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Abstract

Background—High frequency oscillations (HFOs) are emerging as potentially clinically 

important biomarkers for localizing seizure generating regions in epileptic brain. These events, 

however, are too frequent, and occur on too small a time scale to be identified quickly or reliably 

by human reviewers. Many of the deficiencies of the HFO detection algorithms published to date 

are addressed by the CS algorithm presented here.

New Method—The algorithm employs novel methods for: 1) normalization; 2) storage of 

parameters to model human expertise; 3) differentiating highly localized oscillations from filtering 

phenomena; and 4) defining temporal extents of detected events.

Results—Receiver-operator characteristic curves demonstrate very low false positive rates with 

concomitantly high true positive rates over a large range of detector thresholds. The temporal 

resolution is shown to be +/−~5 ms for event boundaries. Computational efficiency is sufficient for 

use in a clinical setting.

Comparison with existing methods—The algorithm performance is directly compared to 

two established algorithms by Staba (2002) and Gardner (2007). Comparison with all published 

algorithms is beyond the scope of this work, but the features of all are discussed. All code and 

example data sets are freely available.

Conclusions—The algorithm is shown to have high sensitivity and specificity for HFOs, be 

robust to common forms of artifact in EEG, and have performance adequate for use in a clinical 

setting.
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1. Introduction

Epilepsy affects over 50 million people worldwide. Data from the World Health 

Organization shows the global burden of epilepsy is similar to lung cancer in men and breast 
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cancer in women (Murray and Lopez, AD, 1994). For approximately 30–40% of the nearly 

three million Americans with epilepsy, their seizures are not controlled by any available 

therapy. Partial epilepsy represents the most common type of drug resistant epilepsy, and 

accounts for approximately 80% of the financial burden of epilepsy as a disease (Murray and 

Lopez, AD, 1994). Currently, treatment options for patients with medically refractory partial 

epilepsy are limited. Resective epilepsy surgery has the best chance of producing a cure, i.e. 

complete seizure freedom, but is only possible if the brain region generating seizures can be 

spatially localized and safely removed (Engel, 1987; Luders and Comair, 2001). Identifying 

this region often involves intracranial implantation of recording electrodes, and up to two 

weeks of hospitalization to record a patient’s habitual seizures. It is an arduous process for 

the patient and associated with increasing risk of infection as time progresses. A method to 

identify epileptic tissue that does not require the occurrence of spontaneous seizures would 

substantially reduce this burden, and the morbidity associated with the process.

High frequency oscillations (HFOs) are emerging as a promising biomarker of epileptogenic 

tissue. HFOs are spontaneous EEG transients with frequencies traditionally considered to 

range from 60 to 600 Hz, with 4–50 oscillation cycles that stand out from the background as 

discrete electrographic events. HFOs are usually divided into subgroups of high γ (60–80 

Hz), ripple (80–250) and fast ripple (250–600) bands (Bragin et al., 1999).

Since their initial discovery in freely behaving rats (Buzsáki et al., 1992), the presence of 

normal and pathological HFOs was confirmed in mesiotemporal and neocortical brain 

structures of epileptic patients who underwent electrode implantation for treatment of 

medically intractable focal epilepsy (Bragin et al., 1999; Staba et al., 2002). Subsequent 

research further revealed association of increased high γ, ripple, and fast ripple HFO activity 

in seizure generating tissue (Bragin et al., 1999; Worrell et al., 2004; Staba et al., 2004; 

Worrell et al., 2008) and with cognitive processing (Gross and Gotman, 1999; Axmacher et 

al., 2008; Jadhav et al., 2012; Kucewicz et al., 2014). In the majority of these studies HFOs 

were detected by expert reviewers in short data segments (~10 mins), which while limited, 

demonstrate the correlation of HFO occurrence with both pathological foci and cognitive 

processing.

Although visual review of iEEG signal is still considered the gold standard, it is a time 

consuming process, prone to reviewer bias and drift in judgment, and has poor inter-reviewer 

concordance (Abend et al., 2012). Moreover, the length of iEEG recordings collected by 

epilepsy centers can span days and the acquired data include up to hundreds of channels, 

making visual review for HFOs impossible. Semi, or preferably fully, automated algorithms 

for HFO detection are a necessary tool to overcome this methodological weakness and make 

HFO detection a clinically useful tool.

The first automated HFO detectors were based solely on bandpass filtered signal energy and 

failed to address some important issues, resulting in low specificity. The root mean square 

(RMS) detector (Staba et al., 2002) and line-length detector (Gardner et al., 2007) both 

utilize transformation of band pass filtered signal (80–500 Hz). The candidate events are 

detected as the segments of signal with energy higher than a statistical threshold, computed 

as either a multiple of the standard deviation (Staba et al., 2002) or percentile of the empiric 
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cumulative distribution function (Worrell et al., 2008). The low specificity of these 

algorithms could be ascribed to the methodology of threshold computation, which 

guarantees a minimum level of detection (Zelmann et al., 2012), or to the rise in false 

positive detections induced by filtering of sharp transients, interictal epileptiform spikes 

(IEDs) and sharp waves, commonly known as Gibbs’ phenomenon (Gibbs, 1899; 

Urrestarazu et al., 2007; Benar et al., 2010). Additionally, these and other algorithms have 

minimal adaptation to the known non-stationarity of EEG, using fixed thresholds for long 

non-overlapping stretches of data (Staba et al., 2002 [entire data set]; Gardner et al., 2007 [3 

min windows]; Blanco et al., 2010, 2012 [10 min windows]).

Detection algorithms developed since 2010 use various approaches to overcome low 

specificity but they are still inadequate for use in a clinical setting. Zelmann et al. (2010) 

improved the specificity of the RMS detector by computing the energy threshold from 

baseline segments and Chaibi et al. (Chaibi et al., 2013) utilized a combination of RMS and 

empiric mode decomposition. The detection method of Dümpelmann et al. (2012) enhanced 

specificity by inputting signal power, line-length and instantaneous frequency features from 

expert reviewed events to a neural network. While these approaches successfully decrease 

the number of false positive detections they do not eliminate false HFO detections associated 

with sharp transients. One possible way to discard detections caused by the increase in 

filtered signal power produced by Gibbs’ phenomenon is to compute an energy ratio 

between HFO frequency bands and lower bands (Blanco et al., 2010; Birot et al., 2013) or to 

analyze the shape of power spectrum (Burnos et al., 2014).

The algorithms developed to date usually focus only on one method to increase specificity 

and often disregard the non-stationarity of EEG signal by using absolute, non-adaptive 

feature values (Blanco et al., 2010; Dümpelmann et al., 2012) or rigid thresholds (Birot et 

al., 2013; Chaibi et al., 2013; Burnos et al., 2014). Moreover, when presenting algorithmic 

efficacy, literature often disregards efficiency. Computational speed is less important in 

retrospective analysis, however it is required for effective use in a clinical setting. Also 

typically disregarded is the temporal precision with which the HFOs are detected in the 

signal, which may prove useful for exploring the phase relationships between HFO and 

ongoing background EEG. The precise estimation of HFO beginnings and ends may also 

play a crucial role in distinguishing between different HFO categories such as pathological 

and physiological HFOs, and when evaluating HFO temporal position with respect to other 

HFOs or EEG phenomena.

In this work, we propose an algorithm, referred to here as the CS algorithm (Cimbálník-

Stead), that employs multiple approaches to improve specificity and sensitivity of HFO 

detections. The false positive detections induced by sharp transients are discarded on the 

basis of a novel metric, referred to as frequency dominance, which does not require 

computation of frequency spectra. Non-stationarity is accounted for by renormalizing the 

metrics at a specified frequency (10 s blocks with 1 second overlap is default in this version 

of the detector, but is an adjustable parameter). This results in a cascade of adaptive 

thresholds based on metric normalization and previous gold standard detections evaluated by 

expert reviewers. Furthermore, the method has good temporal precision of HFO detection 

and is efficient enough for real-time processing applications.
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2. Materials and methods

To optimize the algorithm we used a large data set collected from human patients and 

research animals. This variety in recorded data allowed us to evaluate flexibility in the 

algorithm. Intracranial EEG (iEEG) recordings were reviewed from 15 different patients 

who underwent electrode implantation for treating intractable focal epilepsy. The data set 

also included two rodent and two canine intracranial EEG recordings for a total of 19 

subjects. Two hours of clinical data from each subject was visually checked for noise, and 

care was taken to select data that were at least 2 h apart from seizures. From each of these 

baseline two hour recordings, 20 min of recording time was randomly selected and used to 

tune the parameters for the CS algorithm. For algorithm testing, a second similar dataset was 

created using randomly selected data segments from the human subject files that were not 

included in the original dataset.

The recordings were taken from either clinical macroelectrodes (~12 mm2 surface area) or 

microelectrodes (40 μm diameter). The macroelectrodes were sampled at 5000 Hz except for 

the two dog recordings, which were sampled at 400 Hz. Microelectrode recordings were 

sampled at 32 kHz. Many of the prior detection methods do not have sufficient flexibility to 

evaluate across different recording techniques without additional algorithm tweaking or 

tuning. The range of electrode sizes, sampling rates, and species was important to ensure 

consistent algorithm performance across a range of recording conditions.

Poisson normalization was employed as part of the algorithm to address the variance 

stemming from these technical recording differences, as shown in Fig. 1 (top). Comparing 

the two human macroelectrode recordings (yellow and green data) illustrates how impedance 

variance in otherwise similar recording conditions can affect recording amplitude. Even 

greater amplitude differences arise from micro versus macro recordings. However, since 

amplitude distributions from individual recording sessions approximate a Poisson 

distribution, the data can be easily normalized by subtracting the mean and then dividing by 

it. Notably, for a Poisson distribution, the standard deviation is also the mean. This has the 

advantage of being computationally efficient, as the algorithm needs only to update a mean 

computation for data normalization. Although via this method normalized metrics for some 

data points become negative, the highest valued signals (right-sided tails of the distribution), 

where HFOs are found, are preserved (Fig. 1 bottom).

The CS algorithm consists of several steps including: 1) raw data filtration, 2) calculation of 

feature traces, 3) Poisson normalization, and 4) detection using a cascade of thresholds 

derived from gold standard detections. The algorithm isolates HFO features of locally 

increased amplitude and frequency relative to the rest of the signal and, unlike most prior 

algorithms, combines both amplitude and frequency detections to more accurately identify 

HFOs.

The initial step of the algorithm is to filter the raw iEEG data into a series of overlapping, 

exponentially spaced frequency bands (Butterworth bandpass filter, 3 poles). The remaining 

algorithm steps are then applied to each of the filtered datasets. To determine the filtration 

bands of interest, we initially analyzed 52 clinical patient microelectrode recordings using 
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17 exponentially spaced overlapping bands spanning the frequency range from 40 to 900 Hz. 

Fig. 2 shows resulting normalized occurrence rates from both pathologic and normal cortical 

data from archicortex (top panel) and neo-cortex (middle panel). Rates at 900 Hz were zero 

and therefore not plotted. The analysis revealed distinct peaks similar for both archicortex 

and neocortex, which allowed for band reduction to 4 overlapping frequency bands (Fig. 2 

bottom panel), thus simplifying the algorithm and reducing processing time. Each frequency 

band is analyzed separately in the detection process.

The algorithm does not distinctly categorize HFO events as gamma, ripples, or fast ripples, 

but it would be possible to sort post-processed HFO events by these categories if clinically 

useful. As shown in Fig. 2, the dataset contained all categories of HFO frequencies. The first 

frequency band (44–120 Hz) roughly emulates gamma, second band ripple (73–197 Hz), and 

last two bands fast ripple (120–326 and 197–537). However, these frequency bands were 

determined based on peaks in the original dataset and not intended to classify HFO events.

Three feature traces are next computed in the second step of the detection process:

1. An Amplitude trace, which represents the instantaneous amplitude characteristics 

of the bandpass filtered signal.

2. A Frequency Dominance trace, which isolates locally dominant high frequencies 

from the low frequency oscillations of the raw signal.

3. The Product trace, which is the dot product of the Amplitude & Frequency 

Dominance traces, and therefore identifies time points where both high 

amplitudes and high frequencies were detected.

Amplitude traces (Fig. 3) are created from each of the four bandpass filtered signals 

(example blue trace). First, the envelope (red trace) is calculated by finding the signal peaks 

and troughs (i.e. critical points). Linear interpolation between absolute values of the critical 

points is performed to match the number of samples in the original signal. Next, sharp peaks 

are removed from the envelope using a sliding window filter, where each value is replaced 

by the maximum value within the window. Window length is specific for each of the four 

bandpass filtered datasets, and is equal to the minimum number of cycles in an HFO 

(defined as 4 in this code) at its center frequency (see Figure 2 bottom panel), which is the 

geometric mean of the high and low cut-off frequencies. Finally, the raw amplitude trace 

(black trace) is Poisson normalized to obtain the final amplitude trace.

The relationship between the bandpass filtered data and low-pass filtered data is used to 

calculate the frequency dominance trace. This metric measures the extent to which the local 

signal of the bandpassed data is present in the raw data, and is exquisitely insensitive to 

Gibbs’ phenomenon. The frequency dominance trace is computed by differentiating the 

filtered bandpass and lowpass signals (for all four frequency bands). The lowpass filters 

employ the same high cutoff as the bandpass filters. In both ths bandpassed and lowpassed 

trace, values > 1 are set to 1, values <−1 are set to −1, and a raw local oscillation trace 

(LOT) is created by calculating the cumulative sum for the trace (Fig. 4B, black traces). This 

trace is then high-pass filtered with the cut-off frequency equal to the low cut-off frequency 

of the bandpass filter (Fig. 4B, blue & red traces), eliminating the low frequency drift in the 
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signal. Fig. 4C shows an overlay of the example lowpass filtered LOT (red) on its 

corresponding bandpass filtered LOT (blue) for comparison. These example traces are 

enlarged in Fig. 4D to demonstrate how the two signals correlate for two example HFO 

events. The final frequency dominance trace is the root mean square (RMS) signal to noise 

ratio generated from the bandpass and lowpass LOTs. A sliding window with the length of 

minimum number of event cycles at the band’s center frequency is applied to the band-

passed signal and RMS is calculated, thus generating “signal”. Similarly, the RMS is 

calculated on a second trace constructed by subtracting the low passed LOT from the band 

passed LOT, generating the “noise”. The raw frequency dominance trace is calculated as the 

instantaneous (pointwise) “signal-to-noise” ratio (Fig. 4E, red trace). As with the amplitude 

trace, the final signal is processed by a sliding window where each value is replaced by the 

window’s local maximum (Fig. 4E, black trace) and Poisson normalized.

The product trace combines the Amplitude and Frequency Dominance traces. First, values < 

0 (which occur due to the Poisson normalization) are set equal to 0. The dot product of both 

traces is computed. Poisson normalization is again applied to the final product trace (Fig. 5 

red trace).

Putative HFOs are detected from the product trace as events exceeding an “edge” threshold 

(Fig. 5, dashed black trace, set to a value of 1 in the current code). As illustrated in Fig. 5, if 

the gap between two detections is shorter than the minimum number of cycles for detection, 

the two detections are fused into one. Subsequently, five measures are calculated for each 

detection and evaluated in a cascade of boundary thresholds.

Boundary thresholds are based on the events detected by applying only the edge threshold; 

by expert visual review this achieves 100% sensitivity. The events were scored in each 

frequency band separately by three expert reviewers (JC, GW, & MS). The cumulative 

distributions of each measure were fitted with a gamma function (Fig. 6) and the parameters 

of these cumulative distribution functions (CDF) were stored in the detector code. The 

absolute boundary thresholds for each measure are calculated from these CDF based on two 

user defined relative thresholds, explained below.

Three measures are represented by the feature traces: Amplitude, Frequency Dominance and 

Product. The fourth measure is the number of cycles in the detection in each frequency band, 

which is extracted from the critical point arrays used to generate the Amplitude trace. The 

fifth measure is composed of the sum of CDF values for the four other measures. The 

detector applies two user defined relative thresholds, referred to here as the “AND” and the 

“OR” thresholds; both can vary between 0 and 1. The AND threshold is used to extract 

feature values from the Amplitude, Frequency Dominance, Product, and Cycle gamma 

curves (Fig. 6). If the corresponding values of the candidate detection is less than any of the 

threshold values, the detection is rejected. This threshold ensures a minimum amplitude, 

frequency, dominance, product, and number of cycles for every candidate detection. 

Detections not rejected by the AND threshold are then subjected to the OR threshold. This 

threshold captures the fact that expert reviewers tend to accept detections that stand out with 

respect to at least one feature, although which feature can vary. The OR threshold is 

calculated from a “Combination” score and corresponding gamma curve (Fig. 6). The 
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Combination score is the sum of the CDF values of the candidate detection extracted from 

the corresponding gamma curves. The OR threshold value is extracted from the 

corresponding Combination score gamma curve. If the candidate event combination score is 

less than the combination threshold, the event is rejected. Although the performance is 

similar varying either the AND or the OR thresholds, we have generally set the AND 

threshold to 0.0 (default value), and varied the OR threshold (default 0.2).

Each accepted detection in each band is added to a conglomerate detection trace. Due to the 

overlapping nature of the bands, it is not uncommon for the same event to be detected in 

more than one band. Conglomerate detections are constructed from all detections that 

overlap in time and demarcated from the earliest onset to the latest offset. Conglomerate 

detections are subject to no subsequent thresholding. HFOs that evolve significantly in 

frequency are best temporally demarcated in the conglomerate detections (Fig. 7).

2.1. Evaluation methods

Comparison of the CS and Staba detectors indicates the CS detector is more sensitive, while 

still robust to artifact errors. As shown in Fig. 8 (left), the CS detector correctly identifies a 

low amplitude mixed frequency HFO (conglomerate detection shown) that is missed by the 

Staba detector. The top three traces of Fig. 8 illustrate how the CS algorithm components 

(amplitude, frequency domain, and product; different colors for each of the 4 frequency 

bands) respond to the signal, while the bottom two traces illustrate the Staba detector 

response. It can also be difficult for an algorithm to accurately rule out non-HFO events such 

as external noise (Fig. 8 middle) or large sharp epileptic spikes (Fig. 8 right). Although the 

CS algorithm amplitude trace responds to these artifacts, the frequency dominance trace 

does not, and therefore the product trace does not exceed the detection threshold. However, 

the Staba detector is influenced by the amplitude of the oscillatory artifacts, and the events 

are incorrectly identified as HFOs.

To quantify algorithmic performance, a gold standard dataset was acquired by running the 

detector with both the AND and OR thresholds set to 0, achieving 100% sensitivity. The 

detections were visually reviewed by three independent experts (JC, AH, & MS). To reduce 

reviewer error, each candidate event was presented to each reviewer 3 times in random order. 

To be included, the reviewer was required to have accepted the event in 2 out of the 3 

presentations. Each of the 3 reviewer’s final scoring was then compared to produce the final 

gold standard data set. In this case unanimity of acceptance was required, rather than 2 of 3. 

This was to ensure that all gold standard events would likely be accepted by any expert 

reviewer.

Receiver operating characteristic (ROC) analysis was performed to compare the CS 

algorithm performance to the Staba detector. A true positive detection was considered an 

event accepted by both the algorithm at a given threshold and gold standard data set. 

Likewise, a true negative was considered a detection rejected by both the algorithm at a 

given threshold and the gold standard data set. However, the HFO events in the data 

represent only a small percentage of the entire recording time. Even at thresholds of 0, 

although 100% sensitive, the detector only selects a small fraction of the data for candidate 

events. Therefore the ROC analysis was performed considering whether each timepoint in 
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the dataset was correctly categorized as an event (true positive, TP) or not an event (true 

negative). The true positive rates (TPR) and false positive rates (FPR) were calculated as 

shown below for each threshold. The OR threshold was varied for the CS algorithm (default 

is 0.2). As threshold variance was not specified in the original Staba description, the RMS 

threshold originally set to five times the standard deviation of the RMS amplitude was 

allowed to be a varying parameter.

ROC results are shown in Fig. 9A & 9B. Fig. 9A illustrates the high specificity of the CS 

algorithm and its ability to rule out candidate events that may have features of HFOs, but are 

not true events (see Fig. 8). Fig. 9A also shows the performance of the Staba detector (Staba 

et al., 2002) for comparison. The area under the curve for the CS algorithm (green) was 

0.996 compared to 0.642 for the Staba detector (thatched). The original Staba threshold of 5 

is indicated in red on Fig. 9A. At this threshold, the Staba detector is very specific, but not 

highly sensitive in identifying candidate events within our gold standard data set. No true 

events that were detected by the Staba detector at it’s default threshold were missed by the 

CS detector at any threshold; note where the Staba detector threshold intersect the CS ROC 

in Fig. 9A. Fig. 9B expands the leftmost region of the False Positive Rate axis in Fig. 9A to 

better visualize the variable region of the CS algorithm’s ROC curve.

In order to evaluate the temporal precision of the CS detector, artificially created HFO 

events were inserted into an intracranial EEG recording acquired from a contact located in 

the white matter (where HFOs are generally not detected). The signal was visually reviewed 

to ensure absence of any pathologic activity and physiological HFO. The detection was 

performed with the lowest threshold to detect all events. Inserted artificial HFOs were 

matched with algorithm detections and their onsets and offsets compared. The performance 

was compared with a line-length (LL) detector with a fixed 85 ms sliding window (Gardner 

et al., 2007). Fig. 10 shows the results of the differences from the known onset and offset for 

the two algorithms. The CS algorithm had mean differences of −4.6 ± 5.3 ms for the onsets 

and 4.9 ± 5.9 ms for the offsets. The LL algorithm had mean differences of −41.7 ± 14.3 ms 

for the onsets and 53.5 ± 10.1 ms for the offsets.

Algorithmic speed was evaluated on a 2010 Mac Pro with dual 2.93 GHz 6-Core Intel Xeon 

processors, and 32 GB of 1333 MHz RAM. Two hours of a single channel of 5 kHz sampled 

data was processed in 2 min and 5 s (true execution time, not processor time) using the C 

code available, along with representative datasets at http://msel.mayo.edu/codes.html. On 

this equipment a single channel was processed 57.6 times faster than real acquisition time 

which is sufficient for use in a clinical setting. Clinical application would require parallel 

processing, which is easily implemented since the algorithm does not rely on interchannel 

detection information. We have successfully implemented the CS algorithm for real-time 

detection of HFO events in clinical patients.

3. Discussion

We present a novel HFO detection algorithm that is suitable for processing large datasets 

while efficiently eliminating false positive detections produced by sharp transients and 

dealing with EEG non-stationarity. Experience of expert reviewers is accounted for by a 
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cascade of boundary thresholds calculated from visually marked events. We have made all 

code and data available in an effort to support reproducible research (Donoho, D. L., 2010).

In developing this algorithm, we experimented with variants of most published approaches 

to HFO detection. The method described here evolved in the process of overcoming 

shortcomings of the other techniques. A direct comparison of the CS algorithm with other 

published work was touched upon in the ROC analysis (Staba detector, Fig. 9) and temporal 

precision (line-length detector, Fig. 10). While valuable, quantitative comparison with all 

other published detection algorithms is beyond the scope of this paper. It is worth noting that 

in most cases comparison between published algorithms is difficult because neither the code 

nor data are made available. In an effort to stimulate comparison of the CS algorithm with 

existing and future algorithms we have made data and code available at http://

msel.mayo.edu/codes.html.

Early detectors (Staba et al., 2002; Gardner et al., 2007) provided fast and reliable ways of 

detecting HFOs but completely disregarded false positive detections in filtered signals 

produced by sharp transients. The recently published algorithm by Birot et al. (Birot et al., 

2013) addresses the Gibbs’ phenomenon by calculating power ratios in the frequency 

domain. While this method utilizes a simple approach its purpose is to detect fast ripples 

only. However, others (Worrell et al., 2008; Jacobs et al., 2010) have shown that oscillations 

in ripple frequency band (80–250 Hz) can have clinical value. Failure to detect these may 

lead to a loss of potentially important information. Another approach proposed by Burnos et 

al. (2014) evaluates positions of peaks and nadirs in frequency spectra. This method assumes 

that HFO events exhibit a peak in high frequency and are separated from low frequencies by 

spectral nadir, therefore not addressing the case of ripples co-occurring with IEDs, which 

often show overlap in the frequency domain. The CS HFO detector presented here exploits 

the phase correlation of bandpass filtered signal with low passed filtered signal rather than 

using frequency spectra to avoid filtering artifacts. This leads to clear distinction between 

filtered sharp transients and true oscillations in any frequency and efficiently eliminates the 

false positive detections produced by Gibbs’ phenomenon.

Most of the algorithms developed to date take a simple approach by integrating RMS or line-

length of a bandpass filtered signal in the first stage of detection. Since both approaches are 

based on calculations in fixed-width or sliding or partially overlapping windows, this 

naturally leads to errors in detections of HFO onsets and offsets, which can have an impact 

on evaluation of HFO with IEDs, slow waves, and other EEG phenomena. The samplewise 

evaluation used by the CS algorithm allows for more precise estimation of HFO onset and 

offset. In comparison to a line-length detector which exhibits error of ~48 ms the presented 

algorithm achieved ~4.8 ms error, irrespective of the HFO relative amplitude to surrounding 

signal.

Historically HFOs have been divided into gamma, ripples and fast ripples based on the 

pioneering work of Buzsaki and Bragin (Buzsáki et al., 1992; Bragin et al., 1999, reviewed 

in Buzsáki et al., 2012) and HFO detectors use the same frequency bands. Nonetheless, 

recent studies suggest that such a distinction is incorrect because physiological HFOs can 

reach frequencies over 250 Hz (Kucewicz et al., 2014) and pathological HFOs can occur in 
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the ripple range (Worrell et al., 2008). Moreover, the bimodal distribution of ripple and fast 

ripple HFO frequencies was not confirmed (Worrell et al., 2008; Blanco et al., 2011). The 

proposed algorithm detects HFOs independently in four overlapping frequency bands giving 

relatively coarse information about the distribution of HFOs in frequency space. However, 

the core of the algorithm is independent of frequency band and can be applied to any number 

of bands, as shown in Fig. 2.

Non-stationarirty of EEG is a commonly overlooked problem in HFO detection. In (Staba et 

al., 2002; Gardner et al., 2007) and all subsequent algorithms based on these early detectors 

the detection threshold is a statistical value of the entire, or long stretches of the processed 

signal; for short, multiple minute, datasets, this may not be problematic. However, this 

method does not compensate for changing statistical characteristics typical for longer EEG 

datasets. In the method proposed here, we use Poisson normalization of 10 second statistical 

windows to reduce effects of non-stationarity of EEG on HFO detection. The width of the 

statistical window is an adjustable parameter of the algorithm.

While the CS algorithm overcomes some important issues in HFO detection there remain 

some limitations. Expert reviewed HFOs are still considered a gold standard and are used to 

enhance algorithmic specificity in general. This approach commonly works, however, it 

introduces reviewer bias into the processing pipeline and fits the algorithm to the training 

dataset. Furthermore, most expert reviewed datasets begin with a superset of hypersensitive 

detections derived from a very low threshold version of the detector being evaluated. We, 

and others have previously characterized the Staba detector as sensitive, but not specific, 

however, examination of the Staba detector performance on this gold standard data set 

shown in fire 9 A reveals only about 13% sensitivity. The candidate detections for the gold 

standard data used here was generated by accepting all events that crossed the edge 

threshold on the product traces. The human reviewers were presented with the same event in 

5 s, 1 s, and 0.2 s windows on the same page, with the raw data and the bandpass filtered 

data overlaid, simultaneously. Because of this more rigorous inspection method we believe 

that many more HFO events were identified than in previous method descriptions. Efforts 

were made in the development here to include data sets of varying integrity, sampling 

frequency, electrode dimensions, and species. Incorporation of more reviewed HFOs from 

different reviewers and datasets acquired under different conditions would likely enhance the 

generality of the algorithm by fine tuning the gamma curves for the feature thresholds.

Lastly, a potential weakness of implementing the algorithm this way is that it does not utilize 

any cross channel information. While this design is efficient and facilitates parallel 

computing, there are rare instances in which human expert reviewers would positively 

identify an event on a single channel based on its morphology alone, while multiple 

concomitantly recorded channels show the same event, indicating that it is truly artifactual. 

Rejection of coincident detections on multichannel analysis would improve algorithmic 

performance under these conditions. However, we have performed a second stage analysis to 

look for such coincident detections. Exclusion of these rare events produces negligible 

quantitative and no qualitative differences in our results, so we do not routinely perform this 

step.
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Future work will focus on further enhancement of performance, detection clustering and 

implementation in real time processing.

4. Conclusions

We present an algorithm for HFO detection in intracranial EEG recordings acquired from 

both micro and macro electrode recordings. Non-stationarity of EEG signal is compensated 

for by normalization of statistical windows and expert clinical experience is represented by a 

series of normalized boundary thresholds for HFO features. Temporal localization of HFO 

onset and offset exceeds that of the line-length benchmark detector. Detection results do not 

focus only on HFO counts but provide information about HFO onset, offset, frequency, 

amplitude, and frequency distribution of the detections. The algorithm shows satisfactory 

detection performance to be employed without expert review, and computational efficiency 

to be used in a clinical setting.

Matlab and C code for this algorithm, and representative datasets are available at http://

msel.mayo.edu/codes.html.
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Nomenclature

TT total time of all the recordings scored

APT total time of gold standard positive detections

ANT TT - APT

TP total time of true positive detections

FP total time of false positive detections

TPR TP/APT

FPR FP/ANT
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HIGHLIGHTS

• A novel method for detecting High Frequency Oscillations is presented and 

validated.

• Sensitivity and specificity are shown to be superior to established algorithms.

• Performance is shown to be sufficient for unsupervised use in a clinical 

setting.

Cimbálník et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Poisson normalization of amplitude traces.
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Fig. 2. 
Overlapping bands selected for HFO detection.
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Fig. 3. 
Construction of the Amplitude trace. Green lines demarcate putative HFOs.

Cimbálník et al. Page 16

J Neurosci Methods. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Construction of the Frequency Dominance traces. The Frequency Dominance trace as shown 

(black trace, panel E) is not yet normalized to facilitate comparison with the unfiltered trace 

(red trace, panel E). Green lines demarcate putative HFOs.
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Fig. 5. 
Product trace and Edge threshold. Green lines demarcate putative HFOs.
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Fig. 6. 
Gamma functions (red) fitted to the five metrics used for detection. The fitted data (blue) 

derive from expert reviewed HFOs. All functions have correlations >0.99 to the fitted data.
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Fig. 7. 
Construction of the Conglomerate detections trace. Detection occurred in two bands in this 

case.
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Fig. 8. 
Comparison of putative CS detections to Staba detector in the cases of a low quality HFO 

(left), electrode popping artifact (center), and an epeptic spike (right). The principal metrics 

for each metric are shown below the EEG trace.
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Fig. 9. 
Comparison of the CS to Staba detections. Panel A on the left is the receiver-operator 

characteristic for the Staba detector is shown, and generated by varying the RMS threshold 

specified to be 5.0 in the published algorithm. Panel B, on the right, is an expansion of the 

leftmost portion of the CS detector ROC curve as the threshold is varied between 0 and 1.
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Fig. 10. 
Temporal precision of the CS algorithm compared with a standard line length (LL) detector. 

Onset and offset time were known from artificial insertion of events.
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