understand the VIP induced signaling pathways with special 

attention on the impact of VIP in the pathogenesis of allergic diseases. Furthermore, 

exploring the pathways involved in cross-talk between the nervous and immune system may 

be useful for understanding the neuropeptide mediated signaling events in the 

pathophysiology of allergic diseases. The summarized information will be helpful to propose 

VIP and its agonists/antagonists as promising alternative candidates for the treatment of the 

allergic diseases.

2. General characteristics of Vasoactive Intestinal Peptide and its receptors

VIP was first isolated from swine duodenum and named so because of its vasodilating action 

that modifies the intestinal blood flow [10]. VIP works as ‘cytokine-like peptide’ and exerts 

a wide spectrum of biological functions through specific receptors present on immune 

effector cells, thus triggering a signal transduction cascade, and regulating the 

immunological response by the production of both anti and pro-inflammatory mediators [21, 

22]. Basically, human VIP gene encodes 7 exons and is localized to chromosome 6q25.2. 

VIP is synthesized as a precursor molecule where VIP is encoded by the fifth exon and 

signal peptide of 22 amino acids by the second exon. The active VIP molecule of 28 amino 

acids is produced after the processing of precursor molecule [23, 24]. VIP is reported to 

have the helical conformation with one α-helix (residues11–26) and two β-bends (residues 

2–5 and 7–10) at the N-terminus [25]. As VIP has high similarity in primary and secondary 

structures with glucagon/secretin, thus VIP classified with these peptides in glucagon/
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secretin superfamily, the ligand of class II G protein–coupled receptors. This family also 

includes peptides such as glucagon-like peptides (GLPs), gastric inhibitory polypeptide 

(GIP), corticotropin-releasing factor (CRF), growth hormone-releasing factor (GRF), 

parathyroid hormone (PTH), calcitonin and pituitary adenylate cyclase-activating peptide 

(PACAP) [26]. VIP expressed in numerous organs, and tissues at various concentrations 

thereby exert an array of different biological effects in the body. The biological functions of 

VIP are mediated via specific receptors namely VPAC-1, VPAC-2, CRTH2 and PAC1 that 

are expressed on immune cells. VIP having low affinity for PAC1 while for remaining 

receptors affinity is comparatively high. The general characteristics of VIP receptors are 

summarized in Table 1.

2.1. VPAC receptors (VPAC-1 & VPAC-2)

The VPAC receptors (VPAC-1 & VPAC-2) are widely distributed in the body suggesting the 

crucial role in the diverse immunological processes [27]. These VPAC receptors belong to 

the subfamily of G protein-coupled receptor family (GPCR) known as class B GPCR. This 

subfamily is also known as ‘secretin-like’ receptors family because the secretin receptor was 

the first member of a new GPCR family. These receptors consist of one polypeptide chain 

with seven transmembrane segments having N-terminal extracellular domain and C-terminal 

cytoplasmic end [28]. VPAC-1 receptors are mainly expressed in the central nervous system 

(CNS), liver, lung, breast, kidney, prostate, spleen, mucosa of stomach and small intestine 

[29] while VPAC-2 receptors have been localized in the CNS, pancreas, lung, heart, kidney, 

stomach skeletal muscle, smooth muscle, adipose tissue, and thyroid follicular cells [30]. 

Structurally, VPAC-1 receptor consists of 457 amino acids with a long extracellular N-

terminal having Mw of 52 kDa. VPAC-1 receptor gene (VIPR1) is composed of 13 exons 

ranging in size from 42 to 1400 bp and located on short arm of human chromosome 3 (3p22) 

[31, 32]. However, VPAC-2 receptor consists of 438 amino acids with Mw of 49 kDa. The 

human VPAC-2 receptor gene (VIPR2) is reported to be present on chromosome 7q36.3 and 

encoded by 13 exons [33, 34]. Both VPAC-1 and VPAC-2 receptors possess highly 

conserved amino acid sequence suggesting that these receptors may be evolved from a 

common ancestral gene thereby transduce the signal in the same way from the extracellular 

surface to the underlying involved molecules upon ligand binding [35]. Importantly, VPAC-1 

receptors are expressed constitutively on T cells, monocytes, and macrophages whereas the 

expression of VPAC-2 receptors are induced on T cells and macrophages only after 

bacterial/or viral infections [36].

These VPAC receptors also interact with few accessory proteins that modulate the signaling 

events. These proteins are commonly known as accessory proteins’ or ‘GPCR interacting 

proteins which provided a new concept in GPCR signaling to transduce the signals 

independently of the G-proteins [37]. GPCR mediated signaling is also affected by 

Calmodulin (CaM) i.e. a calcium-binding messenger protein expressed in all eukaryotic 

cells. Upon binding to Ca2+, Calmodulin acts as part of calcium signal transduction pathway 

by promoting the different modes of association with many target protein such as kinases or 

phosphatases as well as GPCR signaling involved enzymes such as adenylyl cyclase, 

phospholipases etc [38]. Another study by Gee et al., (2009) suggested that S-SCAM 

(synaptic scaffolding molecule), also named membrane-associated guanylate kinase 
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inverted-2 (MAGI-2), interacts and regulates VPAC-1 intracellular localization in epithelial 

cells and also inhibits VPAC-1 agonist-induced activation and internalization. The physical 

interaction between VPAC-1 and S-SCAM was confirmed by immunoprecipitation in HEK 

293 mammalian cells and human pancreatic and colonic tissues [39].

2.2. Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) 
receptor

In the recent years, the involvement of CRTH2 receptor in the allergic diseases has gained 

much attention due to its presence on the inflammatory cells such as eosinophils, basophils, 

and Th2 lymphocytes [40, 41]. CRTH2 receptor is G protein-coupled receptor (GPCR) 

containing seven putative transmembrane domains. CRTH2 also designated as Prostaglandin 

D2 receptor 2 (DP2), and cluster of differentiation 294 (CD294) is encoded by the PTGDR2 
gene in human. Several pieces of evidence indicate that CRTH2 receptor may play an 

important role in the allergic diseases, since the blockade of this receptor reduces the allergic 

airway inflammation [42, 43]. Further, the previous findings have highlighted the role of 

Prostaglandin D2 (PGD2) and CRTH2 receptor interaction in the pathogenesis of allergic 

diseases [44]. Generally, PGD2 is a major arachidonic acid metabolite released from 

immune cells such as mast cell [45], and Th2 cells [46]. In addition, several other studies 

implicate PGD2-induced inflammatory cells recruitment in allergic diseases that are 

mediated via CRTH2 receptor [40, 47] and blockage of this novel CRTH2 receptor 

attenuates the allergic manifestation in the patients [48, 49]. However, recently, the novel 

association between VIP and CRTH2 receptor in recruiting eosinophils in allergic rhinitis 

patients have been reported. Interestingly, the activation of CRTH2 receptor expressed on 

human eosinophils by VIP was noticed and further, the ability of VIP to induce protein 

synthesis of CRTH2 and its surface expression was reported [18]. This study points the 

possible role of VIP and CRTH2 receptor interaction in modulating the other allergic 

diseases and there is still need more efforts in this direction.

2.3. Pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1)

VIP also interacts with another member of GPCRs known as Pituitary adenylate cyclase-

activating polypeptide type I receptor (PAC1). PAC1 receptor was first identified in a rat 

pancreatic acinar carcinoma cell line [50]. With respect to the tissue, the expression of PAC1 

receptor is particularly observed in CNS, the anterior pituitary, pancreatic acini, uterus, and 

predominantly in the adrenal medulla [51]. Notably, VPAC receptors respond to both VIP 

and PACAP with high affinity whereas PACAP has more than >100-fold affinity as 

compared to VIP for PAC1 receptor suggesting the minimal role of this receptor in VIP 

mediated allergic diseases [52]. However, the study performed by Lauenstein et al., (2011) 

suggested that PAC1 receptor mediates anti-inflammatory effects in allergic airway 

inflammation. Thus, PAC1 receptor agonists may be a promising candidate in airway 

allergic diseases such as bronchial asthma [53].

3. Vasoactive Intestinal Peptide receptors expression on the immune cells

The significance of VIP in the immune system is further enhanced due to its ability to 

interact with multiple immune cells such as mast cells, eosinophils, neutrophils, 

Verma et al. Page 5

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lymphocytes, dendritic cells, NK cells, and macrophages through VIP associated receptors 

VPAC-1, VPAC-2, PAC1 and CRTH2 [36, 54].

3.1. Mast cells, Basophils, and VIP receptors expression

Mast cells have an important regulatory role in innate as well as adaptive immunity and act 

as effector cells that manifest the allergic disorders via releasing allergic mediators such as 

histamine, leukotrienes, prostaglandins, cytokines, proteases, and heparin. Generally, mast 

cells perform the biological functions via FcεRI mediated degranulation; however, these 

mast cells also respond to neuropeptides during inflammation in FcεRI independent manner. 

Further, FcεRI-independent activation of human mast cells and their presence in the close 

proximity of neurons suggest the mast cell and neuropeptides interaction in the 

pathophysiology of allergic diseases [4, 55]. The late phase response in asthma is mediated 

by activation of human mast cells by neuropeptides that may indirectly provoke 

inflammation via cellular recruitment [56]. Furthermore, human mast cells degranulation 

and production of chemokines mainly MCP-1, inducible protein-10, RANTES and IL-8 

occurs in response to neuropeptides including VIP. These secreted chemokines, in turn, 

recruit the other immune cells such as eosinophils, monocytes, and neutrophils [57]. 

Moreover, Groneberg et al (2003) reported VPAC-2 mRNA expression in human skin mast 

cells, as well as human mast cell line (HMC-1) and down-regulation of this VPAC-2 

receptor in human mast cells in acute lesions of atopic dermatitis was noticed highlighting 

the significance of VPAC-2 receptor and mast cell interaction in allergic disease 

pathophysiology [58]. Consistent with the earlier study, VIP mediated activation and 

degranulation of both human cultured mast cells LAD2 and primary cultured human mast 

cells were observed. In addition, real-time PCR analysis showed that LAD2 express mRNA 

for VPAC-2 but not VPAC-1 receptor. The expression of VIP and its receptors is enhanced 

particularly in mast cell-mediated inflammatory diseases suggesting that VIP may cause in 
vivo mast cell activation [57]. The tryptase serum levels were also correlated significantly 

with neuropeptide levels demonstrating the involvement of neuropeptides in the 

pathomechanism of mastocytosis [59]. In addition, VIP also governs intestinal barrier 

function and inflammation as stresses disturb follicle-associated epithelium by VIP and 

VPAC receptors mediated mechanism on mucosal mast cells [60]. Furthermore, when 

murine mast cells were cultured in the presence of IgE that subsequently lead to stimulation 

and release of truncated VIP together with histamine [13]. Importantly, the expression of 

CRTH2 receptor was also reported on mast cells and basophils. In human nasal polyps, 34% 

of mast cell express CRTH2 receptor. Additionally, 87% of LAD2 human mast cell line and 

98% of primary cultured human mast cell showed expression of intracellular CRTH2 [61]. 

The expression of CRTH2 receptor has also been noticed on basophils that may be 

responsible for chemotaxis of these cells at the inflammatory site [41, 62]. Together, current 

evidence suggests that the expression of VIP specific receptors on mast cells and basophils 

provide an opportunity for neuropeptide VIP to act on these cells and modulate the 

immunological reactions. We recently reported the expression of CRTH2 receptor on tissue 

mast cells of eosinophilic esophagitis (EoE) patients as well as in the experimental murine 

model of EoE [63].
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3.2. Eosinophils and VIP receptors expression

Eosinophils are responsible for combating multicellular parasites in vertebrates. Along with 

mast cells, the molecular and cellular mechanisms related to eosinophils in allergic diseases 

such as asthma, rhinitis, eosinophilic gastrointestinal disorders, and eosinophilic pancreatitis 

is well studied [64–68]. Despite considerable advances in understanding eosinophil-

mediated allergic manifestations, the impact of neuropeptides on eosinophils in allergic 

disease is vastly under-studied. Only a few earlier reports have pointed out the immuno-

regulatory effect of neuropeptides on eosinophils [69, 70]. A recent report showed the role 

of VIP and CRTH2 receptor interaction in recruiting eosinophils in allergic rhinitis (AR) 

patients [18]. The relatively high expression of CRTH2 receptor in various regions of the 

brain was observed indicating the association between neuropeptide and CRTH2 receptor. 

These evidence point out that VIP/CRTH2 receptor interaction may play a crucial role in 

allergic manifestations through its stimulatory effects on Th2 cells, eosinophils, and 

basophils [71]. The secretion of VIP by eosinophils is also reported [12]. All these 

functional studies have pointed out a strong association between VIP and eosinophils in the 

pathophysiology of allergic diseases. However, the role of PGD2-CRTH2 interaction in 

chemotaxis of eosinophils in allergic condition has also been reported [40, 47]. Additionally, 

in nasal tissue of AR patients, ligation of PGD2 to CRTH2 receptor appears to be selectively 

involved in eosinophils recruitment. However, the amount of CRTH2 but not PGD2 was 

highly and significantly correlated with the number of eosinophils infiltrating into nasal 

mucosa suggesting the involvement of another factor in eosinophils trafficking [72]. 

Recently, the involvement of CRTH2 receptor in modulating the biochemical events in VIP-

induced eosinophil chemotaxis in AR patients was reported [18]. Our study also reported 

CRTH2 receptor expression on blood and tissue eosinophils in EoE patients [63].

The significant decrease in inflammatory biomarkers such as eosinophil peroxidase (EPO), 

myeloperoxidase and lactate dehydrogenase were observed in the lung of OVA-respirable 

powder challenged murine model when intra-tracheal administration of IK312532-respirable 

powder (Long-acting analogue of VIP) was done. These results reveal the VIP mediated 

attenuation of existing eosinophilia in the lung [73]. Taken together, it seems reasonable that 

the association exists between eosinophils and VIP in the allergic diseases. This interaction 

needs further investigation to explore the VIP biology with respect to eosinophils in allergic 

diseases.

3.3. Neutrophils and VIP receptors expression

O’Dorisio et al (1980) detected VIP in neutrophils isolated from leukaemic patients that may 

provoke either inhibitory or/excitatory response upon neutrophils and this action is mediated 

through VPAC-1 receptor. The expression of VPAC-1 receptor on human resting neutrophils 

was first detected by RT-PCR analysis [74]. Palermo et al (1996) demonstrated that VIP has 

the ability to affect the expression of receptors for Fc portion of IgG (Fcγ R) in human 

neutrophils. In the experiment, antibody dependent cellular cytotoxicity (ADCC) activity 

was evaluated in basal conditions and following in vitro stimulation with interferon gamma 

(IFNγ). The incubation with VIP reduced the cytotoxicity of both stimulated and non-

stimulated neutrophils. The inhibitory effect of VIP was more pronounced on neutrophils 

stimulated with IFNγ. Thus, by regulating the neutrophil cytotoxic response, VIP may limit 
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tissue injury during inflammation [75]. The priming of neutrophils by VIP has also been 

reported [76, 77]. Additionally, VIP peptide analogue could inhibit antigen-or cytokine-

induced neutrophil recruitment in vivo in airways [78].

3.4. Lymphocytes and VIP receptors expression

Both T and B lymphocytes express VIP associated receptors [79] and the expression of 

VPAC-1 receptor on murine CD4+ and CD8+ T-cells point out the effect of VIP on cytokine 

production and proliferation of T-lymphocytes [80]. However, another study has 

demonstrated the presence of both VPAC-1 and VPAC-2 receptors on CD4+ and CD8+ T 

cells [81]. VIP as immunomodulatory neuropeptide has the ability to promote or inhibit 

individually the differentiation or function of some T-helper subsets [82]. Both T and B 

lymphocytes produce VIP suggesting the lymphocytes may modulate the immune response 

through secretion of VIP [14, 83, 84].

The expression of CRTH2 receptor has also been reported on T lymphocytes and it is 

preferentially expressed on Th2 cells [85]. The role of CRTH2 receptor in mediating 

chemotaxis of CD4+ Th2 lymphocytes in response to mast cell released substances has been 

observed [86]. Further, the migration of Th2 cells through a CRTH2 dependent mechanism 

via mast cells released mediators in nasal polyp tissue has also been reported [87]. More 

studies needed in this direction to explore the effect of lymphocyte and VIP interaction on 

the immune system.

3.5. Monocytes, macrophages, dendritic cells and VIP receptors expression

Monocytes are the part of the innate immune system and also have the prominent effect on 

adaptive immunity. The inhibitory or stimulatory effect of VIP on monocytes or 

macrophages depends upon the expression of specific receptors at the differentiated or 

activated cells that lead to activation of different transduction pathways and subsequently 

distinct immune response [88]. Importantly, in resting human monocytes, the expression of 

VPAC-1 was reported but not VPAC-2 receptor [89]. Murine peritoneal macrophages, and 

the human monocytic cell line THP-1 express VPAC-1 and PAC1 mRNA constitutively, and 

VPAC-2 following LPS stimulation [90, 91]. Interestingly, VIP shows the inhibitory effect 

on LPS-induced inflammatory responses by murine monocytes and macrophages that is 

mediated via VPAC-1 receptor, even though both VPAC-1 and VPAC-2 receptors are 

expressed [92]. Additionally, VIP exerts anti-inflammatory action by inhibition of pro-

inflammatory cytokine production (such as TNFα, IL-6, IL-12) by activated macrophages; 

and by up-regulation of anti-inflammatory cytokine IL-10 production. VIP has an excitatory 

effect on monocytes and macrophages but inhibits LPS-induced or IFN-γ-induced 

inflammatory pathways in these cells. VIP arrest LPS-induced inflammation in monocytes 

and macrophages via cAMP-dependent or independent mechanisms [54, 93]. The presence 

of VPAC-1 and VPAC-2 receptors on dendritic cells has also been reported [94, 95].

4. Mechanistic events involved in VIP mediated signaling

VIP exert their immunomodulatory effects through VPAC-1, VPAC-2, PAC1 and CRTH2 

receptors via the stimulation of various protein kinases such as the phospholipase C/PKC 
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and the mitogen-activated protein kinase (MAPK) pathways, as well as the adenylate 

cyclase/PKA pathway [96]. Further, PAC1 receptor mainly mediates effects via linking with 

phospholipase C, whereas VPAC-1 and VPAC-2 receptors generally couple to adenylate 

cyclase. The mechanistic pathways involved in VIP mediated induction of immune 

responses are depicted in Fig. 1. Two pathways are operational in VPAC mediated response:-

cAMP-dependent pathway and cAMP-independent pathway. In cAMP-dependent pathway, 

the binding of VIP with VPAC receptors increase the intracellular cAMP by stimulating 

adenylate cyclase that leads to activation of protein kinase A (PKA). The activated PKA 

further mediates its action via two different mechanisms- through promoting 

phosphorylation of cAMP response element binding protein (CREB), which finally leads to 

inhibition of NF-κB. CREB binds to co factor known as CRBP binding protein (CBP), 

therefore preventing the interaction of CREB with nuclear factor kB (NF-KB). The another 

downstream effect of PKA activation causes inhibition of phosphorylation of downstream 

MAP/ERK kinase(MEK) KINASE 1 (MEKK1) that leads to inhibitor of MEKK3/6/P38 

pathway that subsequently prevents the another NF-κB co factor known as TATA box 

binding protein (TBP) minimizing the affinity for DNA and inhibit NFkB pathway [54]. In 

addition, this pathway also blocks the IFN-γ induced inflammatory response by inhibiting 

phosphorylation of the Janus kinase/signal transducer and activator of transcription (JAK/

STAT) pathway [23].

Apart from above discussed signaling mechanism, there is another cAMP-independent 

pathway operational in VIP mediated responses that prevent the nuclear entry of NF-κB via 

inhibiting IκB phosphorylation. The cAMP-independent pathway prevents inhibitory κB 

kinase (IκK) activity that inhibits the phosphorylation of the IκB and enhances the 

stabilization of p65/p50/IκB complex. Finally, all these events prevent the nuclear 

translocation of NFκB subunits. VIP mediated signaling also inhibits the inflammatory 

response induced by LPS [36, 54]. Additionally, the stimulation of other intracellular 

messenger systems including calcium and phospholipase D have also been reported [24]. 

Recently, the possible mechanism of association between VIP and CRTH2 receptor has been 

explored. The study demonstrated that VIP-induced eosinophil chemotaxis in allergic 

rhinitis patients is mediated through the CRTH2 receptor involving Ca2++ independent 

protein kinase C (PKC) and protein kinase A (PKA) activity. Moreover, VIP-CRTH2 

binding involves novel PKC δ, PKCε, PKAα, PKAα IIreg, and PKAγ cytosol-to-membrane 

translocation without the change in the total contents of these proteins [18]. Importantly, VIP 

mediated activation of the particular signal transduction pathway depends on expression of 

the predominant receptor subtype, cellular level of activation, and use of cell lines [97].

5. Significance of VIP in the allergic diseases

VIP has been proposed to play a key role in many physiological processes occurring in the 

gastrointestinal tract, airways, cardiovascular system, reproductive system, and endocrine 

system. The immunomodulatory effect of VIP is indicated by the study in which the 

peripheral blood mononuclear leukocytes from allergic rhinitis and asthma subjects were 

incubated with a number of neuropeptides such as VIP, Substance P, morphine, and ACTH 

and in both normal and allergic subjects, only VIP showed stimulatory effects [98].
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5.1. Significance of VIP in asthma pathogenesis

Asthma is a common chronic inflammatory disease of the airways characterized by 

reversible airflow obstruction, airway hyperreactivity, and mucus hypersecretion. The 

allergic manifestations involve the release of allergic substances from mast cells, 

eosinophils, and excessive production of Th2 cytokines such as IL-4, IL-5, IL-13, and IgE 

antibody [99]. It is estimated that asthma is affecting >7.0 million children in the United 

States and the prevalence of the disease is still increasing [100]. A rich supply of VIPergic 

fibers were observed in the airway along with vascular smooth muscles of trachea and 

bronchi in the respiratory tract pointing out the role of VIP in the immunopathogenesis of 

respiratory diseases [101]. As VIP exerts a variety of biological actions, reducing vascular- 

and bronchial-constriction, and works as a potent anti-inflammatory factor, thus may be used 

for the treatment of cardiopulmonary disorders such as pulmonary arterial hypertension, 

asthma and chronic obstructive pulmonary disease (COPD). VIP has the ability to improve 

blood circulation to lungs and also balancing airway secretions [102]. Furthermore, VIP 

released from inhibitory nonadrenergic noncholinergic (i-NANC) nerves works as an airway 

smooth muscle dilator but during allergic condition, VIP mediated effect is attenuated by 

released inflammatory mediators that may cause airway hyperresponsiveness. The 

mechanistic role of VIP in asthma pathogenesis is shown by the study in which 

intraperitoneal administration of VIP eliminated the airway hyperresponsiveness and reduces 

the inflammation in VIP gene-deficient (−/−) mice [19]. Consistent with this study, VIP gene 

deficient (−/−) mice showed peribronchiolar airway inflammation along with the production 

of pro-inflammatory cytokines and airway hyper-responsiveness to inhaled cholinergic 

agonist methacholine [103]. Further, the significance of VIP was analyzed in VIP gene 

deficient (−/−) mouse model of sulfite-sensitive asthma in which VIP modulate the oxidant/

antioxidant balance in asthma. The wild-type mice with VIP gene have functional lung 

carbonyl reductase without any symptoms of asthma, whereas VIP−/− mice have abnormal 

carbonyl reductase and have spontaneous asthma suggesting that deficiency of VIP gene 

may cause a predisposition to asthma development [104]. The decreased VIP concentration 

in the bronchoalveolar lavage fluid in rat model is negatively correlated with c-fos protein 

expression and more prone to asthma attacks [105]. Moreover, the decrease in VIP content 

in murine lungs, especially in the columnar epithelia of the airways in Aspergillus-treated 

mice, was also observed [106]. The positive correlation between VIP staining and mast cell 

infiltration in the smooth muscle layer was also noticed [107]. It is well established that 

tryptase, a serine proteinase, released after mast cell activation is capable of causing 

bronchial hyperresponsiveness and recruitment of inflammatory cells in asthma. This effect 

is probably mediated by activation of other allergic mediators and cleavage of the 

bronchodilating peptides VIP and peptide histidine-methionine (PHM) [108]. Purified 

tryptase obtained from human lung extract has the ability to rapidly hydrolyze VIP at 

multiple sites at Arg12, Arg14, Lys20, and Lys21 and PHM at a single site Lys20 indicating 

tryptase-mediated degradation of the bronchodilators including VIP may be responsible for 

bronchial responsiveness in asthma [109]. The effect of VIP administration on neutrophil 

trafficking in the lungs were also observed demonstrating the systemic or/local 

administration of VIP analogue decreases cytokine-induced neutrophil recruitment in 

airways in Sprague-Dawley rats that were treated intratracheally with recombinant 

interleukin (IL)-1 β [78]. Stimulation of airway smooth muscle (ASM) cell with 
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endogenous mitogens may lead to increased airway resistance/ASM hyperplasia in bronchial 

asthma. However, VIP has the ability to inhibit ASM cell growth and inhibit the mitogenic 

effect of histamine by a PKA-mediated mechanism [110]. Further, targeting the VIP 

receptors can also be promising approach for reducing the asthma severity. Several lines of 

evidence suggest that there was no correlation exist between severity of asthma and the 

number of VIP-nerves in the biopsies [111, 112]. A study was performed in 25 adult 

asthmatic patients in which VIP plasma levels were found lower in patients than normal 

individuals indicating the relevance of VIP in asthma pathogenesis [113]. Collectively, it can 

be mentioned that VIP acts as an anti-asthma factor as decreased VIP concentration in 

asthmatic patients leads to increased airway inflammation and hyperresponsiveness. The 

diagrammatic representation of VIP mediated immune responses in asthma is summarized in 

Fig. 2.

5.2. Significance of VIP in promoting allergic rhinitis pathogenesis

Allergic rhinitis (AR) is an IgE-mediated immediate allergic reaction with the main 

symptoms of nasal obstruction, pruritus, nasal itching, sneezing and rhinorrhea [65]. Several 

allergic mediators such as histamine, leukotrienes, prostaglandins, interleukins, and platelet-

activating factor playing role in AR pathogenesis [65]. Nasal biopsy examinations have 

shown an accumulation of inflammatory cells such as mast cells, eosinophils, and basophils 

in AR patients [114] and Th2 mediated response is reported [115].

The human nasal mucosa is abundantly innervated by nerve fibers, secretes various 

neuropeptides that have the impact on the disease pathogenesis. Notably, the enhanced 

expression of VIP and its receptors (VPAC-1 and VPAC-2) in the nasal mucosa of AR 

patients were observed suggesting an increased expression level of VIP receptors as one of 

the possible explanation for nasal hyperresponsiveness in allergic rhinitis patients [116]. 

Similarly, the significant increase in neuropeptide-containing nerve fibers especially 

VIPergic fibers were observed emphasized the involvement of innervation in these allergic 

rhinitis patients [117].

Mucociliary clearance (MCC) is the physical defense mechanism that protects the airway 

against inhaled pathogens, toxins and allergens [118]. The expression of VIP is observed in 

the sinonasal epithelium that was found up-regulated in allergic state suggesting the 

possibility that an increased VIP level in histamine-driven allergic rhinitis may enhance the 

sinonasal fluid secretion causing allergic rhinorrhea [119]. In the study, allergic rhinitis 

patients were challenged nasally with histamine or allergen and after histamine challenge, 

only VIP level was found enhanced in nasal lavages. However, SP, CGRP, and VIP were 

significantly enhanced immediately after allergen challenge. This data suggest that 

histamine-induced cholinergic reflexes induce the release of VIP and its crucial role in nasal 

allergy [120]. Additionally, parasympathetic nerves are involved in the pathophysiology of 

rhinosinusitis and estimation of secreted VIP in human saliva may be used as markers for 

parasympathetic nerve activity in these patients. The baseline salivary levels of VIP was 

significantly elevated between attacks in allergic rhinosinusitis subjects and returned to 

baseline values following treatment with pseudoephedrine demonstrating that VIP level in 

saliva may indicate the neuronal mechanisms involved in rhinosinusitis [121].
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Posterior nasal neurectomy (cholinergic nerve) has been shown to remarkably improve 

subjective nasal symptoms in patients with severe allergic rhinitis as it decreases the IL-5 

and mast cells in severe AR [122]. Posterior nasal neurectomy (PNN) is a common surgical 

treatment for allergic rhinitis in Asia and it is based on the concept that posterior nasal 

neurectomy may induce denervation of the nasal mucosa and relieve the nasal symptoms of 

allergic rhinitis. The posterior nasal nerve is considered the main source of the sympathetic, 

parasympathetic and sensory fibers that innervate the nasal mucosa. However, recently rat 

model of PNN was developed and examined the effects of PNN on allergic rhinitis in 

ovalbumin-sensitized rats. Although these rats showed reduced nasal secretion, PNN did not 

affect eosinophils and mast cells infiltration, and other allergic symptoms (i.e. sneezing and 

nasal scratching). The study points out that PNN may be a therapeutic option for 

management of hyperrhinorrhea, but not allergic rhinitis hypersensitivity as nerves and 

secreted neuropeptides regulate only nasal secretion, but not hypersensitivity in AR [123]. 

Recent literature on allergic rhinitis patients provided the first evidence of the association 

between VIP and CRTH2 receptor in eosinophil chemotaxis in these patients. The CRTH2 

receptor expression by eosinophils in AR patients was found to be up-regulated following 

VIP treatment. Further, VIP induces PGD2 secretion by eosinophils enhancing the allergic 

manifestation. This study suggests that VIP-induced eosinophil chemotaxis in AR patients is 

mediated through CRTH2 receptor [18]. Additionally, tyrosine kinase inhibitors induce the 

expression of CRTH2 receptor in both human lymphocytes and eosinophils thereby 

augmenting the VIP/PGD2 induced eosinophils recruitment in allergic rhinitis patients 

[124]. Taken together, these findings provide preliminary supportive evidence that VIP may 

be playing a crucial role in AR pathogenesis and there is still need to explore the further 

significance of VIP in AR immunopathogenesis. The possible mechanistic aspects and cell 

types involved in VIP mediated immunological responses in allergic diseases such as 

allergic rhinitis have been summarized in Fig. 3.

5.3. Significance of VIP in promoting atopic dermatitis pathogenesis

Atopic dermatitis (AD) is a type of skin inflammation and it affects 10%–20% of the 

population [125, 126]. Nervous system modulates the immunologic responses in the skin of 

AD patients. Altered expression of cutaneous innervation and released neuropeptides in AD 

patients provoke the immunological responses in the skin by modulating the functions of 

langerhans cells, keratinocytes, mast cells, and other immune cells [127, 128]. 

Neuropeptides are released by the skin innervating nerves that affect the skin immunity and 

cell function. Therefore, the better understanding of neuropeptides interaction with skin 

immune cells/system is necessary for developing new approaches for skin disease treatment. 

The skin inflammation may be Th1/Th2-mediated and APC cells involved in the Th1 and 

Th2 process are distinct. Thus, the effect of neuropeptides in cutaneous immunity occurs 

through a complex mechanism and interaction of neuropeptides with particular immune cells 

changes the immune response [6]. The existence of VIP- immunoreactive nerve fibers in the 

deeper part of the dermis close to sweat glands and hair follicles as well as the presence of 

VIP receptors on keratinocytes in the basal layer of the epidermis have been reported 

indicating the possible role of VIP in skin physiology [129]. Diminished SP levels and 

increased VIP levels in lesional skin from AD patients were observed as compared to control 
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skin [130]. VIP concentration is elevated in skin biopsies from patients with eczema, 

psoriasis and VIP may increase local blood flow in these patients [131].

An increase in the numbers of VIP-positive nerve fibers in lesional psoriatic skin were 

observed as compared to normal skin [132]. The study by Fisher et al., (2002) demonstrated 

the marked staining for VPAC-2 mRNA in epidermal cells with most pronounced 

hybridization signals observed in keratinocytes of the basal layer and in glandular cells 

surrounded by VIP-immunoreactive nerve fibers. Hair follicle cells next to VIP-positive 

nerve fibers also showed hybridization signals [133]. The elevated plasma levels of 

neuropeptides including VIP was reported to be enhanced in AD patients as comparison to 

normal non-atopic controls [134]. Further, enhanced plasma levels of neuropeptides 

including VIP was found correlated with the intensity of pruritus in the intrinsic type of AD 

and the higher risk of IgE-mediated sensitization to moulds in the extrinsic type of AD 

suggesting neuropeptides may be used as better alternative biomarkers of AD [135]. The 

enhanced VIP levels were reported in AD patients not only in the skin but also in the serum 

[20]. Interestingly, computer-induced stress enhanced the allergen-specific skin wheal 

responses with the concomitant increase in plasma levels of SP and VIP in AD patients 

aggravating the severity of AD [136]. However, a study performed by Kang et al (2000) 

where the action of neuropeptides VIP and SP to affect cytokine release (IFN-gamma & 

IL-4) in the peripheral blood mononuclear cells (PBMCs) of AD patients were analyzed. 

The ratios of IFN-gamma: IL-4 production was significantly elevated in the SP treated AD 

group, although VIP had no specific noticeable modulatory effects on these cytokine 

production suggesting the no VIP mediated modulatory effects on the cytokine production in 

AD patients [137]. Only type I VIP receptor (VPAC-1) mRNA was reported to express in 

normal human keratinocytes while DJM-1 cells (human epidermal keratinocyte cell line) 

expressed both VPAC-1 and VPAC-2 receptor. VIP also induced the production of 

inflammatory cytokines (IL-6, IL-8, and RANTES) and these effects were nullified by 

VPAC-1 selective antagonist indicating that these effects are mediated by type I VIP 

receptor [138]. It is proposed that in the dermis, inflammatory cells secrete different 

cytokines which in turn upregulates the expression of VIP receptor thereby enhancing 

response to nerve fibers released VIP. This nerve endings derived VIP ultimately enhances 

the proliferation as well as cytokine production by keratinocytes. This cytokine network 

around keratinocytes may be playing a crucial role in the pathogenesis of inflammatory 

dermatoses [138]. However, in another study, the role of mast cell in allergic skin disease has 

been observed. The enhanced VPAC-2 mRNA expression in mast cells was noticed that was 

increased compared to other receptors such as VPAC-1 or VIP in the human mast cell line 

HMC-1. Stimulation of HMC-1 cells led to a downregulation of VPAC-2. Similarly, 

significantly decreased VPAC-2 immunoreactivity in mast cell was noticed in acute atopic 

dermatitis lesions implicating the role of VPAC-2 receptor in the pathophysiology of atopic 

dermatitis [58, 139]. Taken together, the current pieces of evidence have clearly shown the 

participation of VIP in the pathophysiologic background of skin inflammatory disorders.

5.4. Significance of VIP in pathogenesis of esophageal disorders

Gastroesophageal reflux disease (GERD) is the most common gastrointestinal disorder that 

is characterized by heartburn, difficulty in swallowing (dysphagia), and regurgitation of food 

Verma et al. Page 13

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or sour liquid (acid reflux) [140]. GERD patients who have delayed gastric emptying, have 

the abnormalities in the peptide-immunoreactive fibers that innervate the gastric external 

muscle [141]. Interestingly, abnormally high serum VIP level may have a role in GERD 

pathogenesis. VIP mediated relaxant effect on lower esophageal sphincter causes exposure 

of esophageal mucosa to harmful acid refluxed that subsequently increases the nitric oxide 

(NO) levels responsible for low lower esophageal sphincter (LES) pressure [142]. 

Additionally, the study by Rossiter et al., (1991) demonstrated that the decreased LES 

resting pressure noticed in patients with Barrett’s esophagus and severe gastroesophageal 

reflux may be due to impairment of the VIPergic innervation that subsequently enhances 

local release of VIP with possible overflow to peripheral plasma [143]. The symptoms 

include vomiting, diarrhoea, itching, low blood pressure, and respiratory problems, and 

sometimes anaphylaxis. In addition, GERD like symptoms is also observed in another 

esophageal chronic allergic disease termed as EoE. EoE is characterized by esophageal 

dysfunction, accumulation of ≥15 eosinophils/high-powered field, induced mast cell 

accumulation, basal cell hyperplasia and a lack of response to 8-week proton pump inhibitor 

treatment. Patients with primary EoE commonly report symptoms that include difficulty 

feeding, vomiting, chest pain, dysphagia, and food impaction [144, 145]. Most recently, we 

showed that neuroendocrine cells released VIP in the esophageal mucosa promotes 

eosinophils and mast cells trafficking and accumulation in all segments of the esophagus, 

indicating an important role of VIP in the pathogenesis of EoE. Furthermore, we showed 

that inhibition of VIP-CRTH2 axis ameliorates eosinophils and mast cells inflammation in 

the esophagus. Therefore, anti-VIP or anti CRTH2 receptor therapy may be beneficial to 

treat the dysphagia, stricture and motility dysfunction of chronic EoE [63].

VIP have modulatory effects on immune system activity especially on Th1/Th2 balance and 

may lead to allergic sensitization in children. Notably, VIP showed a positive relationship 

for allergic sensitization with food allergens [146]. Collectively, it can be clearly mentioned 

that allergic diseases become the rapidly growing public health problem worldwide and 

there is still the gap in the understanding of the significance of VIP in other allergic diseases 

such as Eosinophilic Gastrointestinal Disorders. Therefore exploring the relationship 

between VIP and allergic diseases may provide the basis for future research to develop 

therapeutic approaches for the management of these allergic diseases.

6. Therapeutic approaches

Our increasing understanding regarding the impact of VIP in the pathogenesis of allergic 

diseases proposes the VIP and stable VIP-derived agents as an efficient therapeutical option 

to cure inflammatory allergic disorders such as asthma, rhinitis, atopic dermatitis, and 

several eosinophil associated gastrointestinal disorders [22]. The synthesis of stable 

peptidase resistant VIP agonist can give promising results to treat bronchial asthma. The 

recent finding revealed the novel stabilized inhaled VIP agonists for respiratory therapeutics 

may be used with minimum side effects [147]. The use of VIP may also be a fruitful 

approach to protect asthmatic patients against histamine-induced bronchoconstriction [148]. 

Inhalation of VIP analogue Ro 25–1553 (a selective VPAC-2 receptor agonist) leads to a 

rapid bronchodilatory effect in asthmatic patients without any side effects [149]. 

Additionally, conjugated alpha-alumina nanoparticle with VIP has been proposed as an 
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effective nano-drug for the treatment of asthma [150]. Additionally, induced expression of 

VIP and VIP associated receptors were reported in patients with atopic dermatitis [20, 129], 

allergic rhinitis [116] and EoE [63], suggesting the use of stable VIP antagonists or specific 

VIP receptors antagonist may be the logical approach for improving these inflammatory 

diseases.

7. Conclusions and future perspectives

VIP is a neuropeptide with a broad distribution in the body that performs pleiotropic 

functions in several systems and serves as the modulator of immune response. To date, 

several studies have demonstrated the role of VIP in regulating the recruitment of 

inflammatory cells in the allergic diseases. Owing to the ability of VIP to activate immune 

cells of both the innate and adaptive immune system, it may be a decisive neuropeptide in 

modulating the pathophysiology of allergic diseases. The main concern in the usage of VIP 

as a therapeutic option is the very short half-life as rapid enzymatic degradation occurs. 

However, in the light of recent advancement, better stable VIP agonists/antagonists have 

been developed providing the convincing support to be used as a therapeutic alternative for 

the treatment of allergic diseases. However, there is still need to conduct more studies to 

investigate the interaction and cross talk of VIP with the immune cells to get the better idea 

regarding the pathogenesis of the allergic disease. A better way to see VIP as both anti-

inflammatory and pro-inflammatory agent, therefore, the better understanding of VIP 

immune biology will be helpful to develop efficient future therapeutic strategies to treat 

allergic diseases.
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VIP Vasoactive Intestinal Peptide

VPAC-1 Vasoactive Intestinal Peptide Receptor Type 1
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VPAC-2 Vasoactive Intestinal Peptide Receptor Type 2

CRTH2 Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells

PAC1 Pituitary adenylate cyclase-activating polypeptide (PACAP) receptor

GPCR G protein-coupled receptor

PGs Prostaglandins

DC Dendritic cell

MCP-1 Monocyte chemotactic protein 1

CNS Central nervous system

PGD2 Prostaglandin D2

AR Allergic rhinitis

AD Atopic dermatitis

CGRP Calcitonin Gene-Related Peptide

SP Substance P

ELISA Enzyme-linked immunosorbent assay

IL Interleukin

Mw Molecular weight

EoE Eosinophilic esophagitis
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Highlights

• Neuroendocrine cells are the source of Vasoactive Intestinal Peptide (VIP) 

that exerts a wide spectrum of immunological functions as cytokine/

chemokine.

• VIP mediates immunological function via VPAC-1, VPAC-2, CRTH2 and 

PAC1 receptors that are expressed on immune cells.

• VIP has the ability to modulate the immune response induced by 

inflammatory cells such as mast cells, eosinophils, neutrophils, lymphocytes, 

and macrophages.

• The current review provides an updated understanding on the significance of 

VIP in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, 

and atopic dermatitis.
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Fig. 1. 
The summarized mechanistic events operational in VIP mediated signalling pathways. PKA 

=Protein kinase A; MAP kinase= Mitogen-activated protein kinase; CREB= cAMP response 

element binding protein; CBP= CRBP binding protein; NF-KB= Nuclear factor KB; TBP= 

TATA box binding protein; JAK/STAT= Janus kinase/signal transducer and activator of 

transcription; IκK=inhibitory κB kinase; LPS= Lipopolysaccharides; MEKK1= MAP/ERK 

kinase(MEK) KINASE 1; TLR= Toll-like receptor; STAT 1= Signal transducer and activator 

of transcription 1; JAK 1=Janus kinase 1;IRF 1=Interferon regulatory factor 1; PKC= 

Protein kinase C; DAG=Diacylglycerol; PIP2: Phosphatidylinositol 4,5-bisphosphate; PLC= 

Phospholipase C; IP3= Inositol 1,4,5 –triphosphate.
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Fig. 2. 
The significance of VIP in asthma pathogenesis. Decreased VIP level in lungs leads to 

recruitment of inflammatory cells such as eosinophils, mast cells, neutrophils, lymphocytes 

in the lungs. These cells release the allergic mediators that promote airway inflammation and 

hyperresponsiveness. MBP=Major basic protein; ECP= Eosinophil cationic protein; 

EPO=Eosinophil peroxidase; LTs=Leukotrienes; TNF= Tumor necrosis factor; RANTES= 

regulated on activation, normal T cell expressed and secreted; TGF= Transforming growth 

factor; MPO=Myeloperoxidase; PAF=Platelet activating factor; GM-CSF=Granulocyte 

macrophage-colony stimulating factor.
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Fig. 3. 
The significance of VIP in the pathogenesis of allergic rhinitis. Allergic mediators activate 

VIP-ergic nerves to induce the secretion of VIP which in turn promotes the trafficking of 

inflammatory cells in the tissue and manifest allergic responses. VCAM-1= Vascular cell 

adhesion molecule 1; TARC= Thymus-and activation Regulated chemokine; 

PGs=Prostaglandins; PGD2=Prostaglandin D2; DC=Dendritic cells; MCP-4=Monocyte 

chemotactic protein-4; EDN=Eosinophil-derived neurotoxin; MIP-1α=Macrophage 

Inflammatory Proteins -1α.
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Table 1

Characterization of VIP associated receptors

Receptors VPAC-1 VPAC-2 PAC1 CRTH2

Gene name VIPR1 VIPR2 ADCYAP1R1 PTGDR2

Human chromosome location 3p22 7q36.3 7p14 11q12.2

Receptor type G-protein coupled receptor G-protein coupled receptor G-protein coupled receptor G-protein coupled receptor

Tissue expression CNS and peripheral 
tissues including liver, 
lung and intestine

CNS and Peripheral 
tissues, including smooth 
muscles in cardiovascular, 
gastrointestinal and 
reproductive systems

CNS, anterior pituitary, 
pancreatic acini, uterus, 
and adrenal medulla

CNS, thymus, digestive 
tract, heart, spleen, spinal 
cord, skeletal muscle

mRNA expression on 
immune cells

T lymphocytes, 
Neutrophils, Monocytes, 
Macrophages, Thymocyte, 
Keratinocyte THP-1 
(monocytic)

Mast cells, Thymocyte, 
Keratinocyte.
Lymphocytes, 
Macrophages (Upon 
activation)

Macrophages
THP-1 (monocytic)

Eosinophils, Basophils, 
Th2 cells, Mast cells, 
monocytes

Selective agonists [Ala11,22,28]VIP
[K15, R16, L27]VIP(1– 
7)/GRF(8–27)-NH2

Ro 25–1392;
Ro 25–1553

Maxadilan Delta12-prostaglandin D2;
Δ12-Prostaglandin D2;
L-888,607

Selective antagonist PG97–269 PG99–465 Max.d.4;
M65;
PACAP (6–38).

Ramatroban; OC000459; 
Fevipiprant; Setipiprant.

VIP mediated Signaling 
mechanism

Primarily coupled to 
adenylate cyclase

Primarily coupled to 
adenylate cyclase

Adenylate cyclase/protein 
kinase A (PKA) and 
phospholipase C (PLC)/
protein kinase C (PKC) 
pathways

VIP-CRTH2 ligation 
involved Ca2+ 
independent PKC and 
PKA cytosol-to-membrane 
translocation
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