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Abstract

From viral binding to the hepatocyte surface to extracellular virion release, the replication cycle of the hepatitis C virus (HCV) intersects at vari-
ous levels with lipid metabolism; this leads to a derangement of the lipid profile and to increased viral infectivity. Accumulating evidence sup-
ports the crucial regulatory role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipoprotein metabolism. Notably, a complex
interaction between HCV and PCSK9 has been documented. Indeed, either increased or reduced circulating PCSK9 levels have been observed in
HCV patients; this discrepancy might be related to several confounders, including HCV genotype, human immunodeficiency virus (HIV) coinfec-
tion and the ambiguous HCV-mediated influence on PCSK9 transcription factors. On the other hand, PCSK9 may itself influence HCV infectivity,
inasmuch as the expression of different hepatocyte surface entry proteins and receptors is regulated by PCSK9. The aim of this review is to
summarize the current evidence about the complex interaction between HCV and liver lipoprotein metabolism, with a specific focus on PCSK9.
The underlying assumption of this review is that the interconnections between HCV and PCSK9 may be central to explain viral infectivity.
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Introduction

Hepatitis C virus (HCV) is a single-stranded RNA virus with a particu-
lar tropism for the hepatocytes [1, 2]. More than 185 million people
(~3% of the world’s population) are infected by HCV [3] with an inci-
dence rate of HCV infection that is apparently decreasing in the last
years [4]. HCV infection, mostly in its chronic form, is an important
cause of morbidity leading to cirrhosis, end-stage liver disease and
hepatocellular carcinoma [3].
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From HCV interaction with the hepatocytes to virion particle
release, viral life cycle comprises a series of events with a close
virus-host interplay intersecting some milestones of liver lipid and
lipoprotein metabolism, thereby leading to hypobetalipoproteinaemia
and hypocholesterolaemia [5]. Viral particle binding to the cell surface
and subsequent internalization involve the interaction between HCV
envelope molecules and some hepatocyte surface molecules, includ-
ing different lipoprotein receptors [6-8]. After fusion of the HCV
envelope with the host cellular membranes, viral nucleocapsid
uncoating allows RNA genome release and intracytoplasmic transla-
tion of the HCV polyprotein precursor [9]. Then, HCV RNA replication
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occurs within subdomains of the endoplasmic reticulum (ER) (i.e.
membranous web), the latter including both HCV non-structural pro-
teins and infected cell proteins and lipids. The assembly of newly
replicated HCV RNA and structural proteins, which is mediated by
both viral and host proteins, takes place in close connection with
lipoprotein synthesis within lipid droplet (LD) platforms that are sur-
rounded by the membranous web [9]. In the ER and Golgi apparatus,
viral envelope acquisition and maturation occur through a molecular
pathway overlapping with lipoprotein secretion [9]. The mature
virions may be then released into circulation as lipoprotein-like
particles, named lipo-viro-particles (LVP), which contain different
hepatocyte-synthesized apolipoproteins [8, 10-12]. It is believed that
LVP particle-associated apolipoproteins may increase viral infectivity,
participate in lipoprotein receptor-mediated viral entry and have a
crucial role for intracellular maturation of HCV particles.

In recent years, the importance of PCSK9 in the regulation of liver
lipoprotein metabolism has emerged [13-15]. At least four hepato-
cyte surface proteins, which are involved in HCV entry [ie. CD81,
low-density lipoprotein receptor (LDLR), very low-density lipoprotein
receptor (VLDLR) and scavenger receptor class B type 1 (SR-B1)],
are known to be modulated to some extent by PCSK9. Specifically, a
concentration-dependent impact of PCSK9 on liver cell CD81
expression has been documented [16, 17]. Also, circulating PCSK9
down-regulates LDLR expression on the hepatocyte surface, thus
decreasing LDL catabolism and increasing plasma LDL-cholesterol
(LDL-C) levels [18, 19]. Although there is evidence that PCSK9
decreases VLDLR expression in adipose tissue [20], whether such a
down-regulation may occur in the liver is not established and the
potential impact of PCSK9-mediated change in VLDLR expression on
HCV infection is still unknown. In addition, a significant down-regula-
tion of SR-B7 gene was induced by PCSK9 [21, 22], although its
impact on HCV life cycle and replication needs to be defined. Experi-
mental and observational studies investigated whether some interac-
tion between HCV infection and circulating plasma PCSK9 occurs,
showing inconclusive results. Accordingly, both increased and
reduced PCSK9 levels have been detected in HCV-infected patients as
compared with healthy individuals [23]. In this regard, it is likely that
HCV genotype and other confounders may explain such discrepan-
cies. Further uncertainty is provided by the observation of the
increased plasma PCSK9 levels in HCV patients that are coinfected
with human immunodeficiency virus (HIV) [24]. Hence, further inves-
tigation is warranted to explore this issue.

The purpose of this review is to discuss the current evidence
about the tangled and complex interaction between HCV infection,
lipoprotein metabolism and PCSK9 expression.

HCV life cycle

HCV has been discovered in 1989 [1]; it is a positive-sense, 9.6-kilo-
base uncapped single-stranded RNA virus of the Flaviviridae family,
genus Hepacivirus, which is composed by a nucleocapsid (protein
and genome) surrounded by a viral envelope (proteins and lipids).
HCV genome contains a single open reading frame (ORF) flanked by
5 and 3’ non-translated regions (NTRs), encoding a polyprotein of
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about 3000 amino acids, depending on HCV genotype. After HCV
polyprotein is synthesized, cleavage by viral- and host-encoded pro-
teases yields mature proteins, including structural proteins (i.e. core
protein, E1 and E2 glycoproteins) and non-structural proteins (p7 or
NS1, p23 or NS2, p70 or NS3, p8 or NS4A, p27 or NS4B, p56/58 or
NS5A, p68 or NS5B). The structural core protein, which forms the
viral nucleocapsid, and the two envelope glycoproteins (E1 and E2),
together with NS1 and NS2, are required for virus assembly, whereas
the remainder non-structural proteins are required for RNA replication
and the HCV life cycle [2].

The HCV life cycle is cytoplasmic. A sequence of events that
include particle binding to the cell surface, interactions with proteins
at the intercellular junction and receptor-mediated endocytosis facili-
tate virus entry into the hepatocytes. Specifically, circulating HCV par-
ticle envelope glycoproteins interact with the basolateral surface of
hepatocytes after crossing the fenestrated endothelium of the liver
sinusoids. Several hepatocyte surface molecules mediate HCV
binding and internalization, including CD81, SR-B1, the dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN or CD209) and the liver/lymph node-specific intercellular
adhesion molecule-3  (ICAM-3)-grabbing integrin  (L-SIGN or
CD209L), LDLR, the asialoglycoprotein receptor (ASGP-R) and hep-
aran sulphate proteoglycans (HSPGs). HSPG represents the first
attachment site before the interaction of the virus with the other puta-
tive receptors [25, 26]. Additional entry factors have been identified
including claudin-1 (CLDN1), occludin (OCLN), Niemann-Pick C1-like
1 (NPC1L1), transferrin receptor 1 (TfR1), epidermal growth factor
receptor (EGFR) and VLDLR [7]. After receptor-mediated binding, cla-
thrin-mediated endocytosis and fusion of HCV with host cellular
membranes are facilitated by specialized viral proteins. The fusion
process and the viral nucleocapsid uncoating are then followed by the
virus RNA release into the cytoplasm to serve as a mRNA for the HCV
polyprotein precursor. Upon synthesis and cleavage of the polypro-
tein precursor, HCV non-structural proteins participate in the forma-
tion of the membranous web, where RNA replication proceeds via a
negative-sense copy that serves as a template for the production of
large amounts of positive-sense RNAs. An important event in the HCV
assembly is represented by the nucleocapsid formation, which is dri-
ven by the interaction between the HCV genome and viral structural
proteins and is orchestrated by viral and host molecules. Specifically,
newly synthetized core protein and replicated RNA are recruited to the
ER in close proximity with LDs, where viral particle assembly occurs
in a process that is tightly linked to lipoprotein synthesis. A lipid-rich
viral envelope, in which are anchored the envelope glycoproteins, is
then acquired to surround the nucleocapsid by ER internal budding.
Subsequently, HGV maturation procedes within the Golgi apparatus,
resembling the VLDL secretion pathway [9].

HCV interaction with lipid and
lipoprotein metabolism

The HCV life cycle is closely linked to the metabolism of lipids and
lipoproteins. Accordingly, HCV uses several host machineries
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involved in lipoprotein synthesis, maturation and degradation, thus
acquiring a constellation of peculiar characteristics, which allow it to
increase its infectiveness.

Lipids, lipoproteins and HCV structure

The virion is made of a nucleocapsid surrounded by a lipid envelope
embedded with glycoproteins E1 and E2 forming a highly glycosy-
lated heterodimer. However, a variable fraction of circulating infec-
tious HCV particles, the so-called LVPs, may have a more complex
lipoprotein-like structure and composition. These LVPs contain
apolipoproteins, including apolipoprotein (apo)B, apoCll, apoClll and
apoE, and high amounts of triglycerides, which may explain the low
buoyant density for HCV LVPs (density below 1.06 g/ml) as com-
pared with other viruses [27]. Interestingly, both apoB100 (syn-
thetized in the liver) and apoB48 (synthetized in the intestine) have
been detected within LVPs, thus suggesting possible assembly and/
or maturation of LVPs into the enterocytes other than into the hepato-
cytes [28]. The proportion of LVP among the circulating viral particles
varies among different HCV patients, and almost half of HCV RNA is
detected in the LVP circulating plasma fraction.

Although the exact role of LVP lipids and apolipoproteins is still
the subject of intense investigation, there is evidence that the interac-
tion of serum lipoproteins with HCV might contribute to mask the vir-
ion from the action of neutralizing antibodies and to facilitate viral
entry and secretion [10, 29]. Also, lipoprotein receptor-mediated HCV
entry has been found to be dependent on the density of the LVPs [8].
Finally, Boyer et al. [11] reported that the complex formed by HCV
E1, E2, apoB and apoE may initiate LVP morphogenesis.

Lipoprotein receptors and HCV entry into host
cells

The entry of HCV into host cells involves different host factors. There
is substantial evidence showing that HCV recognizes a target cell by
binding to the mannose-binding lectins L-SIGN (mainly expressed on
liver endothelium) and DC-SIGN (expressed on dendritic cells).

E1 and E2 glycoproteins, which serve as the fusogenic subunits dur-
ing the process of HGV entry, are believed to function as HCV capture
receptors [12]. In addition, E1 and E2 interact with the CD81 tetraspanin
and lipoprotein receptors; this interaction allows the transfer of the virus
from the surface to side gradually. Finally, tight junction proteins may
help HCV entry by inducing clathrin-mediated endocytosis [30].

Among lipoprotein receptors, SR-B1 and LDLR are involved in the
entry of HGV particles into host cells. Specifically, SR-B1 is believed
important but not essential for HCV entry into HuH-7 cells, as the
post-infection intracellular HCV RNA levels in SR-KO Huh7.5.1 cells
were only slightly reduced compared to parental Huh7.5.1 cells [8]. In
addition, SR-B1 might be implicated in HCV LVP delipidation and the
consequent E2 conformational changes, which expose the CD81-
binding site [31].

Similar to SR-B1, also LDLR is considered as a possible entry fac-
tor for HCV. Syed et al. showed that HCV stimulated LDLR expression
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in HCV-infected HuH-7 cells and in liver tissue from patients with
chronic hepatitis C [32]. Albecka ef al. demonstrated that a small
interfering RNA targeting the LDLR in HuH-7 cells reduced HCV infec-
tivity; moreover, in the same study, a soluble form of the LDLR inhib-
ited both HCV entry into the hepatocytes and its binding to the LDLR,
suggesting a direct interaction between the HCV particle and the
LDLR [6]. Mazumdar et al. suggested that the association between
HCV E1 and apolipoproteins might facilitate virus entry through LDLR
[33]. Despite that deficiencies of SR-B1 and LDLR impaired HCV
entry, there is evidence that SR-B1 and LDLR have a redundant role
in this process [8].

Ujino et al. demonstrated a novel HCV entry pathway involving
an additional lipoprotein receptor [7]. Under hypoxic conditions,
HCV entry into host cells was increased by up-regulating VLDLR
expression and was independent of the CD81. In addition, in the
same study it has been demonstrated that SR-B1, LDLR, NPC1L1
and CLDN1 were not directly involved in VLDLR-mediated HCV
infection and that VLDLR-mediated HCV entry required HCV E2 and
apoE. Recently, it has been observed that exogenous expression of
SR-B1, LDLR and VLDLR rescued HCV entry in the SR-B1 and LDLR
double-knockout cells, confirming that VLDLR has a role in HCV
entry [8].

It is believed that apolipoproteins associated with HCV particles,
especially apoE, participate in heparan sulphate-, LDLR- and SR-B1-
mediated HCV entry [34]. Moreover, the release of core protein from
infected cells was reduced, HCV infectivity was ablated and direct
HCV cell-to-cell transmission was abrogated in the absence of apoE
[35]. However, the permissive role of apoE-mediated HCV entry may
not be always evident, as Prentoe et al. failed to find an effect of anti-
apoE antibody on SRB1- or LDLR-dependent HCV entry [36]. NPC1L1
is a receptor composed of 13 transmembrane domains and three
large extracellular loops (i.e. LEL1, LEL2 and LEL3), which is involved
in cholesterol homeostasis and absorption. A role of NPC1L1 in HCV
infection has been recently proposed. Saniz et al. reported that incu-
bation of HuH-7 cells with specific antibodies directed to LEL’s
domains inhibited HCV infection only when LEL1 was blocked,
whereas no inhibitory effect was observed when anti-LEL2 and anti-
LEL3 antibodies were used. Hence, the authors suggested that HCV
cell entry might depend on its ability to bind the NPC1L1-LEL1
domain. In the same study, the same authors investigated if there
was a relationship between the amount of cholesterol within the HCV
particles and NPC1L1-mediated HCV cell entry. Interestingly, choles-
terol-rich HCV particles (ie. JFH®*'®) exhibited an increased
NPC1L1-dependent cell entry, whereas cholesterol-poor HCV particles
(i.e. JFH pseudotype particles) exhibited NPC1L1-independent cell
entry [37]. A recent study by Zhang et al. provided experimental evi-
dence that genetic polymorphisms of the NPC1L1 gene were associ-
ated with HCV infection. Analysis of five single nucleotide
polymorphisms (SNPs) of the NPG1L1 gene and of the associated
haplotypes showed that the GCCTT haplotype was less frequent in
HCV patients than in control patients whereas the opposite was found
for the GCCCT haplotype. This result indicates that protection from
HCV infection might derive from the first NPC1L1 haplotype (GCCTT),
whereas an increased risk of HGV infection might be associated with
the second haplotype (GGCCT) [38].
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Lipids and HCV replication, assembly and
secretion

Lipoprotein metabolism is a highly regulated multistep process [39].
Accumulating evidence suggests that HCV replication, assembly and
secretion may divert liver lipoprotein metabolism for the virus
requirements. HCV replication occurs in the membranous web that is
in close connection with intracytoplasmic LDs, where viral assembly
takes place. Modifications in lipid and protein composition of LDs
have a variable impact on HCV production. Thus, inhibition of diacyl-
glycerol acyltransferase-1 (DGAT-1), a key enzyme involved in triacyl-
glycerol biosynthesis and LD maturation, influenced negatively HCV
particle assembly [40]. Inhibition of the protease subtilisin/kexin-iso-
zyme-1/site 1 protease (SKI1/S1P), which plays a critical role in the
activation of sterol regulatory element-binding proteins (SREBPs)
controlling cholesterol and fatty-acid biosynthesis and LD composi-
tion, impaired HCV assembly [41]. On the other hand, HCV infection
induced the expression of the LD-associated adipose differentiation-
related protein (ADRP), which is known to promote virion assembly
and secretion [42].

ApoB, apoE and microsomal triglyceride transfer protein (MTP),
which have a crucial role in the VLDL synthetic pathway, are closely
linked with HCV assembly and secretion. A decreased production of
HCV virion particles has been reported in apoB~'~ human hepatoma
cells [43]. HCV secretion was reduced significantly by silencing apoB
mRNA [44]. HCV production was reduced also by blocking VLDL
assembly through knocking-down or inhibition of MTP [45, 46]. How-
ever, these observations were not always confirmed [47, 48], proba-
bly because of differences in VLDL synthesis capacity between
different cell culture systems. It has been demonstrated that apoE
interaction with HCV NS5A is crucial for the viral assembly process
[49]. Also, Lee et al. provided experimental evidence that apoE partic-
ipated in the virion envelope acquisition and contributed to the quality
control of secreted infectious viral particles [50]. To confirm the
impact of apoE on HCV life cycle, a specific small interfering RNA
(siRNA)-mediated knocking-down of the apoE expression was associ-
ated with a significant suppression of HCV particle formation [47].
Finally, HCV secretion is closely linked with the Golgi trafficking and
secretory pathways of the infected hepatocyte. The interaction
between the oxysterol binding protein (OSBP) and the viral non-struc-
tural protein NS5A promotes HCV secretion. Accordingly, inhibition of
0SBP phosphorylation influenced negatively HCV maturation and
secretion [51, 52].

PCSK9 and lipoprotein receptors

PCSK9 is a 692-amino acid secreted glycoprotein that consists of a
signal sequence followed by a prodomain, a catalytic domain and a
cysteine- and histidine-rich C-terminal domain (CHRD). The structure
of CHRD is organized in three Cys/His-rich modules, termed M1, M2
and M3 [53, 54]. PCSK9 is synthesized as a zymogen and, in the ER,
it undergoes autocatalytic cleavage, the latter process being required
for PCSK9 maturation and secretion [55]. Maturation and secretion
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are mediated by two proteins: Sec24A is required for the transport of
PCSK9 from the ER to the Golgi [56] and sortilin that interacts with
PCSK9 in the trans-Golgi network [57]. Current evidence supports the
concept that PCSK9 has no substrate other than itself. The expression
of PCSK9 is high in the liver, intestine, kidney and brain, and the
secreted form is present in human plasma. The function of PCSK9 is
the binding of specific cell surface receptors to escort them towards
intracellular acidic endosome/lysosome degradation compartments
[58, 59]. Specifically, PCSK9 plays a key role in the regulation of hep-
atic LDLR function through receptor binding and targeting to intracel-
lular lysosomal degradation [19]; this leads to reduced LDLR
recycling and expression on the cell membrane, decreased plasma
LDL catabolism and increased plasma LDL-C levels.

Loss-of-function mutations in PCSK9 gene induce high hepatic
levels of LDLR and increased plasma LDL-C clearance, whereas gain-
of-function PCSK9 gene mutations and overexpression of recombi-
nant PCSK9 reduce LDLR protein levels in the liver and cause severe
hypercholesterolaemia [60-62]. As an example, D374Y, a PCSK9
gain-of-function mutation [63], causes a severe form of autosomal-
dominant hypercholesterolaemia by inducing a significantly increased
degradation of the LDLR compared with the wild-type (WT) protein.

The importance of PCSK9 in regulating LDLR fate and plasma
LDL-C levels is further supported by the results of several randomized
controlled trials with anti-PCSK9 monoclonal antibodies (mAbs),
revealing an impressive reduction in plasma LDL-C levels following
their subcutaneous administration [64-66]. An unexpected reduction
in plasma lipoprotein(a) levels following anti-PCSK9 mAb treatment
has been documented [67]; although the exact mechanisms regulat-
ing lipoprotein(a) catabolism are still unclear, increased LDLR expres-
sion has been proposed to explain plasma lipoprotein(a) level
lowering after treatment with anti-PCSK9 mAbs [68].

Besides the described functions of PCSK9, it has been shown
recently that PCSK9 is able to modulate the levels of other proteins
other than the LDLR [69]. In this regard, an additional PCSK9 target
includes the VLDLR, which is a trans-membrane lipoprotein receptor
of the LDLR family modulating the extra-hepatic metabolism of
triglyceride (TG)-rich lipoproteins. Current evidence suggests the role
of VLDLR in reelin signalling [70], tumour development, angiogenesis
[71], fibrin-mediated trans-endothelial leucocyte migration, choles-
terol uptake and neuronal migration in the developing brain [72].
VLDLR is expressed by several tissues, including adipose tissue,
heart, skeletal muscle, brain, and it is generally absent in the liver [73,
74]. In humans, VLDLR consists of specific regions, including intra-
cellular NPxY motif, O-linked glycosylation sugar domain, YWTD or
LDLR class B repeats (i.e. -propeller domain), epidermal growth fac-
tor (EGF)-like repeats and cysteine class A repeats. This last domain,
similar but not identical to that of other members of LDLR family,
defines the different binding affinity of VLDLR and allows interaction
with apoE-containing particles [75].

Roubtsova ef al. suggested that endogenous PCSK9 regulates
VLDLR protein levels in adipose tissue. These authors showed that
PCSK9~"~ mice had more cell surface VLDLR in perigonadal fat when
compared with WT mice. This difference was even more significant
when a gender-separated analysis was performed; accordingly, male
and female mice showed fourfold and 43-fold more VLDLR than WT
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mice, respectively. In the same study, the LDLR™~/PCSK9~"~ female
mice had a 36-fold increase in VLDLR expression. In addition, these
authors demonstrated that adipose tissue VLDLR expression was reg-
ulated only by circulating but not local PCSK9 [20].

Adorni et al. provided experimental evidence that PCSK9 can
influence also SR-B1, the latter receptor being involved in the HCV
cell entry. Incubation of WT mouse peritoneal macrophages with
PCSK9 induced a slight, but statistically significant down-regulation
of SR-B1 gene [21]. Finally, Shen et al. suggested that PCSK9 con-
tributed to subendothelial oxidized LDL accumulation, which in turn
might reduce SR-B1 expression [22].

The interaction between HCV and
PCSK9

Several surface proteins (CD81, CLDN1, OCLN) and lipoprotein recep-
tors (LDLR, VLDLR, SR-B1) have been suggested to play a role in
HCV infection. Some of these proteins and receptors, such as CD81,
LDLR, VLDLR and SR-B1, are regulated by PCSK9 (Fig. 1).

Labonte et al. provided in vitro experimental evidence that PCSK9,
at supra-physiological concentrations (7 pg/ml), reduced cell surface
expression of LDLR and CD81 in HuH-7 cells, thereby impeding HCV
infection. Furthermore, PCSK9-mediated CD81 inhibition was inde-
pendent of LDLR expression [16]. However, it should be underlined
that the same effect was not observed when physiological concentra-
tions of PCSK9 have been used in the study by Ramananathan et al.
[17]. In the referred study, extracellular PCSK9 regulated only LDLR,
but there was no functional relationship between the amount of the
secreted or soluble form of PCSK9 and CD81 levels. To confirm the
latter result, in vitro treatment of HuH-7 cells with alirocumab, a fully
human anti-PCSK9 mAb, reduced PCSK9 but had no impact on CD81
levels and neither on HCV entry and replication into hepatocytes.
Hence, it appears that PCSK9 influences LDLR in HuH-7 cells, but the
impact on CD81 expression is dependent on PCSK9 concentrations.
PCSK9 is also able to down-regulate VLDLR and SR-B1 expression.
However, whether PCSK9-mediated down-regulation of the VLDLR
occurs in the liver has not been defined; in addition, the potential
impact of PCSK9-mediated change in VLDLR and SR-B1 expression
on HCV infection is still unclear.

Important apolipoproteins and enzymes involved in lipoprotein
synthesis and also in HCV intracellular assembly, namely apoB and
MTP, are modulated by PCSK9. In particular, PCSK9 has a function in
facilitating the production of liver apoB100 and intestinal apoB48
lipoproteins [76, 77]. Also, it has been demonstrated that MTP pro-
tein levels and lipid transfer activity were enhanced in enterocytes by
PCSK9, whereas PCSK9 siRNA inhibition lowered MTP protein levels
and activity [77]. Also DGAT-1 is involved in HCV assembly [40]. In
the study by Rashid ef al. [77], PCSK9 was able to increase entero-
cyte DGAT-2 expression without affecting that of DGAT-1. It must be
emphasized, however, that the latter result was obtained in cultures
of enterocytes. Overall, these data may be of interest for a better
understanding of the impact of PCSK9 on key apolipoproteins and
enzymes involved in HCV assembly (Table 1). Nevertheless, evidence
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showing that PCSK9 modulation might impact on HCV assembly
through a direct interference with these apolipoproteins and enzymes
is still lacking.

Contrary to what has been observed in healthy individuals, Bridge
et al. showed that plasma PCSK9 did not correlate with plasma LDL-
C and total cholesterol levels in HCV-infected patients, thus suggest-
ing that HCV induces disruption of lipid homeostasis. Moreover, in
the same study, plasma PCSK9 levels in HCV genotype 3 (HCV-G3)
and HCV-G1 patients were lower and higher than healthy non-HCV
patients, respectively. In agreement, while high LVP particle levels in
HCV-G3 patients were associated with lower PCSK9 levels, the oppo-
site was observed in HCV-G1 patients, in which high LVP particle
levels were associated with higher PCSK9 levels [23]. Thus, also HCV
genotype appears to be crucial in modulating PCSK9 levels. However,
it must be emphasized that the results of this study were derived from
a small-size sample of HCV patients; hence, further research is war-
ranted to confirm this observation. A recent study by Kohli et al. [24]
add further uncertainty on the relationship between HCV infection and
plasma PCSK9 levels. Accordingly, HCV infection was associated with
a significant increase in plasma PCSK9 levels among HIV coinfected
patients. HCV genotype was not available and reported in this study;
hence, whether the increased plasma PCSK9 levels observed in HIV-
HCV coinfected patients might be the consequence of a greater preva-
lence of HCV-G1 patients is unknown.

PCSK9 is a direct transcriptional target of SREBPs [78] and it is
well known that HCV stimulates SREBPs activation [79, 80]. Accord-
ingly, SREBP activation is able to induce PCSK9 gene transcription
along with hepatocyte nuclear factor 1o (HNF1a) [81] (Fig. 1). Hence,
it would be conceivable that exposure to HCV would increase PCSK9
mRNA and protein levels. However, Syed ef al. reported that HCV
down-regulates PCSK9 protein expression without affecting to a sig-
nificant extent mRNA levels [32]. Although the exact mechanism
explaining such a result is still unclear, it must be underlined that both
a down-regulation and up-regulation of HNF1o have been described
after HCV infection [82, 83]. Thus, the differential impact of HCV on
SREBP and HNF1o might explain at least in part the lack of a signifi-
cant PCSK9 mRNA level increase during HCV infection [32]. To
explain the reduced PCSK9 protein level following HCV infection, it
has been observed that HCV induced PCSK9 proteosomal degradation
by regulating the expression of the cellular inhibitor of apoptosis pro-
tein 1 (clAP1) [84]. Also, in cell lysates derived from HuH-7 cells,
Western blot analysis showed that HCV-JC1 genotype 2a infection
induced a modest increase in clAP1 protein [32].

Blanchet et al. formulated another hypothesis on the regulation of
PCSK9 levels induced by HCV, which is based on the key protein SKI-
1/S1P modulation. The authors showed that inhibition of SKI-1/S1P,
a lipogenic pathway regulator activating SREBP, impaired HCV gen-
ome replication and virion secretion [85]. Also, Olmstead ef al. [41]
demonstrated that SKI-1/S1P inhibition blocked HCV infection in hep-
atoma cells. Interestingly, SKI-1/S1P inhibition induced also a strong
reduction in PCSK9 mRNA and protein levels, which would be
expected to increase HCV infectivity because of greater receptor-
mediated virus entry. However, in this study PCSK9 level reduction
following SKI-1/S1P inhibition was not associated with an increased
CD81 expression and a decreased LDLR and NPC1L1 expression has
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Fig. 1 Key events in the interaction between HCV and PCSK9. (A) Interaction between HCV and surface receptors; (B) HCV intracellular entry; (C)
HCV-mediated HNF1a: activation or inhibition; (D) HCV-mediated SREBP activation; (E) SREBP- and HNF1o-mediated PCSK9 mRNA stimulation; (F)
PCSK9 protein maturation; (G) Formation of PCSK9-secretory vesicles; (H) PCSK9 exocytosis; (I) HCV-mediated clAP1 activation; (L) clAP1-
mediated PCSK9 proteasomal degradation; (M) PCSK9-mediated CD81, SR-B1, LDLR and VLDLR inhibition. HCV, hepatitis C virus; HNF1a, hepatic
nuclear factor 1 alpha; SREBP, sterol regulatory element-binding protein; PCSK9, proprotein convertase subtilisin/kexin type 9; clAP1, cellular inhibi-
tor of apoptosis protein 1; SR-B1, scavenger receptor class B type I; LDLR, low-density lipoprotein receptor; VLDLR, very low-density lipoprotein
receptor.
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Table 1 PCSK9-modulated factors relevant to HCV life cycle.

Factor Effect Method Model Reference
LDLR Iprotein expression Treatment with supra-physiological concentration HuH-7 human hepatocyte-derived [16]
of purified soluble PCSK9. carcinoma cells
Tested doses 0-15 pg/ml
Effective dose >7 ug/ml
Iprotein expression Treatment with physiological concentration of HuH-7 human hepatocyte-derived [17]
human recombinant PCSKO. carcinoma cells
Tested doses 5-500 nM
Effective dose >5 nM
Iprotein expression Treatment with human recombinant PCSK9. HepG2 human hepatocyte-derived [18]
Tested doses 0.5-2.5 pug/ml carcinoma cells
Effective dose >0.5 pg/ml
CD81 Iprotein expression Treatment with supra-physiological concentration HuH-7 human hepatocyte-derived [16]
of purified soluble PCSK9. carcinoma cells
Tested doses 0-15 pg/ml
Effective dose >7 pg/ml
no effect Treatment with physiological concentration of [17]
human recombinant PCSKO.
Tested doses 5-500 nM
Effective dose >5 nM
VLDLR Iprotein expression Induction of PCSK9 expression in Pcsk9/~ mice. C57BL/6J mouse [20]
SR-B1 ImRNA expression Treatment with human recombinant PCSKO. C57BL/6 mouse peritoneal [21]
Tested dose 6.4 pug/ml macrophages
DGAT1 no effect Treatment with human recombinant PCSKO. CaC0-2 human enterocytes [77]
Tested doses 0-12.5 pg/ml
Effective dose >10 pg/ml
DGAT2 TmRNA expression Treatment with human recombinant PCSKO. CaC0-2 human enterocytes [77]
Tested doses 0-12.5 pg/ml
Effective dose >10 pg/ml
MTP TmRNA expression Treatment with human recombinant PCSKO. CaC0-2 human enterocytes [77]
Tested doses 0-12.5 pg/ml
Effective dose >10 pg/ml
Apo B100 Tprotein production Treatment with human recombinant PCSKO. CaC0-2 human enterocytes [77]
Tested doses 0-12.5 pg/ml
Effective dose >10 pg/ml
Apo B438 Tprotein production Treatment with human recombinant PCSKO. CaC0-2 human enterocytes [77]

Tested doses 0-12.5 pg/ml
Effective dose >10 pg/ml

ApoB, apolipoprotein B; DGAT, diacylglycerol acyltransferase; LDLR, low-density lipoprotein receptor; MTP, microsomal triglyceride transfer pro-
tein; PCSK9, proprotein convertase subtilisin/kexin type 9; RNA, ribonucleic acid; SR-B1, scavenger receptor class B type 1; VLDLR, very low-

density lipoprotein receptor.

been documented [86]. Hence, additional antiviral SREBP-indepen-
dent actions of SKI-1/S1P inhibition have been suggested to explain
such discrepancies.

Additional treatments affecting either HCV life cycle or PCSK9
levels might provide novel insight for the understanding of the link
between HCV infection and PCSK9 pathway. In this regard, a recent
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study by Blanchet et al. [87] found that statin treatment might have
proviral effects by increasing LDLR and NPC1L1 expression. Con-
versely, high statin doses were associated with a net antiviral effect
that was attributed to the down-regulation of CLDN1 expression. Also,
the statin-mediated plasma PCSK9 level increase, which is associated
with an increased surface receptor degradation, might further support
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the possible antiviral effect of statin therapy. Finally, a recent study by
Hyrina et al. [88] found that plasma PCSK9 concentrations were up-
regulated in HCV patients who achieved a sustained virologic
response following antiviral therapy. This study further supports the
ability of HCV to usurp host-cell metabolic pathways to increase its
intracellular entry through PCSK9-controlled surface receptors.

PCSK9 inhibition is currently considered an effective strategy for
lowering plasma LDL-C levels [64, 65], but its impact on HCV infec-
tion has not been explored so far in clinical trials. Hence, whether
approved anti-PCSK9 mAbs, by reducing LDLR degradation, may
increase infectivity in HCV-positive patients is unknown. At least three
lines of evidence should be considered in this regard. First, as already
mentioned, increased availability of hepatocyte LDLR during anti-
PCSK9 therapy might increase HCV-LDLR interaction and cell entry.
Second, PCSK9~/~ mice undergoing experimental liver resection
exhibited reduced liver regenerative capacity and necrotic lesions,
which were prevented by a high-cholesterol diet [89]. Thus, anti-
PCSK9 treatment might in theory increase the risk of HCV infectivity
and reduce liver regeneration following hepatic injury. However, a
preliminary third line of evidence seems to attenuate this fear as inhi-
bition of PCSK9 with alirocumab did not result in increased suscepti-
bility to HCV entry in vitro [17].

Nonetheless, concern about the potential unfavourable impact of
PCSK9 inhibition on HCV infection progression has not been sup-
ported by the occurrence or progression of other infectious diseases.
Whether PCSK9 and PCSK9 inhibition may alter the life cycle and
activity of other viruses including hepatitis B virus (HBV) and HIV has
not been established yet. Specifically, concern on the use of PCSK9
inhibitors in HCV-infected patients cannot be easily translated to HIV
patients, where cholesterol-lowering treatment is often indicated (e.g.
statins) and in some cases hampered by drug-to-drug interactions
[90]. Conversely, preclinical and clinical studies showed that PCSK9
inhibition promotes pathogen lipid clearance by LDLR, reduces
inflammatory signals and improves prognosis among patients with
sepsis [15, 91].

Impact of anti-PCSK9 mAbs on clinical
outcome

Recently, Food and Drug Administration approved the clinical use of
two anti-PCSK9 mAbs: evolocumab and alirocumab. Currently,
PCSK9 mAbs represent an additional lipid-lowering therapeutic option
either for patients with familial hypercholesterolaemia, those at very
high cardiovascular risk and those who are intolerant to statin ther-
apy. The use of these mAbs is particularly useful when current
cholesterol-lowering treatments do not allow to reach the recom-
mended therapeutic LDL-C goals. Thus, for instance, alirocumab
reduced LDL-C by 45% in patients with statin intolerance, as com-
pared with a 14.6% reduction in LDL-C with ezetimibe, and reduced
significantly skeletal muscle adverse events as compared with ator-
vastatin [92]. Also, evolocumab reduced LDL-C by 56% in patients
with statin intolerance as compared with a 36% reduction with
ezetimibe [93]. In patients with familial hypercholesterolaemia,
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alirocumab reduced LDL-C by 48.8%, and evolocumab by 59.2% (ev-
ery 2 week dose) and 61.3% (monthly dose) [94, 95]. In the post hoc
analysis of the ODYSSEY LONG TERM study, alirocumab reduced the
combined end-point of death from coronary artery disease, non-fatal
myocardial infarction, fatal or non-fatal ischaemic stroke or unstable
angina requiring hospitalization, as compared with placebo in patients
with hypercholesterolaemia on maximally tolerated statin therapy
[96]. The ongoing ODYSSEY Outcomes trial (ClinicalTrials.gov Identi-
fier: NCT01663402) will establish the long-term effects of alirocumab
on cardiovascular disease in 18,000 patients on maximally tolerated
statin therapy. In the OSLER 1 and 2 trials, enrolling patients who
completed one of the phase 2 or phase 3 studies of evolocumab,
composite adverse cardiovascular events were significantly lower in
patients receiving evolocumab as compared with standard therapy
[97, 98]. In the FOURIER trial, evolocumab on top of statin therapy
reduced significantly the risk of cardiovascular events [99]. QOverall,
the results from the above-mentioned studies show that anti-PCSK9
mADbs are potent and well-tolerated cholesterol-lowering drugs, with a
significant clinical benefit on cardiovascular outcome. Despite that
the use of these drugs is actually a novel and promising therapeutic
tool for cardiovascular prevention, clinical evidence supporting their
use in HCV-infected patients is still lacking. However, in the light of
the dramatic rate of HCV eradication with highly active antiviral
agents, whether anti-PCSK9 treatment might become a valuable treat-
ment option for cardiovascular prevention also in these patients
needs to be established.

Irrespective of the possibility of using PCSK9 inhibitors in HCV-
infected patients, there are other cholesterol-lowering options to be
used in HCV patients. Despite caution is needed when prescribing
statins to patients with advanced or acute liver disease, different
lines of evidence support their use in HCV-infected patients. First,
statins may contribute to the clearance of HCV from the blood
[100]. Second, statin use has been associated with a dose-depen-
dent reduction in the risk of chronic liver disease progression to cir-
rhosis and hepatocellular carcinoma [100]. Third, statin use
decreased the decompensation rate in both HBV- and HCV-related
cirrhosis [101]. Finally, statins ameliorated different measures of
vascular injury and decreased the risk of cardiovascular events when
compared with placebo in a large number of clinical settings
[102-104], although direct evidence of statin-induced cardiovascular
prevention in HCV-positive patients is not available. The use of eze-
timibe would be also an option for cholesterol-lowering in HCV
patients. As ezetimibe is able to reduced plasma cholesterol levels
and cardiovascular risk [105] by inhibiting intestinal NPC1L1 trans-
porter, its use may be considered of particular therapeutic value also
in patients with HCV infection. Intriguingly, HCV cell entry might
depend on its ability to bind the NPC1L1-LEL1 domain, thus making
ezetimibe use in HCV-positive patients a suitable option for these
patients. Notably, a recent pilot study on two patients showed that
ezetimibe was associated with a transient reduction in HCV viral load
after liver transplantation [106]. Whether nutraceuticals and novel
drugs targeting both lipid metabolism and inflammation might pro-
vide an additional effective and safe therapeutic option to obtain a
significant reduction in cardiovascular risk in HCV-infected patients
needs to be established [66, 107, 108].
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Conclusions

HCV life cycle is a clear example of the impressive plasticity of this
Flavivirus. Accordingly, HCV is able to hijack endogenous lipid meta-
bolic pathways for its own requirements, from virus-host interaction,
to intracellular entry, replication and maturation up to extracellular
secretion. PCSK9 is an ubiquitously expressed enzyme whose more
studied function is represented by its ability to direct LDLR towards
intracellular degradation, thus regulating plasma and intracellular
cholesterol levels. A complex link between HCV infection and PCSK9
has emerged from the literature, in which a bidirectional loop of inter-
actions is conceivable. Accordingly, PCSK9 has been involved in the
regulation of key HCV entry receptors, including LDLR, VLDLR, SR-
B1 and CD81, thereby impeding in some cases of HCV infection. Also,
PCSK9 is able to influence key factors of the lipid metabolism that are
also involved in the HCV assembly, namely apoB and MTP. On the
other hand, HCV was found to regulate PCSK9 expression by modu-
lating its levels at a translational but not at a transcriptional level.
Thus, HCV-mediated proteasomal PCSK9 degradation has been
described, along with SREBP activation and both inhibition and acti-
vation of the potent PCSK9 transcription factor activator HNF1o.
Overall, current evidence seems to reinforce the concept that HCV
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