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Abstract

The NF-κB Essential Modulator (NEMO) is the scaffolding subunit of the inhibitor of κB kinase 

(IKK) holocomplex and is required for the activation of the catalytic IKK subunits, IKKα and 

IKKβ, during the canonical inflammatory response. Though structures of shorter constructs of 

NEMO have been solved, efforts to elucidate the full-length structure of NEMO have proven 

difficult due to its apparent high conformational plasticity. To better characterize the gross 

dimensions of full-length NEMO, we employed in-line size exclusion chromatography – small 

angle X-ray scattering (SEC-SAXS). We show that NEMO adopts a more compact conformation 

(Dmax=320 Å) than predicted for a fully extended coiled-coil structure (>500 Å). Additionally, we 

map a region of NEMO (residues 112-150) in its CC1 domain that impedes the binding of linear 

(M1-linked) di-ubiquitin to its CC2-LZ ubiquitin binding domain. This ubiquitin binding 

inhibition can be overcome by a longer chain of linear, but not K63-linked polyubiquitin. 

Collectively, these observations suggest that NEMO may be auto-inhibited in the resting state by 

intramolecular interactions, and that during signaling NEMO may be allosterically activated by 

binding to long M1-linked polyubiquitin chains.

Graphical Abstract

Cellular responses to various pathogenic and pro-inflammatory signaling molecules, 

including viral and bacterial nucleic acids, lipopolysaccharide (LPS), interleukin-1β 
(IL-1β), and tumor necrosis factor alpha (TNFα), depend on the activation of a family of 
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dimeric transcription factors known as NF-κB [1]. During basal conditions, NF-κB are 

sequestered in the cytosol bound to inhibitor molecules called IκBs, with IκBα being the 

most ubiquitous. Upon binding of extracellular ligands to their cognate receptors, including 

members of the Toll-like receptor/interleukin-1 receptor and TNF receptor superfamilies, a 

central effector kinase complex, called the inhibitor of κB kinase (IKK), is activated [1, 2]. 

Once activated, the catalytic subunits of the IKK complex phosphorylate two N-terminal 

serines of IκBα leading to its K48-linked polyubiquitination and subsequent proteolytic 

degradation by the 26S proteasome. This frees NF-κB to translocate into the nucleus to 

induce transcription of pro-inflammatory and/or anti-apoptotic gene suites [1, 2].

The IKK holocomplex is composed of the catalytic subunits, IKKβ (or IKK2) and/or IKKα 
(or IKK1), and the helical scaffolding protein NF-κB essential modulator (NEMO) that is 

the central regulatory subunit [2, 3]. Genetic ablation of the 48 kDa NEMO in mice results 

in embryonic lethality by day 13 of development and a complete unresponsiveness to a 

variety of canonical NF-κB inducers in mouse embryonic fibroblast cells [4–6]. Though 

lacking catalytic activity of its own, NEMO articulates upstream signals to the activation of 

the IKK catalytic subunits. It does this mainly through its ability to bind non-degradative 

polyubiquitin chains (mainly M1- and K63-linked) synthesized during signaling [7–10]. 

NEMO has two distinct ubiquitin binding domains (UBDs). One is composed of the coiled-

coil 2 (CC2) and leucine zipper (LZ) domains, together called the UBAN domain (also 

known as the NOA, NUB, or CoZi domain) and the other is composed of the C-terminal 

zinc finger motif (Fig. 1a) [11–15]. Other domains in NEMO include the HLX1, CC1 and 

HLX2 domains (Fig. 1a). While a part of HLX1 and CC1 interacts with IKKα or IKKβ 
[16], HLX2 binds the FLICE inhibitory protein (vFLIP) from Karposi sarcoma associated 

herpesvirus (KHSV) and Tax from the human T-lymphocyte virus (HTLV) to result in 

NEMO activation during viral infection [17, 18] (Fig. 1a). Mutations in various domains of 

NEMO have been implicated in cases of anhidrotic ectodermal dysplasia with immune 

deficiency (EDA-ID) and incontinentia pigmenti (IP) [19–21].

Structural studies show that many regions of NEMO exhibit coiled-coil structures, including 

those responsible for binding to IKKα or IKKβ [16], vFLIP [17], and polyubiquitin [11–

13], at least in the partner-bound forms (Fig. 1b). However, it is unclear if full-length NEMO 

is indeed an extended, long dimeric coiled-coil with a predicted length of ~500 Å (Fig. 1b). 

Previous studies have also reported that NEMO can exist as trimer or tetramer depending on 

the signaling condition, protein concentration, and the NEMO construct under study [22–

24]. A recent analysis further suggests that as much as half of NEMO may be intrinsically 

disordered in its resting state, suggesting that partner binding may induce conformational 

changes in NEMO [25].

In this study, we aimed to characterize conformational or oligomeric changes introduced by 

the binding of NEMO interacting proteins including IKKβ, vFLIP, and polyubiquitin in the 

context of full-length NEMO. We show that both full-length IKKβ and full-length NEMO 

are primarily dimeric individually, but form a megadalton complex when together. For some 

NEMO constructs, a minor tetramer peak can also be detected in addition to the dimer peak 

in size exclusion chromatography (SEC), rationalizing previous observations of 

trimerization as a mixture of dimers and tetramers, and of tetramerization as dimers of 
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dimers. We report by in-line SEC – small angle X-ray scattering (SEC-SAXS) that NEMO 

does not adopt a fully extended coiled-coil conformation (predicted to be >500 Å), but 

instead exhibits a comma-shaped form with a Dmax of ~320 Å. We also identify a region 

(residues 112-150) of NEMO in the CC1 domain that hinders M1-linked di-ubiquitin 

binding to the UBAN domain. Longer chain M1-linked polyubiquitin but not with K63-

linked polyubiquitin can overcome this inhibition, suggesting polyubiquitin-induced NEMO 

conformational changes during signaling.

Characterization of NEMO and the IKK holocomplex

Initial biophysical characterization of the IKK holocomplex from TNFα stimulated HeLa 

cells showed that it purifies as a 700–900 kDa complex with IκBα phosphorylating activity 

[4, 26, 27]. Subsequent studies revealed that this complex composed canonically of IKKβ, 

IKKα, and NEMO can be reconstituted in vitro [28, 29]. Several crystal structures of nearly 

full-length IKKβ and a recent IKKα cryo-EM structure showed that these catalytic subunits 

exist primarily as dimers [30–32]. However, the oligomerization state of NEMO is 

controversial, and full-length NEMO has been observed to elute from SEC at a position that 

corresponds to a ~600 kDa globular protein [28].

To obtain a shape-independent assessment of the oligomerization state of IKKβ and full-

length NEMO, we coupled multi-angle light scattering (MALS) and refractive index 

detection to SEC (Fig. 1c, 1d). Both IKKβ and NEMO exist primarily as dimers with a 

measured molecular mass of 186 kDa (4% error) and 113 kDa (3% error) respectively, in 

comparison with the calculated monomeric molecular weight of 87 kDa and 48 kDa. In 

contrast, the NEMO/IKKβ complex exhibits a measured molecular mass of ~2,000 kDa 

(Fig. 1e), suggesting higher-order oligomerization of the IKK holocomplex. The earlier 

elution volume of NEMO relative to IKKβ (Fig. 1c, 1d, 1f) despite its smaller molecular 

mass also suggested that NEMO is an especially elongated molecule.

Auto-inhibition in full-length NEMO shown by M1-linked di-ubiquitin binding

Short constructs of NEMO that encompass the UBAN domain have been shown to bind with 

low micromolar affinity to M1-linked polyubiquitin chains [11]. Indeed, M1-linked di-

ubiquitin co-eluted with UBAN (192–350) and UBAN-ZF (246–419) by SEC (Fig. 2a, 2b). 

Surprisingly, this interaction was completely abrogated in the context of full-length NEMO 

(Fig. 2c), and this inhibition could not be rescued with the addition of other NEMO 

interacting proteins like IKKβ or MBP-vFLIP (Fig. 2d, 2e). We wondered if a specific 

region of NEMO is responsible for the interference of M1-di-ubiquitin interaction. Because 

the C-terminal portion of NEMO binds well to M1-di-ubiquitin, we truncated NEMO from 

the N-terminus. While NEMO (112–350) did not interact with M1-di-ubiquitin (Fig. 2f), 

NEMO (150–350) did interact with M1-di-ubiquitin (Fig. 2g), suggesting that the region 

between 112–150 in the CC1 domain of NEMO may be important for this inhibition.

As controls, we conducted SEC-MALS to measure the molecular masses of the NEMO 

(112–350) (Fig. 3a) and NEMO (150–350) constructs (Fig. 3b) since it is possible that 

higher order oligomerization beyond the putative dimer could compete for ubiquitin binding 
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sites. For NEMO (112–350), the measured molecular mass is 72.8 kDa (6% error), 

consistent with primarily a dimer of the calculated monomer molecular mass of 31.1 kDa 

(Fig. 3a). For NEMO (150–350), the major peak has a measured molecular mass of 50.1 

kDa (3% error), which is also in agreement with a dimer of the calculated monomer 

molecular mass of 26.5 kDa (Fig. 3b). However, for this construct, there is also a minor peak 

with the measured molecular mass of 95.6 kDa (3% error) (Fig. 3b), which indicated a 

tetramer and suggested potential higher order oligomerization. Interestingly, it appears that 

only the dimeric region of the construct near 14 ml in elution volume interacted with M1-di-

ubiquitin (Fig. 2g).

M1-linked tetra-ubiquitin overcomes the inhibition in full-length NEMO

Lack of binding to M1-di-ubiquitin by full-length NEMO indicates that in the resting state, 

NEMO exists in an auto-inhibited conformation through interactions within the dimer, either 

intramolecular or intermolecular. Because NEMO activation requires longer M1-linked 

polyubiquitin [25, 33], we tested M1-tetra-ubiquitin and K63-tetra-ubiquitin for binding to 

full-length NEMO. While M1-tetra-ubiquitin robustly interacted with NEMO, K63-tetra-

ubiquitin did not (Fig. 2h). These data indicate that long M1-linked polyubiquitin is able to 

overcome NEMO auto-inhibition. Thus, our experiments revealed evidence for allosteric 

control of NEMO conformation including auto-inhibition in the resting state and M1-linked 

polyubiquitin-mediated conformational change that results in ubiquitin binding and NEMO 

activation.

NEMO adopts a more compact conformation than predicted for a fully 

extended coil-coil structure

To further understand the conformational control in NEMO, we measured the gross shape 

and dimensions of full-length NEMO using an in-line SEC-SAXS experimental setup at the 

NSLS X9 beamline. The in-line SEC was aimed to eliminate large aggregates in the SAXS 

measurements. Small-angle X-ray scattering was measured in real-time as protein eluted off 

a Superose 6 10/300GL column, as shown by the chromatograph and SDS-PAGE gel of peak 

fractions of full-length NEMO in complex with MBP-vFLIP fusion protein (Fig. 4a). MBP-

vFLIP was added to provide a large globular domain for the purpose of structure orientation 

since NEMO itself is not predicted to have any globular domain. Importantly, NEMO in 

complex with MBP-vFLIP did not appreciably change the SEC elution profile in comparison 

to NEMO alone suggesting that vFLIP binding does not result in any large scale 

conformational changes (Fig. 2e). SAXS data were collected every 35 seconds as protein 

eluted off the column and the raw scattering curves are shown (Fig. 4b).

The particle size is relatively homogenous under the elution peak with Guinier 

approximations of the radii of gyration (Rg) ranging from 88.5–98.6 Å (Fig. 4b). The 

pairwise distribution function p(r), determined from the central peak scattering curve data, 

showed an Rg of 101.2 Å that is similar to those estimated from Guinier approximations 

(Fig. 4b, 4c), and a maximum intramolecular distance (Dmax) of 320 Å (Fig. 4c). This 

maximal dimension is considerably shorter than the predicted Dmax of 500 Å for fully 

extended NEMO (Fig. 1b). Ab initio modeling of the electron density envelope using the 
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program DAMMIF generated ten independent models with an average normalized spatial 

discrepancy (NSD) value of 1.112 ± 0.098 (Fig. 4d). These models were averaged and 

filtered in DAMAVER to give the final refined model (Fig. 4d), which agreed well with the 

experimental scattering curve (Fig. 4e). The comma-shaped envelope has one end that is 

globular, presumably due to the presence of MBP-vFLIP, a middle section that is kinked, 

and the other end that is tapered. Though it is difficult to dock the various NEMO 

subdomain crystal structures into the envelope due to the low resolution it is obvious that 

NEMO does not adopt a fully extended conformation in solution.

Discussion

Our SAXS data and M1-linked di-ubiquitin binding data together provided a number of 

important insights into conformational regulation of NEMO. First, full-length NEMO 

assumes a more compact conformation with auto-inhibition in the resting state dimer. While 

either the N-terminal or the C-terminal region may fold back to create the comma shape of 

the NEMO/MBP-vFLIP complex (Fig 4d), given the apparent allosteric control in the CC1 

domain (Fig. 2f–g), we propose that an N-terminal region (residues 112-150) including the 

CC1 domain folds back onto the vicinity of the HLX2 NEMO region where the MBP-vFLIP 

fusion protein binds (Fig 4d). However, our data do not exclude the possibility that the C-

terminal end of NEMO may also fold back to exert auto-inhibition. Our detailed biochemical 

characterizations are consistent with a previous study in which NEMO was shown to be a 

dimeric protein that is in weak equilibrium with a tetrameric assembly [34]. They further 

rationalize that previously concluded trimerization of NEMO may represent mixture of 

dimers and tetramers.

Second, there are a number of established NEMO mutations in the proposed allosteric 

regulatory region of NEMO that are associated with the human disease incontinentia 

pigmenti [20, 21]. Two such point mutations are D113N and R123W. Since this region of 

NEMO has not been shown to interact with any other binding partners, a likely explanation 

of the disease phenotype may be related to the role of the region in NEMO allosteric 

regulation. Intriguingly, normal lipopolysaccharide (LPS)-induced NF-κB activation was 

observed in NEMO−/− cells reconstituted with these mutants [20], suggesting that this 

allosteric regulation may be influenced by overexpression in the reconstitution. Furthermore, 

the basal NF-κB activity may need to be assessed to reveal the functional phenotypes of 

these mutants in auto-inhibition. Finally, the higher binding affinity of M1-linked tetra-

ubiquitin to NEMO can also overcome NEMO auto-inhibition. Therefore, M1-linked 

polyubiquitin may act as a switch to allosterically alter NEMO conformational and activate 

NEMO for downstream signal transduction in a physiological context.
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Highlights

• Full-length NEMO is more compact than a linear coiled coil structure.

• The coiled-coil 1 (CC1) domain of full-length NEMO inhibits binding to M1-

linked di-ubiquitin.

• Auto-inhibition of full-length NEMO can be relieved by longer M1-linked 

polyubiquitin.
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Fig. 1. 
Size characterization of IKKβ, NEMO and the IKKβ/NEMO complex. (a) Domain 

architecture of human NEMO showing regions of protein-protein interactions. HLX1= 

helix-loop-helix 1, CC1= coiled-coil 1, HLX2 =helix-loop-helix 2, CC2= coiled-coil 2, LZ= 

leucine zipper, ZF= zinc finger. (b) A linear model of full-length NEMO with ~500 Å in 

length constructed from known structures of NEMO and its complexes. (c) SEC-MALS of 

His-IKKβ, showing a predominant dimer. (d) SEC-MALS of NEMO-His, showing a 

predominant dimer. (e) SEC-MALS of the IKKβ/NEMO complex, showing a megadalton 

higher-order oligomer. (f) Coomassie Blue-stained, 10% SDS-PAGE gel showing the 

Superose 6 10/300GL elution profile of IKKβ, NEMO, and the IKKβ/NEMO complex. All 

NEMO constructs were sub-cloned into either pET28a or pET26b vectors between NdeI and 

XhoI restriction sites for expression in E. coli BL21-CodonPlus® (DE3) RIPL cells (Agilent 

Technologies). IKKβ was sub-cloned into pFastBacHTb transfer vector for bacmid 

generation and expression in High Five insect cells using the Bac-to-Bac® baculoviral 

expression system (Thermo Fisher). All proteins were purified by nickel affinity 

chromatography followed by size exclusion chromatography (SEC). MALS measurements 

were performed with an in-line three-angle light scattering detector (mini-DAWN 

TRISTAR) coupled to a refractive index detector (Optilab DSP) (Wyatt Technology). Data 

were analyzed using ASTRA VI software.
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Fig. 2. 
The CC1 domain (aa 112-150) of NEMO inhibits linear di-ubiquitin binding. (a) – (h) SDS-

PAGE of SEC fractions of various NEMO constructs mixed with M1-di-ubiquitin and/or 

IKKβ, MBP-vFLIP, or tetra-ubiquitin chains. Complex formation is indicated as well as the 

SEC column used in each panel. Purified NEMO constructs were incubated with purified 

IKKβ, MBP-vFLIP, and/or ubiquitin proteins in a roughly 1:1 or 1:2 molar ratio for 30 

minutes at room temperature prior to loading onto a Superdex 75, Superdex 200 or Superose 

6 column pre-equilibrated with buffer containing 20 mM Tris at pH 8.0, 150 mM NaCl, and 

1 mM Dithiothreitol (DTT) run at 4 degrees celcius. The synthesis of K63-linked tetra-

ubiquitin was accomplished as described in [35].
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Fig. 3. 
Size characterization of NEMO constructs. (a) SEC-MALS of NEMO (aa 112-350) along 

with the associated eluted fractions run on a 10% SDS-PAGE gel, showing that it behaves as 

a dimer with a measured molecular mass of 72,820 Daltons. (b) SEC-MALS of NEMO (aa 

150-350), showing that it exists primarily as a dimer (molecular mass of 50,090 Daltons) in 

equilibrium with a small amount of a tetramer species (molecular mass of 95,550 Daltons). 

SEC-MALS was conducted as described in Fig. 1.
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Fig. 4. 
SAXS analysis of the NEMO/MBP-vFLIP complex. (a) In-line Superose 6 10/300GL size 

exclusion chromatography of the NEMO/MBP-vFLIP complex before SAXS analysis (top). 

The MBP-vFLIP fusion construct was cloned into the pET28a vector for E. coli expression, 

and the expressed protein was purified by amylose resin followed by SEC. Peak fractions of 

the NEMO/MBP-vFLIP complex were run on a 10% SDS-PAGE gel (bottom). (b) Raw 

scattering curves of peak fractions collected every 35 seconds (flow rate = 0.3 ml/min.). The 

incident light wavelength was 0.92 Å and the sample to detector distance was 1.5 meters. 

Radial averaging and buffer subtraction was accomplished using pyXS (Brookhaven, 

NSLS). The radii of gyration (Rg) in angstroms were estimated from Guinier plots using 

PRIMUS [36] near I(0) for each scattering curve. (c) The pair-wise distribution plot, P(r), for 

the complex eluted at 10.56 ml. The estimated maximum intra-molecular particle distance, 

Dmax, is 320 Å. Both calculation of P(r) and determination of Dmax were performed using 

GNOM [37]. (d) Ten ab initio bead models of NEMO/MBP-vFLIP generated by DAMMIF 

[38] along with the averaged and refined envelope generated by DAMAVER [39]. (e) 

Superimposed experimental scattering curve at 10.56 ml and the calculated scattering curve 

from the averaged and refined model.
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