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Abstract

Background—Recent progress in electrophysiological and optical methods for neuronal 

recordings provides vast amounts of high-resolution data. In parallel, the development of computer 

technology has allowed simulation of ever-larger neuronal circuits. A challenge in taking 

advantage of these developments is the construction of single-cell and network models in a way 

that faithfully reproduces neuronal biophysics with subcellular level of details while keeping the 

simulation costs at an acceptable level.

New Method—In this work, we develop and apply an automated, stepwise method for fitting a 

neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive 

dyes (VSDs) and Ca2+ imaging.

Result—We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and 

construct a model with reduced neuronal morphology. We connect the reduced-morphology 
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neurons into a network and validate against simulated data from a high-resolution L5PC network 

model.

Comparison with Existing Methods—Our approach combines features from several 

previously applied model-fitting strategies. The reduced-morphology neuron model obtained using 

our approach reliably reproduces the membrane-potential dynamics across the dendrites as 

predicted by the full-morphology model.

Conclusions—The network models produced using our method are cost-efficient and predict 

that interconnected L5PCs are able to amplify delta-range oscillatory inputs across a large range of 

network sizes and topologies, largely due to the medium afterhyperpolarization mediated by the 

Ca2+-activated SK current.

Keywords

multi-compartmental neuron models; biophysically detailed modeling; model fitting using 
imaging data; automated fitting methods; parameter peeling

1. Introduction

Automated methods for neuron model fitting have replaced the need for manual tuning of 

model parameters [1]. Due to the ease of their use, they could provide a solution for 

exploiting computational properties of single neurons and neural circuits [2]. Novel 

algorithms and strategies for automated neuron model fitting have been proposed [3, 4, 5, 6, 

7, 8, 9]. These methods span a wide range of types of neurons and their electrophysiological 

characteristics. Many of these strategies only use voltage traces recorded from the soma, 

while others rely on electrophysiological recordings at one or more additional dendritic 

locations in order to reproduce the correct membrane-potential dynamics distributed across 

the sub-cellular compartments. However, recording with multiple intracellular electrodes is 

an experimentally demanding procedure ultimately limited by the number of 

micromanipulators that can fit in a setup, the experimenter’s skills, and integrity of the cell 

in the presence of multiple recording electrodes [10]. By contrast, recent developments of 

optical imaging technologies and engineering of novel voltage-sensitive dyes (VSDs) and 

Ca2+ indicators have enabled high-resolution sampling of transmembrane voltage and 

intracellular Ca2+ concentration in single neurons with sub-cellular resolution [11, 12, 12, 

13, 14, 15, 16]. In this work, we develop an automated, stepwise procedure for fitting a 

multicompartmental neuron model to data from somatic patch-clamp recordings in 

combination with VSD and Ca2+-imaging data.

Interactions between synaptic inputs to the dendrites and firing of the soma are a hallmark of 

neural computation [17]. This is especially true for L5PCs, which are characterized by a 

long apical dendrite that spans across cortical layers and receives inputs from various neuron 

populations in different parts of the dendritic tree [18]. The apical dendrite is rich in voltage-

gated Ca2+ channels that contribute to the generation of a dendritic Ca2+ spike [19]. This 

Ca2+ spike plays an important role in integration of synaptic inputs to the apical tuft, 

communication of these signals to the soma, and coincidence detection in the form of the 

back-propagating action potential-activated Ca2+ spike (BAC) firing [18]. L5PCs express 
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many types of voltage-gated ion channels [20, 21, 22], and a number of computational 

models have been developed accounting for these biophysical properties [3, 7, 23, 24, 25, 

26, 27]. The multitude of types of voltage-gated ion channels, however, represents a 

challenge for modeling of the membrane-potential dynamics: unless specific care is taken, 

the role of a specific ion-channel species may be assigned to another ion-channel species 

when both conductances are fitted simultaneously, i.e., constrained by the same objective 

functions [28]. To tackle this problem, in [25], a parameter peeling experimental procedure 

was introduced, in which specific types of ion channels in L5PC are blocked sequentially 

using drugs, and the neuron response to different stimuli are recorded at each stage. The ion-

channel conductances are then fitted step-by-step to these data. Another strategy was 

explored in [7], where experimental data from L5PCs with and without apical dendrite 

(occluded using a “pinching” method [29]) were used during one of the three stages of 

fitting. In this case, the data for different stages of fitting were obtained from separate 

experiments. Both techniques facilitate the optimization procedure by reducing the number 

of free parameters that are fitted simultaneously.

Reduced-morphology models may be crucial in simulations of large networks due to the 

lighter computational load they impose. While the level of detail in the morphologies 

obtained from 3D reconstructions is high, the electrophysiological properties of the distal 

dendritic segments, as well as the heterogeneity of ion-channel populations between 

different dendritic branches, remain elusive [30] and are generally not taken into account in 

the models. However, in many neuron types, dendritic electrophysiological properties vary 

monotonically with the distance from the soma [31], which favors the use of simplified (yet 

multi-compartmental) morphologies. These simplified models should reproduce the 

experimentally observed properties of communication between perisomatic and (proximal to 

mid-distal) dendritic sections of the considered neuron while reducing the computational 

load in comparison to full-morphology models.

In this work, we use the experimentally validated model introduced in [26] (“Hay model”) to 

generate simulated VSD and Ca2+-imaging data as well as simulated electrophysiological 

recordings in a L5PC. We simulate the parameter peeling procedure by sequentially setting 

channel conductances of different ion-channel species to zero in the Hay model and 

measuring the neuron responses to different stimuli under these blockades. We then fit the 

channel conductances in a four-compartment model to reproduce these data. We propose and 

apply a four-step scheme, where the three first steps utilize information on voltage and 

intracellular Ca2+ concentrations along the dendrites with high spatial resolution. The first 

step fits the parameters of reduced morphology, in a similar fashion as in [7], and parameters 

controlling passive membrane properties. The second step fits the non-specific ion-channel 

conductances. These are important for correctly describing the distal dendritic excitability. 

The third step fits the Ca2+ channel conductances and SK channel conductances and the 

parameters describing Ca2+ dynamics. The fourth step fits the rest of the active 

conductances, including the conductances responsible for the spiking behavior. We show 

that the obtained reduced-morphology L5PC model is cost-efficient and faithfully 

reproduces the membrane dynamics and spiking behavior, including the BAC firing. 

Furthermore, we test our method for fitting a neuron model with a full, reconstructed 
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morphology, and find that acceptable fitting results are obtained also when using this 

complex dendritic morphology.

The obtained reduced-morphology model is especially useful in network simulations due to 

its lighter requirements of random access memory and computation time. We validated our 

model by introducing it in a biophysically detailed L5PC microcircuit model [32], which 

originally included the full-morphology Hay model neurons, and showing that the two 

models yielded similar network dynamics. Our circuit model of reduced-morphology L5PCs 

predicts that interconnected L5PCs amplify certain delta-range frequencies due to the large 

contributions of the Ca2+-activated K+ currents (SK currents) to the cell electrophysiology.

2. Materials and methods

2.1. The L5PC model

The Hay model of an L5PC, as well as the reduced-morphology model developed here, 

include the following ionic currents: fast inactivating Na+ current (INat), persistent Na+ 

current (INap), non-specific cation current (Ih), muscarinic K+ current (Im), slow inactivating 

K+ current (IKp), fast inactivating K+ current (IKt), fast non-inactivating K+ current (IKv3.1), 

high-voltage-activated Ca2+ current (ICaHV A), low-voltage-activated Ca2+ current (ICaLV A), 

small-conductance Ca2+-activated K+ current (ISK), and finally, the passive leak current 

(Ileak). The current balance equation of each segment of the neuronal membrane can thus be 

written as

where each current species, except for the axial current, is a product of activation and 

inactivation variables as

Here, ḡ is the maximal conductance of the ion channels, m and h are the activation and 

inactivation variables, Nm and Nh are constants describing the gating mechanisms of the 

channel, and E is the reversal potential corresponding to the ionic species. Reversal 

potentials of Na+ and K+ are constants (ENa = 50mV, EK = −85 mV), while the reversal 

potential of Ca2+ is determined through the Nernst equation by the intracellular [Ca2+] 

(typically, values of ECa in the Hay model vary between 96 and 120 mV [33]). The axial 

current Iaxial is determined by the axial resistance and the voltage difference between the 

considered membrane segment and its neighbors. For details on the model equations, see 

[26].

The intracellular [Ca2+] obeys the following dynamics:
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where ICaHV A and ICaLV A are the high and low-voltage activated Ca2+ currents entering the 

considered cell segment, γ represents the fraction of Ca2+ ions entering the cell that 

contribute to the intracellular [Ca2+], F the Faraday constant, d is the depth of the sub-

membrane layer considered for calculation of concentration, cmin the resting intracellular 

[Ca2+], and τdecay is the decay time constant of the intracellular [Ca2+].

In this work, we run parameter-fitting tasks where we assume the ion-channel dynamics 

fixed, and only vary the parameters governing the maximal conductances, namely, gNat, 

gNap, gh, gm, gKp, gKt, gKv3.1, gCaHV A, gCaLV A, gSK, and gl, and parameters γ and τdecay 

that control the Ca2+ dynamics.

2.1.1. Synapse model—The model for synaptic currents, which are used in simulations 

including in vivo-like background synaptic firing, is adopted from [32]. Each excitatory 

synapse conducts AMPA- and NMDA-mediated currents, and each inhibitory synapse 

conducts GABAA-mediated currents. These are modeled as follows:

Here, wAMPA, wNMDA, and wGABA are synaptic weights, gGlu = 0.0004 μS is the baseline 

conductance of a single glutamatergic synapse and gGABA = 0.001 μS that of an inhibitory 

synapse. Variables BAMPA, AAMPA, BNMDA, ANMDA, BGABA, and AGABA are increased by 

a positive constant (chosen such that the peak conductance of the synaptic current after a 

long silent period would be gGlu or gGABA) at each time of synaptic activation, and 

otherwise decay towards zero, A faster than B, as follows:

(1)

Time constants for the different synaptic species are τA,AMPA = 0.2 ms, τB,AMPA = 1.7 ms, 

τA,NMDA = 0.29 ms, τB,NMDA = 43 ms, τA,GABA = 0.2 ms, and τB,GABA = 1.7 ms. Variable 

cMg2+ represents the Mg2+ block of the NMDA-activated channel, and its value is 

determined by the membrane potential [34]. Variables EGlu = 0 mV and EGABA = −80 mV 

are the reversal potentials of the glutamatergic and inhibitory synapse, respectively.

The background synapses are activated at Poisson-distributed activation times, while the 

intra-network synapses that are exclusively glutamatergic (when present) are activated 

immediately after a spike in the pre-synaptic neuron. The activations of the synapses follow 
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a probabilistic rule [35] that allows the modeling of both short-term depression and 

facilitation. For details, see [32].

2.1.2. Model implementation—Throughout the work, the NEURON software [36] is 

used for simulating the L5PC. For single-cell simulations, the adaptive time-step integration 

method is used, while for the multi-neuron simulations, the fixed time step 0.025 ms is used. 

Our NEURON and Python scripts both for running the parameter fittings and simulating the 

fitted models are publicly available at https://senselab.med.yale.edu/ModelDB/

showModel.cshtml?model=187474—in addition, the principal model for a single reduced-

morphology L5PC is described using NeuroML-2 [37]. The NEURON scripts are based on 

the publicly available models published in [26] and [32]. When implementing the model of 

[32] using our reduced-morphology L5PCs, we updated the background synapse model as 

follows. We grouped the background synapses that were located in the same segment into 

one synapse group, where the individual synapses shared the variables A and B (see 

Equation 1) — only the activation times of each individual synapse were saved into the 

memory. This radically decreased the computational load imposed by solving the differential 

equations (Equation 1).

2.2. Stepwise fitting procedure

We present a flexible stepwise neuron model-fitting framework and apply it to fit a four-

compartment model to simulated electrophysiology and imaging data from an L5PC. The 

fitted parameters are listed in Table 1. The parameter value ranges are taken from Table 2 in 

[26], with certain exceptions (see Supplementary material, Section S1). During each step, we 

use a Python implementation (published by the authors of [7]) of the non-dominated sorting 

genetic algorithm II (NSGA-II) [38] for the parameter optimization. The crossover and 

mutation parameters and the probability of mutation per parameter are kept fixed as ηc = 20, 

ηm = 20 and pm = 0.5. The three first fitting steps are performed using Nsamp=1000 samples 

and Ngen=20 generations, the fourth fitting step using Nsamp=2000 samples and Ngen=20 

generations — these values were found adequate for obtaining an acceptable fit to the data, 

although no convergence to a local optimum is guaranteed. The capacity of the genetic 

algorithm is double the population size.

The objectives are given in Table 2 — see Section 2.2.5 for details of the used objective 

functions. During each step, the parameters that were optimized during the previous steps 

are kept fixed, while the parameters that will be optimized in the following steps are set to 

zero (simulating a perfect blockade of the corresponding ion channels).

2.2.1. First step: Morphology—We follow the procedure of the first fitting step as 

presented in [7], with certain changes. In [7], the leak conductances were set to fixed values 

both in the target model and in the reduced-morphology model under optimization. Here, we 

do not change the leak conductance in the target model but keep it fixed. However, similarly 

as in [7], we fit the leak conductances again in the second step. Thus, the output parameters 

of our first step can be interpreted as optimal lengths, axial resistances and membrane 
capacitances for which the considered objectives can be well met with some values the of 
leak conductances. In the Supplementary material, Section S7, we show that the method 
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used in [7] produces valid fitting results in our framework as well, and in Section S9, we 

show that the first step can be combined with the second one when fitting a neuron model 

with reconstructed morphology.

Following [7], we reset the diameters of each compartment during each iteration of the 

optimization algorithm such that the membrane area of the compartment is equal to the total 

membrane area of the corresponding segments of the full model. The objective functions are 

chosen such that the response of a reduced-morphology model neuron with optimal 

parameters to somatic and apical inputs is as similar as possible to the corresponding 

response in the full-morphology neuron. The accuracy of the model neuron response to 

somatic inputs is measured in terms of both somatic membrane-potential time series 

(objective 1.3) and dendritic steady-state voltage distribution (objective 1.1), while the 

accuracy of the response to apical inputs is measured only in the latter terms (objective 1.2).

2.2.2. Second step: Passive and “nearly passive” properties—After fixing the 

morphological parameters (compartment lengths, axial resistances and membrane 

capacitances), we optimize the rest of the parameters that are major contributors to 

membrane response properties at rest. These are the leak conductances, non-specific ion-

channel conductances (gh), and the reversal potential of the non-specific ion current (Eh). In 

the same way as in the first step, we set the objectives such that a neuron model with optimal 

parameter values would respond accurately to somatic input both in terms of membrane-

potential time series (objective 2.1) and its steady-state distribution across dendrites 

(objective 2.2). We assume the leak reversal potential known (−90 mV), but if it is unknown, 

it should be fitted here as well.

2.2.3. Third step: Ca2+ dynamics and SK currents—Once the passive properties and 

non-specific ion channel properties have been optimized, we search for the optimal 

parameters that govern Ca2+ currents, Ca2+ dynamics, and Ca2+-dependent K+ currents. 

These parameters are in the Hay model the following: high-voltage activated (HVA) and 

low-voltage activated (LVA) Ca2+ channel conductances (gCaHVA and gCaLVA), percentage of 

Ca2+ current inclusion into sub-membrane space (γ), time constant of decay of free Ca2+ 

(τdecay), and the SK channel conductance (gSK). It may be important that these parameters 

be fitted simultaneously, as the Ca2+ currents have a strong feedback effect on the membrane 

potential through the SK channels. For this reason, we use objective functions that promote 

both a correct membrane-potential response and an accurate [Ca2+] response to different 

stimuli. A good fit postulates that the steady-state membrane potential (objective 3.2) and 

Ca2+ concentration (objective 3.3) distributions across the dendrites, as a response to 

somatic DC, are similar to those in the target neuron, and that the maximal membrane 

potential (objective 3.4) and Ca2+ concentration (objective 3.5) responses to an EPSP-like 

current injection are accurate as well. The distribution of membrane potential is measured 

across the whole neuron, while the Ca2+ concentration only needs to be measured at the 

apical dendrite: as the signal propagation in the basal dendrites of an L5PC was nearly 

passive [39], the Hay model does not include Ca2+ channels in the basal dendritic 

compartments [26]. In addition, the membrane-potential time series at soma during a 100-ms 

DC pulse should be as close as possible to the one in the target neuron (objective 3.1). The 
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correct temporal activation and deactivation of the Ca2+ and SK currents at the soma is a 

prerequisite for an accurate spiking behavior, especially regarding the medium 

afterhyperpolarization (AHP) period.

2.2.4. Fourth step: Correct spiking behavior—After fixing the parameters governing 

Ca2+ dynamics and SK currents, we optimize the rest of the parameters to make the model 

produce acceptable spiking behavior. We require that the f–I curve be close to that in the 

target neuron (objective 4.4), and that the somatic membrane-potential time series be similar 

to that in the target neuron, both when given somatic sub-threshold and supra-threshold DC 

(objective 4.1 and 4.2) and a combination of somatic and apical stimuli that induces BAC 

firing (objective 4.3). This step is computationally the most challenging one, both because of 

the cost of evaluating the f–I curves (albeit here done for only three values of current 

amplitude), and because of the large genetic population that is needed to secure that the 

objective functions be met closely enough. It might be advisable to divide this step further 

into two steps, where, e.g., first the slower ion-channel conductances (Im, IKp, INap) are 

optimized, and finally the conductances of the faster ones (IKt, INat, IKv3.1). This is left for 

future studies.

2.2.5. Distance metrics of the objective functions—The objective functions of Table 

2 are designed to capture correct membrane-potential behavior across the spatial extent of 

the neuron. Certain objective functions only consider the quantities measured at soma 

(objectives 1.3, 2.2, 3.1, and 4.1–4.4). These objectives are further categorized to those that 

aim at capturing the correct time series (objectives 1.3, 2.2, 3.1, 4.1), those that only aim at 

capturing the correct numbers of spikes (objective 4.4), and those that aim at capturing both 

(objectives 4.2 and 4.3). The difference in time series is quantified using the L1 norm (mean 

absolute difference) between the target and candidate membrane potential (a function of 

parameters p) across a time window ranging from 50 ms before the start of the stimulus to 

200 ms after the start of the stimulus:

(2)

The L1 norm is relatively less strict against differences in spike timings between the target 

and candidate data (but elaborates more the breadth of the time window in which differences 

in membrane potentials occur) than the L2 norm. The difference in f–I curves is quantified 

by the 2-norm, i.e.,

(3)

when no other measures are considered (objective 4.4). However, objectives 4.2 and 4.3 use 

a combination of spike number and timing data and the time course data — in these 

objectives all the differences are quantified using 1-norms:
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(4)

We chose the coefficients as  and , which means that an average 

difference of 12 mV is penalized as much as the summed distance of 20 ms between the 

spike timings, and furthermore as much as a difference of one spike in spike counts. These 

values gave the error function a desired empirical balance, such that voltage traces that 

looked (by eye) more different from the target data than others also received larger error 

values.

The rest of the objectives, namely, objectives 1.1–1.2, 2.1, and 3.2–3.5, concern quantities 

measured along the dendrites — both near to and far from soma. For these objectives, the 

membrane potentials V (either the steady-state membrane potential following a long 

stimulus as in objectives 1.1, 2.1, and 3.2, or maximal membrane potential during a pulse 

stimulus as in objectives 1.2 and 3.4) or Ca2+ concentrations c (objectives 3.3 and 3.5) are 

quantified across the spatial extent. This is done using either 20 (in simulations of reduced-

morphology L5PCs when synaptic background inputs are not modeled) or 5 (in simulations 

of reconstructed-morphology L5PCs and reduced-morphology L5PCs with spontaneous 

synaptic inputs) recording sites per compartment. With four compartments in the reduced-

morphology neuron and 193 in the full-morphology neuron, this implies that the total 

numbers of recording sites are  (for objectives 1.1–3.5) and . For 

each recording site, a spatial coordinate d is determined by its distance from soma; negative 

values of d are assigned to recording sites along the basal dendrite and positive values along 

the apical dendrite. The difference of these 2-dimensional data, 

 and  is quantified as follows. First, 

we disregard the data corresponding to those recording sites at the reduced morphology that 

are further away from the soma than the farthest sites in the reconstructed morphology. In 

our work, this is done for recording sites for which d < −282 μm or d > 1301 μm (i.e. d 
outside the spatial extent of cell #1 in [26]). Second, we normalize the remaining data by the 

maximal range (  or ), and hence 

the resulting data are in ℝ2 plane, where the average distance of the reduced-morphology-
neuron data from their nearest neighbor in the reconstructed-morphology-neuron data is 

used as the distance metric. In mathematical terms, we can thus write
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(5)

where Nacc is the number of accepted data points, i.e., data points for which d(i) ≥ −282 μm 

and d(i) ≤ 1301 μm. Note that the limitation of the accepted data points allows neurons that 

are significantly longer to be created. However, as the diameters of the segments are 

restricted by the rule that conserves the total membrane area, neurons with too long 

dendrites end up having too thin diameters, which is likely to prevent a good fit to the data.

2.2.6. Combining the steps—As we use a genetic multi-objective optimization 

algorithm, at the end of each step we have a population of Pareto-efficient (see, e.g., [1]) 

parameter sets. We apply an exploratory scheme, where the best parameter sets of each 

objective and parameter sets that perform well in two separate objectives are handed on to 

the next step. In the interest of reducing the number of the parameter sets that are fixed 

during the early steps, we reduce the number of objective functions by grouping some of 

them together.

Firstly, most of the objectives of Table 2 consist of stimuli of different amplitudes 

(objectives 1.3–4.1 and 4.4). In these cases, the objective functions are defined as sums of 

the sub-objective functions. As an example, for objective 1.3, we have

where functions f1.3,I(p) are of the form of Equation 2.

Secondly, we further combine the objectives for correct membrane-potential distribution 

across the dendrites as a response to somatic DC and that as a response to EPSP-like 

stimulus. Namely, we group together objectives 1.1 and 1.2 as f1.1+1.2(p) = f1.1(p)+5f1.2(p), 

objectives 3.2 and 3.4 as f3.2+3.4(p) = f3.2(p)+f3.4(p), objectives 3.3 and 3.5 as f3.3+3.5(p) = 

f3.3(p)+f3.5(p), and objectives 4.2 and 4.3 as f4.2+4.3(p) = f4.2(p)+f4.3(p). The factor 5 is 

chosen for f1.2(p) due to the small effect of EPSP-like stimulus on dendritic peak membrane 

potentials when all active conductances are blocked compared to that of the somatic DC; in 

other objectives the effects are approximately of the same order of magnitude (data not 

shown).
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Due to this grouping, the multi-objective optimization algorithm is given two objective 

functions for the first and second steps, and three for the third and fourth steps. In practice, 

this means that the first step optimization is performed once, and three candidate parameter 

sets are obtained — one that performs best in f1.1+1.2, one that performs best in f1.3, and one 

that performs well in both. When picking the parameter set that produces a good fit to two 

objective functions, we first normalize the error function values of both objectives by their 

medians (across the whole population of parameters at the end of the optimization) and then 

sum them together: the parameter set pi that produce the smallest value of the sum

(6)

is chosen. The second step optimization is then performed three times (once using each of 

these three parameter sets) and nine candidate parameter sets are obtained. The third step 

optimization is thus performed nine times, and each optimization gives six candidate 

parameter sets (one that performs best in f3.1, one that is best in f3.2+3.4, one that is best in 

f3.3+3.5, and three intermediate ones that perform well in two of the three objective 

functions), and therefore, the final step is performed for a maximum number of 54 parameter 

sets. Note that some of the optimizations performed during the first three steps may give 

parameter sets that do not produce a good fit to the data. In such cases, only the feasible 

parameter sets are handed over to the final fitting step.

2.3. Power spectra

We illustrate and quantify the possible oscillations in the neuronal network dynamics using 

the power spectra of the population spike trains. The power spectrum of a spike train 

, where variables tj represent the spike times, is determined as

where Fs(f) is the Fourier component for the frequency f. This component can be determined 

as

where i is the imaginary unit.
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3. Results

3.1. Morphology parameters and ion-channel conductances for the reduced model can be 
fitted to the full model data

We applied the stepwise model-fitting procedure using simulated data (obtained from 

simulations of the Hay model with reconstructed morphology) as the target data for the 

objective functions. We used the multi-objective optimization algorithm developed in [38] to 

find the optimal parameter values, in a similar fashion as done in [7]. Figures 1, 2, 3, and 4 

show the performance of the fitted model in fulfilling the objectives, and Table 3 lists the 

obtained parameter values.

The reduced model shows a good fit to most of the measured quantities. However, the third 

step reveals that all aspects of the ion channel distributions cannot be accurately preserved in 

the four-compartment model: the responses of the full model were best reproduced by letting 

the Ca2+ channel conductances go to zero in the apical trunk, while keeping the 

corresponding values at the apical tuft relatively large. By contrast in the original model, the 

Ca2+ channel conductances were non-zero all along the apical dendrite, but had extremely 

large values at segments 685–885 μm away from the soma (in the “hot zone of Ca2+ 

channels”). Figure S1 (Supplementary material Section S2) shows that the error functions 

for the spatial distributions of membrane potential and Ca2+ concentration in the third step 

fitting could be decreased by including an extra compartment that represented the hot zone 

in the reduced-morphology neuron. Nevertheless, this would make the model a six-

compartment model, as the furthest compartment would have to be divided to three 

compartments. Furthermore, in a recent study [27], the Ca2+ channels were better fitted by 

using linear increases Ca2+ channel densities than a Gaussian-shaped distribution with 

largest conductances around the main bifurcation point along the apical dendrite. Therefore, 

we applied the parameters obtained from the fitting of the four-compartment model (Figure 

3) in the rest of this work.

Figure 5 shows the evolution of the objective functions across the generations in all four 

steps of fitting: in most cases the values of the error function dramatically decreased during 

the first five to ten generations, after which only modest improvement was achieved. For the 

results shown in Figures 1–4, only the final parameter set was used, but to make sure the 

fitting procedure is robust, we repeated the final fitting step 10 times. All of these 10 

samples showed the correct numbers of spikes in response to the stimuli of Figure 4B–D 

(data not shown).

The stepwise approach gains advantage from the fact that the parameter search space is 

smaller than when all parameters are fitted at once. In Figure 6, we show that fitting all 

model parameters simultaneously (without simulation of ion channel blockades) did not 

produce as good fitting results as the stepwise method: out of ten trials, only one of the 

obtained parameter sets produced the correct number of spikes as response to the stimuli of 

objectives 4.1–4.3. This parameter set was characterized by relatively strong Ca2+ currents 

and very fast Ca2+ dynamics in the apical dendrite, but the SK currents, by contrast, were 

weaker (see Supplementary material, Section S3 for details). Although the numbers of 

spikes were correctly reproduced in Figure 6I–L, the spike timing in the BAC firing 
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experiment (panel L) was not as accurate as in Figure 4. Furthermore, the response to sub-

threshold stimulus (Figure 6I) was less accurately predicted by this model than by the 

standard reduced model (see Figure 4A). In the Supplementary material, Section S4, we 

show that qualitatively similar results were obtained using indicator-based evolutionary 

algorithm (IBEA) [40], which has been shown to outperform other multiobjective 

optimization methods in certain neuron model fitting tasks [41]. Out of fifteen trials, only 

one IBEA optimization succeeded in producing the correct number of spikes as response to 

the stimuli of objectives 4.1–4.3. The best solution is shown in Figure S2, and the underlying 

parameter values are listed in Table S4. Similarly to the abovementioned NSGA solution, 

this IBEA solution underestimated the somatic SK conductances and showed a mismatch in 

membrane potential response to a sub-threshold stimulus.

To further show the flexibility of our method, we present alternative fitting results in the 

Supplementary material. In Section S5 and Figures S7–S10, we show that our fitting method 

worked well also when noisy measurements at dendritic locations are used. In these 

optimizations, the target VSD data were added a Gaussian white noise component up to 5-

mV SD (the mean absolute error for this component is approximately 4 mV) and the Ca2+ 

concentration data were multiplied by a log-normal noise component with σ up to 0.2 

(positive errors of this component are on average +177% while negative errors are on 

average −52%). We also assessed the effect of lower temporal resolution on the quality of 

the fit. When we reduced the temporal resolution of the dendritic VSD and Ca2+ 

concentration measurements to 200 and 20 Hz, respectively, the mean errors of the 

membrane potentials along the dendrites in the three first fitting steps were 0.03–0.09 mV 

and the relative errors of the Ca2+ concentration were 0.002–0.8%. If yet smaller resolutions 

of (100 Hz and 10 Hz) were used, the corresponding errors were on average 0.11–0.34 mV 

and 0.005–1.6%. These errors were small but systematic in the way that the magnitude of 

the response was always underestimated. In Section S6, we showed that errors stemming 

from using smaller temporal resolutions (100-Hz membrane-potential measurements and 10-

Hz Ca2+ concentration measurements) do not have a significant effect on the fitting. Figure 

S11 shows the objective function values after the second step fit when either accurate or 

temporally downsampled (dendritic) target data were used, and Figures S12 and S13 show 

the swarms of parameter values and their relation to the objectives f2.1 and f2.2, respectively. 

The obtained parameter and objective function values obtained by fitting to downsampled 

data were indistinguishable from those obtained by fitting to accurate target data. Section S7 

and Figures S14–S17, in turn, show that the fitting of leak conductance during both the first 

and second step was not necessary from the optimization point of view, as acceptable results 

could also be obtained by setting the leak conductances to a predetermined value in the first 

step (as done in [7]) and fitting them during the second step (obviously, this is not possible 

in fitting to experimental data as the leak conductances cannot be controlled by the 

experimenter).

We also confirmed that our method performs well when different rules of particle selection 

were applied, both within an optimization and between different steps of optimization. 

Firstly, we confirmed that our four-step method also works when IBEA-selection based 

optimization is used instead of the NSGA-II, as shown in Figures S3–S6. Secondly, Section 

S8 introduces an alternative stepwise fitting method where no particular best candidate from 
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an earlier step was chosen. Instead, at the end of a fitting step, the whole population was 

passed on to the next step, where the earlier-step parameters of each particle were assigned a 

randomly chosen parameter set from this population (the fitted parameters were, however, 

drawn randomly from the uniform distribution as in the default method). Figures S18–S21 

show that this approach gave a fair fit to the objective functions as well. This approach could 

be useful if there were more than four steps or much more objective functions than in those 

in Table 2, which would make the tree-like parameter optimization scheme (see Section 

2.2.6) computationally heavy. This approach might, however, benefit from a more 

sophisticated rule for the crossover procedure in the genetic algorithm. In the scheme of 

Figures S18–S21, the parameters fitted during the earlier steps were picked in an all-or-none 

fashion from one of the two candidates in the crossovers, and only the parameters fitted 

during the performed step were applied to the NSGA crossover mechanism (see [38]). This 

prevented the parameters fitted during earlier steps to be mixed in a way that would abolish 

the fit to the objective functions of the earlier steps. This is an important requirement in the 

stepwise scheme, as the quality of the fit to the objective functions of the later steps need not 

correlate with that of the earlier steps.

Finally, we demonstrate that our step-wise method shows promise also when applied to 

reconstructed morphologies. We fitted the passive membrane properties and the ionic 

conductances along the dendritic tree (cell #2 in [26]) in three steps, see Supplementary 

material, Section S9 for details. The resulting model showed an acceptable fit to the target 

data, as shown in Figures S22–S24.

Both the four-compartment model of Figures 1–4 and the morphologically detailed model of 

Figures S22–S24 are models that reproduce the spiking properties and the spatial 

distribution of membrane potential dynamics in the (simulated) target data. While the 

morphologically detailed model provides better means for studying the integration of inputs 

from different parts of the dendritic tree, the four-compartment model is faster to simulate 

and hence more useful in large network simulations. Table 4 shows the reductions in 

simulation times attained by the use of reduced model, compared to the model of Figures 

S22–S24, on a standard personal computer. The reduced model was on average 7–27 times 

faster to simulate than the morphologically detailed model with variable numbers of 

segments (as in [26]), depending on the chosen number of segments in the reduced model 

(5–20 per compartment) and the choice of solving method. The speed-up factors obtained 

when both the morphologically detailed and the reduced-morphology model were simulated 

using the fixed time step method were close to the theoretical speed-up factor (27.13) 

estimated by comparing the numbers of differential equations solved in the two cases.

3.2. Validation of the reduced model without synaptic inputs

We validated the obtained reduced-morphology model by evaluating the quantities of the 

objective functions used in the construction of the original Hay model [26]. These objectives 

are different from ours in that they do not consider distribution of membrane potential across 

dendrites but mostly in soma (response to one of the somatic stimuli measured also in two 

locations along the apical dendrite, though), and many of the considered quantities include 

statistical features obtained from a sequence of spikes. The quantities used for validation are 
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the following: first spike latency (A), initial burst inter-spike interval (D), fast AHP depth 

(B,J) and time (E), action potential peak (C,K) and half-width (F,L), Ca2+ spike peak (G) 

and width (H), inter-spike interval mean (I), and membrane-potential maximum at 620 (M) 

or 800 μm (N). Of these, quantities A–F concern firing induced by somatic DC of 

amplitudes 0.78, 1.0 and 1.9 nA, quantities G–L concern BAC firing induced by a 

combination of a somatic square pulse of duration 5 ms and amplitude 1.9 nA and an apical 

(at 620 μm) EPSP-like stimulus of rise time 0.5 ms, decay time 5 ms, and maximum 

amplitude of 0.5 nA, and quantities M–N concern the spatial decay of an action potential 

induced by a somatic square pulse of duration 5 ms and amplitude 1.9 nA. Figure 7 shows 

these quantities in both the reduced model (blue) and the original Hay model (green).

Except for two of these quantities, namely, the width and maximum membrane potential of a 

Ca2+ spike, all the differences between the quantities in the reduced model and original 

model were less than three times the experimentally observed SD (see Table 1 in [26]). The 

discrepancy in Ca2+ spike amplitude could already be anticipated in the simulations of the 

third step model, where Na+ and K+ channels, except for SK channel, were blocked. In these 

simulations, a strong EPSP-like stimulus caused 5 to 20 mV larger peak membrane 

potentials in the full model than in the reduced model along the first 700 μm of the apical 

dendrite, and even larger differences in the distal tuft (see Figure 3). In the simulations of the 

intact models, the difference in Ca2+ spike amplitude was of the same magnitude (20 mV), 

however, in the opposite direction: BAC firing caused the peak membrane potential to be 

higher in the reduced than in the full model, as shown in Figure 7. This switch is made 

possible by the contribution of Na+ channels to the BAC firing [26, 27]. Correcting this 

behavior might require a use of objective functions that more accurately restrict the spatial 

aspects of the neuron response also in the fourth step.

Both the model fitting and validation of Figure 7 were carried out by dividing each of the 

four compartments into nseg = 20 segments. Figure S25 (Supplementary material, Section 

S10) shows that the model validation results are acceptable even when each compartment 

was divided into nseg = 5 segments. Thus, in the following sections, we keep nseg = 5 in the 

interest of fast numerical integration.

3.3. Validation of the reduced model with network interactions

We implemented the obtained reduced-morphology L5PC model in a circuit model of 

L5PCs [32]. For model validation purposes, we compared the predictions of our reduced 

network model with the predictions of the full network model of [32]. Similarly to the 

procedure applied in [32], we randomly connected 150 L5PCs such that two neurons had a 

probability of 0.13 of being connected in a unidirectional manner and 0.06 of having a 

bidirectional connection [42]. Each intra-network connection was represented by a set of 

five synaptic contacts, randomly distributed along the dendrites. These synapses conducted 

AMPA and NMDA currents with the same characteristics as the background excitatory 

inputs (except that they were non-depressing and had a 25% release probability, while the 

background synapses had a 60% baseline release probability) and synapses between 

reciprocally connected L5PCs were 1.5 times stronger than others.
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We performed 10-second network simulations for the model network with reduced-

morphology neurons. The background synaptic conductances were up-scaled (AMPA, 

NMDA and GABA conductances all in proportion) such that a single reduced-morphology 

neuron produce the same spiking rate as a single full-morphology neuron — to achieve this, 

the conductances were increased by 11%. The intra-network synapses were up-scaled in a 

similar manner to make a network of reduced-morphology neurons have similar firing rate 

as the network of full-morphology neurons. Here we did not fix the up-scaling factor, but 

instead considered a range of values close to the optimal in order to see the effect of the 

scaling factor on other network properties than the firing rate. Figure 8 shows example 

population spike trains, cumulative firing-rate curves, inter-spike interval (ISI) distributions, 

and power spectra for both the full network model and the networks of reduced-morphology 

neurons where the intra-network synapses are up-scaled using three different factors (1.1, 

1.25, and 1.4). The statistics from the reduced network models are very similar to those from 

the full network model. Differences arise in the shapes of the ISI distributions and the power 

spectra. The mean of the (single-cell) ISI distributions were almost equal between the full 

network and the reduced network with the intra-network synapse-scaling factor 1.25, but the 

standard deviation was larger in the former (see Figure 8C), indicating a slight 

underrepresentation of ISI values smaller and larger than mean in the reduced network in 

comparison to the full network (note that although the ISI probability distribution had larger 

values in the reduced network at very low values of ISIs, the peak at medium-low values of 

ISI was altogether thicker in the full network distribution). Consequently, the (single-cell) 

power spectrum of the reduced network had less power at low frequencies than the full 

network, except the reduced network with the intra-network synapse-scaling factor 1.4, 

which due to the increased spiking rate had an altogether elevated power spectrum. By 

contrast, the global ISI distribution and the global power spectra (where the spiking events 

were pooled across neurons) were very similar between the full and the reduced network 

with intra-network synapse-scaling factor 1.25.

Both the network model with reduced-morphology neurons and the full network model are 

rather memory-consuming, but the reduced network model is computationally much less 

expensive than the original network model. The original network model was parallelized on 

150 CPUs (running on a single CPU with up to 48GB of random access memory was 

impossible due to the need of even more memory), and a single simulation took 0.74±0.07 

(mean ± SD) hours to finish. The network model with reduced-morphology neurons could 

be run both parallelized and on a single CPU: when parallelized on 150 CPUs, a network 

simulation took 0.066±0.001 hours (3.9 minutes, speed-up factor 11.3) to finish, while a 

single-CPU simulation took 2.3±0.41 hours (speed-up factor 47.6 when compared to the 

total simulation time of the parallelized runs) and required less than 7GB of memory.

3.4. Predictions of the reduced model

In the final part of our work, we studied the network response of interconnected L5PCs to 

oscillatory background input, which is an important function in in vivo cortical circuits. We 

implemented a 1000-neuron network of reduced-morphology L5PCs, using the same model 

parameters as in Figure 8, except for the intra-network synaptic weights, which were 

downscaled to counterbalance the increase in network size. Figure 9 shows example 
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population spike trains, average SK current and intracellular Ca2+ concentration time series, 

and frequency spectra of the population spike trains in these networks and their relation to 

the frequency spectra of Poisson processes with corresponding event rates. In Figure 9A–C, 

the background synaptic inputs were stationary (no oscillations in inputs). In Figure 9D–G, 

the background synaptic input times follow a non-homogeneous Poisson process dynamics, 

where the average input rate term λ varies by ±25% in a sinusoidal curve with a given 

frequency.

In Figure 9A and C, we can observe from the spike trains and frequency spectra that 

oscillations emerge in a similar fashion as in Figure 8. Figure 9B shows that the emergence 

of the oscillations is contributed by the delayed activation of SK currents (delayed with 

respect to the phase of the average firing rate). Figure S26 (Supplementary material, Section 

S11) shows that these oscillations disappear if the SK current — or the high-voltage-

activated Ca2+ current ICaHV A that is a major contributor to the SK current — is blocked, as 

the neurons of the network enter a high-frequency firing state. Blockade of other currents 

have smaller effects, except for the blockade of transient Na+ currents, which fully inhibits 

the spiking behavior (data not shown).

Figure 9D shows example spike trains for networks receiving oscillatory inputs with 

different frequencies. Figure 9E shows for some of these frequencies the average firing-rate 

curves and SK currents before and after the peak background input. We can observe that for 

input frequencies 1–2 Hz, the delay between the firing-rate and SK-current peaks is small 

compared to the oscillation wavelength, while for 4 Hz, the SK currents are still active by 

the next peak background input, and hence the following response is weaker. The global 

effects can be observed in Figure 9F, where the power spectra of the output population spike 

trains are plotted against the power spectra of corresponding non-homogeneous Poisson 

processes. In these processes, the rate term λ was identical to that of the background 

synaptic input process and the numbers of events were identical to the numbers of spikes in 

the networks. The powers of the frequency components corresponding to the input 

frequencies are plotted across the input frequencies in Figure 9G. Figures 9F–G show that 

frequencies approximately 0.5–4 Hz are amplified by the network (in comparison to non-

homogeneous Poisson processes).

To test the robustness of our predictions, we repeated the experiment of Figure 9D–G using 

different network topologies and smaller network size. Instead of the Erdős-Rényi-type of 

random network connectivities used above and in [32], we now used the Watts-Strogatz [43] 

connectivity pattern. In this pattern, the nodes (neurons) are first located on the perimeter of 

a ring and connected to their closest neighbors, and each of the connections is then randomly 

rewired with a probability 0 ≤ q ≤ 1 to an arbitrary node of the network. Depending on the 

rewiring probability q, the networks may express the “small world” behavior, where local 

connections are abundant but the global path length is small [43]. Figure S27 

(Supplementary material, Section S12) shows that the trend of delta-range frequencies being 

amplified by the L5PC network, as seen in Figure 9G, is reproduced with all tested Watts-

Strogatz networks. The amplitudes of the amplification vary in Watts-Strogatz networks with 

different rewiring probabilities, but these differences are not large compared to the variation 

that stems from the random placement and activation times of the synapses.
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4. Discussion

Conclusions

We introduced a stepwise neuron model-fitting strategy designed for data obtained from 

VSD and Ca2+ imaging. We tested our method on simulated data from L5PCs where ion 

channels were sequentially blocked, and the ion-channel conductances of the remaining 

channels were fitted stepwise to produce a reduced-morphology version of the Hay model 

presented in [26]. The obtained model, which is more than 20 times faster to simulate, 

preserves the properties of communication between soma and apical dendrite in a single 

L5PC. Furthermore, when interconnected to form a network and added background synaptic 

inputs, our model neurons reproduce the network dynamics predicted by the full model [32].

Towards application of our approach to experimental data

VSD imaging can be readily performed in slices to obtain high-resolution single-neuron 

data. To get the correct calibration, the VSD measurement may have to be accompanied by a 

patch-electrode [44] or fluorescence lifetime imaging [45]. While the spatial resolutions 

obtained using VSD imaging techniques have increased all the way to the level of dendritic 

spines [46], the temporal resolutions are usually lower than those in electrophysiological 

measurements. However, the differences are decreasing with the development of novel 

voltage sensors with improved performance [47]. The temporal resolution used in Ca2+ 

imaging experiments is yet lower, ranging from several to tens of Hz, which is mostly due to 

the slower underlying Ca2+ dynamics [48]. In this work, we showed that the membrane-

potential dynamics along the dendrites of a reduced-morphology neuron model can be fitted 

with an adequate accuracy to corresponding data in simulations of a full-morphology neuron 

model (Figures 1–4). Furthermore, using a complex morphology also for the fitted model, 

we showed that our stepwise scheme yielded an acceptable fit that preserved the membrane-

potential dynamics along the main apical and basal dendritic branches of a reconstructed 

morphology (Figures S22–S24). Development of this approach could allow for generation of 

morphologically detailed neuron models where ion-channel conductances for each segment 

of the dendritic tree are fitted directly to the imaging data obtained from the corresponding 

segments instead of having the ion-channel conductances follow statistical rules as in [26], 

[27], and many other models.

Besides the challenges of temporal resolution, the VSD and Ca2+ optical imaging techniques 

suffer from noise levels that are significantly larger than those in electrophysiological 

experiments. Therefore, in many cases, averaging is performed to increase signal-to-noise 

ratio. However, recent advances in probe design and optical imaging instrumentation, 

accelerated by the BRAIN Initiative [49], open the door for detection of signal in single 

trials capturing trial-to-trial variability. In addition, Ca2+ imaging techniques are prone to 

systematic errors imposed by buffering of Ca2+ ions by the indicator molecules, which 

interferes with the measured Ca2+ dynamics [50, 51]. In this work, we demonstrated high 

fidelity reconstruction of dendritic membrane-potential dynamics in the presence of 

measurement noise with a size comparable or larger than in many VSD and Ca2+ imaging 

applications (Figures S7–S10). An additional source of error is the low temporal resolution 

itself, but Figures S11–S13 show that its effect on our fitness functions and the parameter 
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optimization results are small. It is, however, crucial that the higher resolution (1 kHz or 

larger) be used for measuring the membrane potential at the soma of the intact (spiking) 

neuron, as the number and timing of spikes may not be faithfully captured in the data with 

lower resolution.

To assure that the right role is given to the right ion channels and to obtain a successful fit 

using limited resources, we used the stepwise protocol where only a subset of the ion-

channel conductances are fitted simultaneously, and the fitted values are passed on to the 

next stage where another subset of ion-channel conductances are fitted. Experimentally, this 

procedure requires cumulative use of pharmacological blockers of different ion channels 

[52]. We designed the model-fitting steps as a trade-off between experimentally validated 

procedures (such as those in [25] and [27]) and fitting-wise effective strategies. In the fourth 

model-fitting step, we fitted all voltage-gated Na+ channel conductances and all voltage-

gated K+ channel conductances, while in the third step we fitted the Ca2+ channel 

conductances and Ca2+-activated K+ channel conductances, and in the second step the HCN 

channel conductances. Experimentally, this could be carried out by first (after recording the 

responses of the intact neuron for the fourth step fitting) applying a solution with a Na+ 

channel blocker, such as tetrodotoxin (TTX), and K+ channel blockers that do not block the 

apamin-sensitive SK channels, such as tetraethylammonium (TEA) [53] and 4-

aminopyridine (4-AP) [54], and then record the data needed for third step fitting. To obtain 

data for the second step fitting, the SK channels have to be blocked by apamin and Ca2+ 

channels either by some of the pharmacological blockers, such as dihydropyridine variants, 

or by replacing the Ca2+ ions in the intracellular medium by Cd2+ or Co2+ [25] (note that 

blocking Ca2+ channels might be sufficient to abolish the SK currents as well, as the major 

source of Ca2+ entry into the cell is blocked). To record data for the first step fitting, the 

HCN currents have to be blocked, which could be done for example with ZD7288 [55]. 

However, it may be an unrealistic demand to require a blockade of all voltage-gated ion 

channels in an experimental setting, and thus the first two steps might have to be combined 

to fit the passive membrane properties and the HCN channel conductances simultaneously. It 

should be noted, however, that pharmacological blockers of ion channels are never ideal, but 

they on one hand often have side-effects that limit their use and on the other hand do not 

necessarily completely block the targeted ion channels. In [25], probably for this reason, 

blockade of K+ channels was replaced by careful choice of stimulating currents and repeated 

fitting of the passive parameters after the K+ channel conductances had been estimated — 

methods of this kind could be highly useful in our framework as well.

Comparison to other methods

The single-cell model fitting we carried out resembles that done by the authors of [7] in that 

we used their Python implementation of the NSGA-II algorithm [38] to a similar task: to 

construct a reduced-morphology model of an L5PC using a stepwise fitting strategy. There 

are, however, three main differences in the fitting methods between our work and theirs.

Firstly, their approach does not employ the parameter peeling strategy (such as that 

presented in [25]), where data from the same neuron under different pharmacological 

blockades is used. Instead, they constrain all the active conductances responsible for spiking 
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behavior during the second step, and then use data from separate experiments to constrain 

the Ca2+ dynamics and SK conductances during the third and final step. Their approach 

yielded a successful fit for six out of ten models, and the effects of the conductances added 

during the third step on the second step fit were reported to be small [7]. The reason for the 

small effects is likely to lie in the choice of objective functions and parameters varied. In 

their second step, the model parameters (both somatic and dendritic) were fitted using 

membrane-potential traces at soma (both in intact and pinched neurons though). In their 

third step, only parameters concerning apical dendrite were fitted, as in their model the Ca2+ 

and SK channels were assumed to be present only in the apical tuft. As for our study, we 

generated the data by simulating the Hay model [26], which contains a large SK 

conductance not only in the apical dendrite but also in the soma — the mutual expression of 

these channels and their distinct roles are also backed by recent experiments [56]. Therefore, 

applying the third step of the approach of [7] to our data would imply a major change to the 

second step fits (for reference, see the effect of SK blockade in the network experiment of 

Figure S26 and our earlier analysis on the contribution of SK currents to the single-cell 

dynamics [33]).

Secondly, our model included a slightly larger set of ion channels but (in the default fitting 

task) smaller number of functionally different compartments. We applied the same ion 

channel selection as was used in the Hay model [26], which includes the LVA Ca2+ channels 

and Kv3.1 channels in addition to those included in the model of [7]. While in our model the 

action potentials are generated in the soma, their model describes the action potential 

initiation zone and the axon as well. Thirdly, our approach concentrates on producing an 

accurate representation of membrane-potential dynamics in the dendrites across a continuum 

of distances from soma in all except the last step, while in [7], only the first step employs 

objective functions that constrain membrane-potential dynamics in the dendrites.

Although our fitting method was inspired by the possibilities that lie in its application to 

experimental data, we mainly used it for making a reduced-morphology version of an 

existing, experimentally validated L5PC model. Model-reduction schemes have been applied 

previously to many neuron models, including models for L5PCs. In [57], simple 

conservation rules were applied to convert a full-morphology model of L5PC into a reduced-

morphology L5PC. In their work, both the full model and the reduced model had passive 

dendrites, and thus no rules for the scaling of active conductances were applied. In [6], 

different degrees of reduction and their effects were tested when simplifying a full-

morphology model of a globus pallidus neuron into a reduced-morphology model. In a 

similar manner as done in [57], the authors of [6] considered simple schemes, where the 

total membrane area of neuron compartments and their electrotonic lengths (as defined in 

passive signal propagation experiments) were conserved. However, the authors of [6] also 

studied whether varying the active conductances in the dendrites of the reduced model could 

improve the fit to the data from the full-morphology neuron (which also had active 

dendrites), but could not significantly improve the fits obtained by the simple rules they used 

for model reduction. It should be noted that these experiments were done using hand-tuning 

of the active conductances — thus, it is likely that applying suitable objective functions and 

letting the active conductances vary between different spatial segments could introduce 

improvements to the quality of their fit.
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Our parameter optimizations were carried out using relatively few (20) generations. This 

was less than in [7] (100–1000 generations used) and [26] (500 generations used), but we 

found it sufficiently large for obtaining a good fit. Larger numbers are expected to further 

improve the fit, but at the expense of increased computational load for the fitting procedure. 

Our population size, by contrast, was as large or larger than in [7] (350–1000 samples) and 

[26] (1000 samples). We did not vary other genetic algorithm parameters as done in [7], but 

we expect that fine-tuning the crossover and mutation parameters would boost the genetic 

algorithm performance.

Network simulations

In creating neuron models, it is important to ensure the usability of the model in network 

simulations. Simulations of realistic activity in cortical circuits would require the description 

of many neuron types and their dynamics, such as those sketched in [58] and [2]. However, 

circuit models of many cell types are difficult to control as the number of connectivity-

related parameters grows as the square of the number of cell types [58]. In this work, we 

implemented a network model of L5PCs, following the choices made in [32]. We replaced 

the thick-tufted L5PCs in the model of [32] by our reduced-morphology neurons to gain 

speed and allow simulations of larger networks. We fitted the background synaptic 

conductances based on single-cell activity produced by the model of [32], but we also 

validated the obtained network model against data obtained from 10-second network 

simulations of the full model. The network model, although consisting of L5PCs only, gives 

an insight to the cortical network responses that arise from the L5PC-to-L5PC connections. 

These connections are relatively abundant in the neocortical microcircuitry (a connectivity 

of 11.6% observed in [42], and 6% – 18%, depending on the subtype of L5PC, in [2]), and 

hence the emergent properties of a L5PC network could be of interest also in the absence of 

the surrounding network (cf. [32]).

In the network simulations of the present study, we concentrated on network properties with 

longer time scales than those studied in [32]. These include network responses to oscillatory 

inputs with delta-range frequencies (0.5–5 Hz): our model predicts that the lowest delta-

range frequencies (0.5–3 Hz) be significantly amplified by the network (see Figure 9). On 

the other hand, amplification of low delta-range frequencies is present also when the timings 

of the background synaptic inputs follow stationary (non-oscillatory) Poisson statistics. 

These results are of particular interest as L5PCs were proposed in a recent review to be key 

players in generating or maintaining the cortical up and down states that shift periodically in 

a delta-range frequency [59]. Another review proposes that delta oscillations are composed 

of two components: one originating in (1) neocortex and the other in (2) thalamus [60]. Our 

modeling results support the contributions of L5PCs to both components: (1) since the 

underlying Hay model is based on neocortical (although murine) in vitro data [26] and our 

model predicts that oscillations emerge spontaneously in interconnected L5PCs (Figures 8 

and 9A–C), and (2) since an important part of excitatory synaptic inputs to the L5PCs comes 

from thalamus [18] and our model predicts that oscillatory inputs with delta-range 

frequencies are amplified by the interconnected L5PCs (Figure 9D–G). The large 

contribution of Ca2+-dependent K+ currents to the prevalence of the oscillations, as predicted 

by our model, has also been proposed in the literature of slow (<1 Hz) oscillations [61, 62], 
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which are likely to be generated by the same mechanism as the delta oscillations originating 

in the neocortex [62].

The results showing amplification of delta-range frequencies (Figure 9D–G) are robust to 

the underlying network architecture, as shown in Figure S27. The differences between the 

amplifications in networks with different topologies are small, but systematic analysis of the 

effects of the underlying structure could reveal contributions from different graph-theoretic 

measures as shown for another system in [63]. To achieve this, a large set of various models 

of network architecture, both theoretical [64, 65, 66] and data-oriented [67, 2], should be 

used. This is left for future work.

Our results showing the prevalence of oscillations in spontaneous L5PC network dynamics 

(Figures 8 and 9A–C) also provides an additional mechanistic view point to the results 

shown in [32]. In their work, they considered the network response to a synchronous 

stimulus at time t = 2000 ms following the spontaneous background synaptic firing. Our 

model predicts a variability in the network firing rate curves (see Figure 9A) and the timing 

of the local maxima of these curves. Furthermore, we showed that the time passed since the 

previous local maximum significantly affects the average amplitude of SK currents in the 

network (Figure 9B), which are a major contributor to single-cell and network activity 

(Figure S26). Therefore, the large SDs in Figures 2, 4, 5, and 6 of [32] could be decreased if 

only networks that are in the same phase in relation to the spontaneous oscillations were 

considered.

Outlook and future directions

Our stepwise method is automated in the sense that no hand-tuning of model parameters is 

needed at any stage [1]. However, constructing a unique model for a large number of 

neurons would greatly benefit from a degree of “meta-automaticity”, where automated 

experimental procedures stimulate and record the cell responses and choose the amplitudes 

of the stimuli used for neuron fitting (such as those in Table 2) based on the responses. This 

is important, since neurons of the same type can possess radically different 

electrophysiological properties [68, 2]. Furthermore, automated methods would be needed in 

choosing the final parameter set out of the Pareto-optimal population given by the multi-

objective optimization algorithm. Stepwise strategies, such as the one we presented, are as 

well suited for this task as the strategies that fit all parameters simultaneously, yet the 

stepwise strategies gain advantage from dealing with a smaller parameter space [7] and are 

less likely to mix the roles of different ion-channel conductances (see, e.g., the discussion on 

compensatory mechanisms in [28]). The increased automaticity would also allow systematic 

generation of reduced-morphology versions of the neuron models that are currently available 

in public databases. Furthermore, the reduced-morphology model obtained using the method 

is in itself immediately applicable in e.g. studying mental disease [33].

Future experimental techniques are likely to permit the use of VSD and Ca2+ imaging in 

parallel with automated cell patching. Automatic cell-patching methods [69] have already 

been implemented in a number of systems, including in vivo neurons [70]. Furthermore, 

VSD imaging techniques may allow a resolution of dendritic compartment scale also in vivo 
in the near future. Computational model-fitting methods should be updated to take advantage 
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of these new technologies in order to allow more faithful reproduction of dendritic 

membrane-potential dynamics than that attained by using patch-clamp data alone. We have 

shown that reliable reproduction of the communication between soma and dendrites can be 

obtained by fitting a reduced-morphology model of an L5PC to a combination of simulated 

VSD, Ca2+ imaging, and electrophysiological data. Future work should validate this method 

experimentally and extend the framework to permit it to be efficiently used as part of fully 

automated model-fitting techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• New VSD and Ca2+-imaging techniques allow high-resolution imaging of 

neurons.

• We present a stepwise model-fitting scheme with possibilities to apply to such 

data.

• We apply our method to simulated data to construct a reduced-morphology 

L5PC model.

• Our model is cost-efficient and reproduces the main features of the original 

model.

• Our model predicts that interconnected L5PCs can amplify low-frequency 

inputs.
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Figure 1. First step fit
A: The reconstructed and reduced (fitted) morphology. B–F: Illustration on how well the 

reduced model (blue crosses and curves) approximates the behavior of the full model (green 

dots and curves) with regard to the objective functions. The panel B (objective 1.1) shows 

the membrane-potential values at each recorded location after a 3-second somatic DC 

injection, and the panel C (objective 1.2) shows the maximal membrane-potential values 

during or after an EPSP-like current injection at the apical dendrite. This current is injected 

at a 620 μm distance from the soma, and it has a double-exponential pulse shape with rise 

time 0.5 ms and decay time 5 ms. The panels D–F (objective 1.3) show the somatic 

membrane-potential time series as a response to somatic 100-ms DC pulses with three 

different amplitudes: the blue and green curves are tightly overlapping. The spatial 

coordinate d in objectives 1.1 and 1.2 represents the distance (along the dendrites) from 

soma — negative values are given to locations at the basal dendrite and positive to locations 

at the apical dendrite. Colors available in the online version of the article.
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Figure 2. Second step fit
Panels A–C show the membrane-potential distribution along the dendrites both at rest and as 

a steady-state response to long, somatic DCs with amplitudes 0.5 and 1.0 nA (objective 2.1). 

Panels D–E show the membrane-potential time series response to 100-ms somatic DCs of 

two different amplitudes (objective 2.2). Blue: reduced-morphology neuron, green: full-

morphology neuron. Colors available in the online version.
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Figure 3. Third step fit
Panels A–B show the membrane-potential time series as a response to 100-ms somatic DCs 

of two different amplitudes (objective 3.1). Panels C–F show the distributions of the steady-

state membrane potentials (left) and Ca2+ concentrations (right) along the dendrites using 

long, somatic DC pulses with amplitudes 0.5 and 1.0 nA (objectives 3.2 and 3.3) as the 

stimulus. Panels G–J, in turn, show the distributions of the maximum membrane potential 

(left) and Ca2+ concentration (right) along the dendrites as a response to EPSP-like current 

injection (objectives 3.4 and 3.5). Blue: reduced-morphology neuron, green: full-

morphology neuron. Colors available in the online version.
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Figure 4. Fourth step fit
Panels A–B show the membrane-potential time series as a response to 100-ms somatic DCs 

(objective 4.1), both sub-threshold (left) and supra-threshold (right). Panel C shows the 

membrane-potential time series as a response to a somatic DC (objective 4.2). Panel D 
shows the membrane-potential time series as a response to a combination of 5-ms somatic 

DC and EPSP-like apical current injection (objective 4.3). This combination of stimuli 

should induce BAC firing in the model L5PC, as happens with the Hay model [26]. Panel E 
shows the somatic f–I curves (objective 4.4). Blue: reduced-morphology neuron, green: full-

morphology neuron. Colors available in the online version.
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Figure 5. The evolution of the minimum, lower quartile, median, upper quartile, and maximum 
of the objective function values
Panels A–D show the steps 1–4, respectively, and the separate subpanels show the values of 

the objective functions separately. The red dashed lines represent the objective function 

values of the final parameter set (see Figures 1–4). The blue dashed lines in panel A show 

the objective function values of the optimal parameter set chosen after the first step: the 

passive conductances are reassigned for the red dashed line parameters during the second 

step, otherwise the parameters are the same. The values of the minimal errors that are 

outside the plotted range in panel D represent zero values (number of spikes exactly same as 

in the target data for all three DC amplitudes). Colors available in the online version.
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Figure 6. Results from the experiment where all parameters model parameters were 
simultaneously fitted
A population of Nsamp=2000 samples was iterated for Ngen=20–29 generations. The 

optimization was repeated ten times, and the best fit is shown here. See Table S2 for the 

objective functions and Table S3 for the parameter values.
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Figure 7. Reduced model validation against data from full model
Panels A–F show the reduced (blue) and full (green) model cell responses to a somatic DC. 

The bar represents the SD in the corresponding experimentally measured quantities — note, 

however, that here the reduced model response is compared only against the full model 

response, not against the mean of the experimentally measured data (which were shown in 

Table 1 in [26]). The values shown correspond to three different simulations, where the DC 

amplitudes were 0.78, 1.0 and 1.9 nA. Panels G–L show the responses to stimuli that induce 

BAC firing, i.e., a combination of a square pulse of duration 5 ms and amplitude 1.9 nA and 

an EPSP-like stimulus at the apical dendrite, separated by a 5-ms delay (somatic stimulus is 

applied first). Panels M–N show the membrane-potential responses to a tonic, somatic 

stimulus-induced spike at distant apical dendrite. Colors available in the online version.
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Figure 8. The network consisting of model L5PCs with reduced morphology reproduced the 
main features of a network model with reconstructed-morphology neurons and dense 
background synaptic inputs
The left-hand panels show predictions of the full network model [32], and the right-hand 

panels show the predictions of the network model with reduced-morphology neurons. Black: 

full network model. Green: Poisson process with λ fitted to reproduce the spiking frequency 

of the full network model. Blue, red, and yellow: reduced-morphology networks where the 

intra-network synapses are up-scaled to reproduce the spiking frequency of the full network 

(red, up-scaling factor 1.25), or produce slightly smaller (blue, up-scaling factor 1.1) or 

higher (yellow, up-scaling factor 1.4) spiking frequency. A: Population spike trains. B: 

Cumulative spike counts since the beginning of the simulations. C: Single-neuron inter-spike 

interval distributions. In the right-hand panel, the full network model ISI distribution is 

smoothened for large ISIs to remove jitter. D: Network inter-spike interval distributions, i.e., 

distribution of intervals in pooled spike trains. In the right-hand panel, the full network 
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model ISI distribution is smoothened for large ISIs to remove jitter. E: Power spectra of 

single-neuron spike trains. F: Network power spectra, i.e., power spectra of pooled spike 

trains. The data of panels C–F are extracted from time moment t=1000 ms onward. Panel A 

shows only one sample population spike train, but the data of panels B–F are extracted from 

30–100 independent samples (except for the ISI distributions of Poisson processes, which 

are theoretically determined). Colors available in the online version.
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Figure 9. The model predicts amplified L5PC network responses to delta-range oscillations
A: Population spike trains of networks of 1000 neurons, each of which receives background 

synaptic inputs that obey homogeneous Poisson statistics. For clarity, only every fifth spike 

is plotted. Blue: predictions with synaptic weight 0.165, red: predictions with weight 0.1875, 

yellow: predictions with weight 0.21. Different random number seeds were used in the three 

network simulations. The lower subpanel shows the total firing rates of the networks, 

smoothened with a Gaussian with 3.5-millisecond SD. Local maxima of the firing-rate 

curves above the 90%-percentile of the data were detected for further use (see panel B). The 

peaks that were at a distance < 500 ms from other (higher) peaks were rejected — the 

Mäki-Marttunen et al. Page 38

J Neurosci Methods. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accepted peaks are shown with crosses (‘×’). B: Intracellular and membrane properties at the 

somata of the neurons before and after the peaks in network firing rate (as detected in panel 

A). The x axis shows the time from 500 ms before the peak until 500 ms after the peak, and 

the y axis shows the values of the measured quantity. Panels from top to bottom: network 

firing rate (spikes/millisecond), membrane potential at soma (mV, averaged across the 1000 

neurons), Ca2+ currents ICaHV A and ICaLV A (mA/cm2, measured at soma and averaged 

across neurons), intracellular [Ca2+] (mM, measured at soma and averaged across neurons), 

SK and HCN channel currents ISK and Ih (mA/cm2, measured at soma and averaged across 

neurons). The dim thin curves show peak-wise curves in single network samples (i.e., up to 

20 curves obtained per network), and the red thick curve shows the mean across these peak-

wise curves. The horizontal cyan and magenta bars show the time instants during which the 

medians of the data underlying the thin red curves are statistically different (U-test, p < 

0.001, 64 samples) from the medians of the same data at time instants 200 ms and 400 ms 

before the firing-rate peak (marked with cyan and magenta dots). C: Power spectra of the 

population spike trains of panel A and corresponding Poisson processes. Only spikes from t 
= 2000 ms to t = 10000 ms considered, and the mean of five independent network 

simulations is shown. The Poisson processes were generated to have the same numbers of 

events during the considered interval as the compared network (sample-wise one-to-one 

correspondence). D: Population spike trains of networks of 1000 neurons, each of which 

receives background synaptic inputs that obey non-homogeneous Poisson statistics. In these 

non-homogeneous Poisson processes, λ varies ±25% from the baseline value of that used in 

panel A with a frequency (from top to bottom) 0.5, 0.625, 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 

2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.5, 10.0, or 15 Hz. For clarity, only every 40th spike is plotted. E: 

The firing-rate curves (left) and SK currents ISK (right) of the simulations of panel D. See 

panel B for details. Here, x axis shows the time from 500 ms before the peak of the 
oscillatory background inputs until 1000 ms after the peak. The phase of the background 

input oscillation is illustrated with the dashed line. Note that the y-axes are zoomed in for 

the two highest input frequencies. F: Power spectra of some of the population spike trains of 

panel D and the corresponding non-homogeneous Poisson processes. Means of five 

independent network simulations are shown. G: Power amplitude of the frequency 

component corresponding to the background input frequency, plotted against the background 

input frequency.
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Table 1
The table of parameters used in each step and their boundaries and reference values

The first column shows the step in which the parameter is fitted. The second column names the parameters, 

and the third and fourth column show the values used by the optimization algorithm as the lower and upper 

limits, respectively. The fifth column shows the corresponding values in the full model — note that in the full 

model, the apical dendritic tree is divided into two equally long sections, and in case the parameters vary 

spatially, the values shown are the minimum and maximum of the values across these sections. Conductances 

are given in S/cm2, lengths in μm, axial resistances in Ωcm, and capacitances in μF/cm2.

Step Parameter Lower Upper Full model

1 Lsoma 11.58 46.34 23.17

1 Lbasal 141.06 564.26 282.12

1 Lapic 325.0 1300.0 650

1 Ltuft 325.26 1301.06 650.53

1 20 500 100

1 10 1000 100

1 10 1000 100

1 10 1000 100

1 0.5 2.0 1.0

1 0.5 4.0 2.0

1 0.5 4.0 2.0

1 0.5 4.0 2.0

1 2×10−5 0.0001 3.38×10−5

1 1.5×10−5 0.0001 4.67×10−5

1 1.5×10−5 0.0001 5.89×10−5

1 1.5×10−5 0.0001 5.89×10−5

2 Eh −55 −35 −45

2 0 0.0008 1.29×10−6

2 0 0.0008 1.30×10−6 – 1.71×10−6

2 0 0.008 1.78×10−6 – 0.000127
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Step Parameter Lower Upper Full model

2 2×10−5 0.0001 3.38×10−5

2 1.5×10−5 0.0001 4.67×10−5

2 1.5×10−5 0.0001 5.89×10−5

2 1.5×10−5 0.0001 5.89×10−5

3 0 0.001 3.66×10−10

3 0 0.0025 5.55×10−5

3 0 0.025 5.55×10−5 – 0.000555

3 0 0.01 3.86×10−8

3 0 0.1 0.000187

3 0 1.0 0.000187 – 0.0187

3 γsoma 0.0005 0.05 0.000501

3 γapic 0.0005 0.05 0.000509

3 γtuft 0.0005 0.05 0.000509

3 τdecaysoma 20.0 1000.0 460.0

3 τdecayapic 20.0 200.0 122.0

3 τdecaytuft 20.0 200.0 122.0

3 0 0.1 4.18×10−5

3 0 0.005 0.0012

3 0 0.005 0.0012

4 0 4.0 2.04

4 0 0.01 0.00172

4 0 0.1 0.0812

4 0 1.0 0.00223

4 0 2.0 0.693

4 0 0.0005 6.75×10−5
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Step Parameter Lower Upper Full model

4 0 0.02 0.0213

4 0 0.02 0.000261

4 0 0.0005 6.75×10−5

4 0 0.02 0.0213

4 0 0.02 0.000261
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Table 3
Parameter values obtained from the multi-objective optimizations of Figures 1–4

Note that the passive leak conductances are initially fitted at the first step, but refitted at the second step. 

Conductances are given in S/cm2, lengths in μm, axial resistances in Ωcm, and capacitances in μF/cm2. The 

first step parameter set was the one that minimized f1.3, while the second step parameter set minimized f2.1. 

The third step parameters minimized the sum of f3.2+3.4 and f3.3+3.5 and the fourth step parameters the sum of 

f4.2+4.3 and f4.4, where the function values were normalized by the medians of the corresponding functions 

across the genetic algorithm population (e.g., see Equation 6).

STEP 1

Variable Value

Lsoma 24.5

Lbasal 426

Lapic 400

Ltuft 702

380

197

958

224

1.22

1.94

1.45

2.6

7.8.10−5

2.56.10−5

5.92.10−5

6.75.10−5

STEP 2

Variable Value

Eh −40.7

0.000279
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STEP 2

Variable Value

0.000294

0

0.00493

4.37.10−5

3.79.10−5

5.29.10−5

6.83.10−5

STEP 3

Variable Value

0.000838

0

0.000977

0.00311

0

0.000487

γsoma 0.0005

γapic 0.0347

γtuft 0.0005

τdecaysoma 488

τdecayapic 142

τdecaytuft 95.4

0.0479

0.000231

0.00365
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STEP 4

Variable Value

2.41

0.00206

0.0239

0.000176

0.701

0.000143

0.0135

0.00121

0.000113

0.0131

0
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Table 4

Speed-up factors attained by using the reduced-morphology models on a standard PC. The first column 

indicates the objective functions to which the simulation contributes (see Table 2), and the lower-case letter 

indicates the amplitude (‘a’ for smallest current, ‘c’ for largest) if more than one stimulus amplitudes were 

given. The second and third columns show the factors (mean ± SD, Nsamp = 5) by which the simulation times 

were shortened by the use of models with reduced morphology using 20 or 5 spatial segments per 

compartment, respectively, when variable time step method was used. The fourth column shows the 

corresponding factor (for reduced-morphology model with 5 spatial segments per compartment) when fixed 

time step method was used. In the reconstructed morphology (cell #2 of [26]), the default numbers of 

segments were used; these varied between 1 and 15 and summed up to 715. The numbers of differential 

equations solved were 5833 in the full model and 215 or 860 in the reduced-morphology model with 5 or 20 

segments per compartment, respectively, giving theoretical speed-up-factor estimates 27.13 and 6.78. The data 

are grouped according to the steps to which the objective functions belong. All simulations were run with the 

NEURON software using a single central processing unit (CPU).

Objective 20 segments adaptive dt 5 segments adaptive dt 5 segments fixed dt

f1.1 6.9±0.5 23.8±3.7 27.7±0.7

f1.2 7.8±1.1 28.0±3.7 27.7±0.6

f1.3a 6.3±0.8 22.9±3.1 27.6±0.7

f1.3b 8.0±1.0 27.9±4.1 27.7±0.6

f1.3c 6.7±0.8 24.0±3.5 27.6±0.7

Objective 20 segments adaptive dt 5 segments adaptive dt 5 segments fixed dt

f2.1a 19.0±0.8 60.6±4.6 27.6±0.7

f2.1b 14.9±1.3 48.7±5.2 27.6±0.6

f2.1c 17.9±1.9 51.1±3.7 27.6±0.6

f2.2a 13.2±0.9 35.9±4.6 27.6±0.6

f2.2b 14.6±1.2 36.7±5.0 27.7±0.6

Objective 20 segments adaptive dt 5 segments adaptive dt 5 segments fixed dt

f3.1a 4.6±0.4 15.5±2.9 27.6±0.6

f3.1b 4.6±0.4 16.5±2.7 27.5±0.7

f3.2a 5.6±0.5 20.1±2.5 27.5±0.7

f3.2b 5.3±0.6 17.8±1.8 27.2±0.7

f3.3a 5.1±0.4 17.5±2.0 27.3±0.7

f3.3b 5.9±0.5 21.4±3.0 27.3±0.7

Objective 20 segments adaptive dt 5 segments adaptive dt 5 segments fixed dt

f4.1a 14.9±1.5 27.6±5.2 27.2±0.5

f4.1b 7.1±0.8 18.8±2.2 27.2±0.6

f4.2 9.6±1.0 18.3±1.4 27.2±0.6

f4.3 8.7±0.8 17.3±1.7 27.2±0.6

f4.4a 8.7±0.5 29.7±3.0 27.2±0.5

f4.4b 8.2±0.8 29.2±3.1 27.2±0.6
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Objective 20 segments adaptive dt 5 segments adaptive dt 5 segments fixed dt

f4.4c 7.0±0.6 25.5±2.9 27.2±0.5
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