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SUMMARY Understanding the mechanisms controlling community diversity, functions,
succession, and biogeography is a central, but poorly understood, topic in ecology, par-
ticularly in microbial ecology. Although stochastic processes are believed to play non-
negligible roles in shaping community structure, their importance relative to determinis-
tic processes is hotly debated. The importance of ecological stochasticity in shaping
microbial community structure is far less appreciated. Some of the main reasons for
such heavy debates are the difficulty in defining stochasticity and the diverse methods
used for delineating stochasticity. Here, we provide a critical review and synthesis of
data from the most recent studies on stochastic community assembly in microbial ecol-
ogy. We then describe both stochastic and deterministic components embedded in vari-
ous ecological processes, including selection, dispersal, diversification, and drift. We also
describe different approaches for inferring stochasticity from observational diversity pat-
terns and highlight experimental approaches for delineating ecological stochasticity in
microbial communities. In addition, we highlight research challenges, gaps, and future
directions for microbial community assembly research.
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INTRODUCTION

Biodiversity, a measure of the variety of life found on Earth (1, 2), is a central topic
in ecology and for society, because the dramatic loss in biodiversity could alter the

functions and services provided by ecosystems (3, 4). Since the last century, various
facets of biodiversity have been intensively examined across space, time, and ecological
gradients from different perspectives (e.g., taxonomic, phylogenetic, and functional
diversity). Various fundamental biodiversity patterns have been observed in ecology,
e.g., latitudinal diversity patterns (5–9), species abundance distributions (SADs) (10–12),
species-area relationships (SARs) (13–16), distance-decay relationships (17–20), and
species-time relationships (19, 21–25). However, the mechanisms and factors control-
ling such diversity patterns remain unclear and highly controversial. Traditional niche-
based theory hypothesizes that deterministic factors such as species traits, interspecies
interactions (e.g., competition, predation, mutualisms, and trade-offs), and environmen-
tal conditions (e.g., pH, temperature, salt, and moisture) govern community structure,
which are often referred to as deterministic processes (26, 27). In contrast, neutral
theory assumes that community structures are independent of species traits and
governed by stochastic processes of birth, death, colonization, extinction, and specia-
tion (28, 29). Although, recently, it has been generally accepted that both deterministic
and stochastic processes occur simultaneously in the assembly of local communities
(30–33), a central debate is on their relative importance in controlling community
structure, succession, and biogeography (34–37).

Microorganisms are the most diverse group of life on Earth, inhabiting almost every
imaginable environment (38). Although it is well known that microbial biodiversity is
extremely high (12, 39–43), why and how such high diversity is generated and main-
tained are long-standing puzzles to microbiologists. Various deterministic factors, such
as changes in environmental conditions (44–48), habitat conditions in hosts (49, 50),
carbon and nutrient resource heterogeneity (40, 51), species traits and/or interspecies
interactions (52–54), and plant diversity (55–60), are important in governing microbial
community structure. However, they are alone not sufficient to explain the extremely
high diversity of microbial communities observed in nature. Numerous studies (e.g., 13,
14, 61–63) revealed that substantial amounts of variation in microbial community
structure could not be explained by environmental and/or distance effects despite
extensive measurements of all routinely measured environmental variables. It is be-
lieved that in many cases, considerable amounts of the microbial community variation
observed could result from stochastic processes of community assembly through
historical contingency (e.g., priority effects), ecological drift, and/or dispersal limitation
(29, 31, 32, 35, 36, 62, 64–66). However, the importance of stochastic processes in
controlling microbial biodiversity has been recognized only in some recent studies (33,
35, 36, 67, 68). Partly due to the small organism size, vast diversity of microbial
communities, and uncultivated status for the majority of microorganisms, the mecha-
nisms underlying microbial community structure, succession, and biogeography are
much less understood in general, compared to the ecology of macroorganisms (35).

Along with the rapid advance and application of large-scale high-throughput met-
agenomics technologies in the last decade (69), mechanisms underlying microbial
community assembly have received great attention, especially within the last several
years, with more emphasis on stochasticity (Fig. 1). While some great insights have
been obtained, divergent controversial results have been reported (e.g., see references
32, 36, 64, 70, and 71). Several recent reviews/analyses have provided an excellent
overview of the ecological processes controlling microbial community structure and
biogeographic patterns in general (72, 73). However, a critical review on the importance
of ecological stochasticity in governing microbial community structure and biogeo-
graphic patterns is lacking. Thus, to complement previous analyses, here, we focus
primarily on the review and synthesis of most recent findings from studies of ecological
stochasticity in microbial ecology. We first provide a historical overview of both the
theoretical and empirical studies examining stochasticity, as well as determinism, in
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ecology. We describe the stochastic and/or deterministic components embedded in
ecological processes, including selection, dispersal, diversification, and drift, with em-
phasis on microorganisms. Next, we describe different approaches for inferring sto-
chasticity from observational diversity patterns in general by not being limited to
microbial studies. In addition, we highlight experimental approaches for examining the
importance of stochasticity in microbial ecology. Finally, we point out several research
directions in microbial community assembly research.

STOCHASTICITY VERSUS DETERMINISM: HISTORICAL OVERVIEW

Historically, much of traditional ecology has been built on niche concepts and
theory. The basic assumption of niche theory is that species differ in their niches, which
are sets of biotic and abiotic conditions under which species can persist (74, 75). Species
niches are determined by their traits that enable them to obtain resources, evade
enemies, and survive under various adverse environmental conditions (30). Species
often show trade-offs (i.e., the benefits of performing one ecological function well
comes at a cost of performing another function) (76), which allow them to coexist
within communities for long periods of time (26, 77). Niche-based theory asserts that
deterministic processes largely control the patterns of community structure. In general,
a deterministic process is any ecological process that involves nonrandom, niche-based
mechanisms (Table 1), including environmental filtering and various biological inter-
actions (e.g., competition, facilitation, mutualisms, and predation) (30, 31, 35, 62). Over
the last 100 years, niche concepts have been instrumental in the development of
deterministic ecological theories and widely used in the fields of community ecology,
biogeography, and evolutionary ecology (30, 75, 78–85).

Although the niche is one of the most important fundamental concepts in ecology,
niche-based theory faces several grand challenges in explaining patterns of community
structure. First, a niche is inherently highly dimensional (86). Defining the dimensions
of a niche is an insurmountable task (30, 87). Second, niche-based theories focus
primarily on trade-offs (e.g., see references 76, 88, and 89) to explain species abundance

FIG 1 Trends in studying community assembly mechanisms. The data shown are based on the annual
number of articles on community assembly (any organisms, including microorganisms [inset]), articles on
microbial community assembly, articles about only deterministic microbial assembly, and articles involv-
ing stochastic microbial assembly. We searched articles from 1990 to 2016 in the Web of Science Core
Collection database on 10 January 2017. To find articles on “community assembly,” we searched by
topic � “community assembly” and Indexes � SCI-EXPANDED and ESCI. To find articles on “microbial
assembly,” we searched by topic � (microbi* or bacteri* or fungi or fungus or fungal or archaea* or
protist or metazoa* or mycorrhiza) in addition to “community assembly.” For articles on “stochastic,” we
searched by topic � (neutral or stochast* or dispersal or migration or immigration or (priority effect) or
(historical contingency) or drift or diversification or speciation) in articles on “microbial assembly.” For
articles on “deterministic only,” we searched by topic � (niche or deterministic or selection or filtering
or competiti* or facilitati* or mutualism or predation or interaction) in articles on “microbial assembly,”
except for those related to “stochastic.”
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and distribution. If niche differences are observed among different species, there must
be trade-offs among species to allow them to coexist. However, very limited evidence
is available to support the assumption that niche differences cause trade-offs among
species and, hence, influence stable species coexistences (30, 90). In addition, some
nonrandom patterns of species distributions in space and time are consistent with
predictions from non-niche-based stochastic processes (29, 91, 92). Thus, some key
components/predictions of niche theory remain untested and therefore questionable.
Since the mid-20th century, the niche paradigm has been directly challenged by neutral
theory (29, 93, 94).

Neutral theory assumes that all species (e.g., see reference 95) or individuals (e.g.,
see reference 29) are ecologically functionally equivalent, and species dynamics are
controlled by stochastic processes but not by the differences in their competitive
abilities (28, 29, 95, 96). In contrast to deterministic processes, here, stochastic processes
are referred to as ecological processes that generate community diversity patterns
indistinguishable from those generated by random chance alone. These processes
typically include probabilistic dispersal (e.g., random chance for colonization), random
speciation and extinction, and ecological drift (e.g., random changes in organism
abundance) (29, 30, 35, 62, 67) (Table 1). Neutral theory challenges the two fundamen-
tal concepts of niche theory: all species/individuals are ecologically and functionally
different, and environments play important roles in governing species abundance and
distribution (11, 97). Despite this extreme assumption of the ecological equivalence of
all individuals, neutral theory successfully predicted, even better than niche theory,
some fundamental ecological patterns of numerous communities, such as species
abundance distributions and species-area relationships (11, 29, 74, 92, 98), suggesting
that stochastic processes could play more important roles than species functional
differences in generating community patterns (99).

Although neutral theory is attractive because of its surprising simplicity and tracta-
bility (93), neutral theory has been hotly debated since its publication because it
challenges some foundational concepts in traditional ecological research (11). First, the
assumption that all species are functionally equivalent (92, 98) is highly controversial

TABLE 1 Key terminology related to community assembly used in this review

Term Definition Reference(s)

Community assembly Process by which species colonize and interact to establish and maintain local communities via
sequential repeated immigration from the regional species pool

46, 99

Ecological stochasticity Random changes in community structure with respect to species identities and/or functional
traits due to stochastic processes of birth, death, immigration and emigration,
spatiotemporal variation, and/or historical contingency (e.g., colonization order)

90–92

Selection Major niche-based process that shapes community structure due to fitness differences (e.g.,
survival, growth, and reproduction) among different organisms, including effects of abiotic
conditions (environmental filtering) and biotic interactions (e.g., competition, facilitation,
mutualism, predation, and host filtering, etc.)

59, 94

Homogeneous selection Selection under homogeneous abiotic and biotic environmental conditions leading to more-
similar structures among communities

95

Heterogeneous selection Selection under heterogeneous abiotic and biotic environmental conditions leading to more-
dissimilar structures among communities; also called variable selection

95

Dispersal Movement and successful colonization (establishment) of an individual organism from one
location to another via both active and passive mechanisms

62

Priority effects The organisms that arrive first at a location have negative or positive impacts on organisms
that arrive later

98, 99

Homogenizing dispersal Very high rate of dispersal among communities, which homogenizes the communities such
that their structures are very similar

95, 96

Dispersal limitation Movement of individuals to and/or establishment of individuals (colonization) in a new
location is restricted, leading to more-dissimilar structures among communities

95, 96

Diversification Evolutionary process of generating new genetic variants, which is a balance between
speciation and extinction

59, 94, 109

Drift Random changes, with respect to species identity, in the relative abundances of different
species within a community over time due to the inherent stochastic processes of birth,
death, and reproduction

28, 59, 94
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because nothing is neutral in the real world (93). Second, the parameters in some
neutral models are extremely difficult to estimate (11). In addition, it is difficult to infer
underlying processes from diversity patterns (e.g., species abundance patterns) be-
cause different processes (or assumptions) can yield very similar, or even the same,
diversity patterns (11, 74, 93). Therefore, if an observed pattern fit the neutral model (or
null model) expectation, in principle, we could not reject the importance of determin-
istic processes unless we ensure that a deterministic process(es) could not generate the
same or a similar pattern. Despite various heavy criticisms, neutral theory is still widely
accepted as a valuable null hypothesis or approximation for developing new ecological
theories and examining community assembly mechanisms (11, 93).

After intensive debates on niche versus neutral processes, researchers have now
realized that both niche and neutral processes are not mutually exclusive. Instead, both
processes are complementary and work together simultaneously in structuring com-
munities (33, 74, 92, 98, 100, 101). Based on this perspective, various theoretical models
considering both deterministic and stochastic processes have been developed (74, 89,
92, 102). However, the emerging consensus of a continuum from determinism to
stochasticity was recently questioned by Clark and colleagues (86, 103), who argued
that stochasticity could occur only in mathematical models and not in nature and thus
can only stand in for unknown processes (34, 86). Nevertheless, some components of
community changes (e.g., stochastic birth and death) are irreducibly stochastic, and
thus, the hypothesis of a continuum from determinism to stochasticity is testable (34).

DEFINING ECOLOGICAL STOCHASTICITY

While it is important to unify niche and neutral perspectives on governing commu-
nity structure, it is challenging to do so, partially due to the different meanings of
stochasticity used in the literature, including environmental, demographic, genetic,
ecological, compositional, and neutral stochasticity (34, 35, 104–106). Based on the
standard dictionary definition, a process is considered stochastic (or random) with
respect to a certain reference status if the outcome is probabilistic. For instance, Vellend
et al. (34) defined neutral stochasticity in community ecology as random changes in
community structure with respect to species identity due to stochastic processes of
birth, death, immigration, and emigration. It could also mean variation explained by
spatial rather than by environmental variables or random variation due to colonization
order (34). Because neutral is often treated as being equivalent to stochastic in the
ecological literature (e.g., neutral process is often a synonym for stochastic process),
putting two words together could also potentially lead to confusion. In this review, we
prefer to use the term “ecological stochasticity” to refer to this type of stochasticity
used in community ecology research.

The term “ecological stochasticity” was used about 4 decades ago but has not been
well defined (104). Here, we give a more straightforward definition of stochasticity used
in community ecology. Based on general system theory, a system can be defined by
two fundamental attributes: structure and functions. Community structure includes
species composition and abundance distributions. Thus, in general, ecological stochas-
ticity (Table 1) in community ecology can be defined as random changes in the
community structure with respect to species identities and/or functional traits due to
stochastic processes of birth, death, immigration and emigration, spatiotemporal vari-
ation, and/or historical contingency (e.g., colonization order [described in detail be-
low]). One advantage of this term is that it encompasses the context of various other
terms used in ecology research, e.g., demographic, compositional, or neutral stochas-
ticity. It is also consistent with other terms used in the literature, such as genetic,
physiological, and evolutionary stochasticity, corresponding to different biological
fields of genetics, physiology, and evolutionary biology. Given this definition, below we
describe stochastic components embedded in various ecological processes to reconcile
both niche and neutral perspectives.
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STOCHASTIC COMPONENTS OF ECOLOGICAL PROCESSES
Four Fundamental Ecological Processes

One of the most fundamental questions in ecology is how diversity is generated and
maintained. Traditionally, the mechanisms governing the genetic diversity within spe-
cies are referred to as evolutionary processes, including mutation, selection, gene flow,
and genetic drift (107). In contrast, the mechanisms shaping the diversity among
species are generally considered to be ecological processes (72). In parallel with
evolutionary processes, Vellend (108) grouped ecological processes into the same four
fundamental processes: speciation, selection, dispersal, and ecological drift. Because
changes in evolutionary processes could lead to changes in community structure
even without the creation of new species, Nemergut et al. (67) proposed the use of
diversification instead of speciation. Hanson et al. (72) proposed the same four
processes underlying microbial biogeographic patterns.

There are several advantages of Vellend’s conceptual framework. First, this frame-
work unifies niche and neutral perspectives by considering both deterministic (e.g.,
selection) and stochastic (e.g., ecological drift) processes. Three of the four fundamental
processes (dispersal, drift, diversification, or speciation) are central to the neutral theory
(29). Second, it explicitly recognizes the importance of evolutionary processes (i.e.,
diversification) in contributing to community structure because both evolutionary and
ecological processes are intertwined in controlling community diversity and biogeog-
raphy (67, 72). In addition, this framework provides an effective operational model
under which all communities across different habitats can be compared under the
same conceptual framework (37). Thus, Vellend’s conceptual framework has the po-
tential to unify various empirical and theoretical efforts and transform microbial
ecology from descriptive observational studies to mechanistic predictive research (67).
Below, we provide a brief description of stochastic and/or deterministic components
associated with each of these processes within the context of their relative importance
in controlling microbial community structure.

Selection

Ecological selection is referred to as the ecological forces that alter community
structure due to fitness differences (e.g., survival, growth, and reproduction) among
different organisms and is a main force governing community assembly (67, 72, 108,
109) (Fig. 2A). Selection results from deterministic factors at both local and regional
scales, including abiotic conditions (e.g., temperature, moisture, pH, and salinity) and
various antagonistic or synergistic biotic interactions (e.g., competition, facilitation,
mutualism, and predation). In host-associated microbial communities, host filtering (i.e.,
the within-host environment allows only certain microbial taxa to colonize or persist) is
another important selection process besides the biotic interactions among different
microorganisms (50, 110). Selection is unambiguously not stochastic (30, 34) (Fig. 2E).

By considering environmental heterogeneity, selection can be classified into two
main categories. If “environmental conditions” (e.g., abiotic and biotic) are homoge-
neous, little variation in community structure or species/compositional turnover is
expected. This is referred to as homogeneous selection (Fig. 2A) (37). In contrast, if
environmental conditions change across space or time (i.e., heterogeneous), high
variation in community structure could exist, which is referred as to variable selection
(37, 108). For consistency, here, we refer to it as heterogeneous selection (Fig. 2A).

Dispersal

Dispersal is a fundamental process in ecology and evolution (111). In community
ecology, dispersal is referred to as the movement and successful establishment of
organisms across space (72, 108). Dispersal is considered limited if an organism’s
migration to new locations is restricted and/or its establishment is obstructed. If the
probability of movement varies across space, in general, the movement of organisms
by both active and passive pathways could be confined. Many factors could affect
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successful establishment, such as environmental filtering, biotic interactions, and pri-
ority effects (described in detail below) (72).

Unlike selection or drift, dispersal cannot be unambiguously treated as being
deterministic or stochastic (34, 112) (Fig. 2E). It can depend on both deterministic and
stochastic factors (72). For instance, if dispersal rates are dependent on the population
size, dispersal is stochastic because more-abundant species have a greater probability
of dispersal than do less-abundant species. However, dispersal rates could be quite
different among different species, depending on species traits and active status (e.g.,
spores or dormancy). From this angle, dispersal is deterministic. In addition, environ-

FIG 2 Schematic representation of microbial community assembly processes. The middle panel represents the metacommu-
nity species pool in a region. Each ball with a number is a contemporary species, while each ball with a letter is an ancestral
species. The tree in the middle panel shows the phylogenetic relationships among different species. Species 1, 2, and 7 and
their ancestor, species X, prefer environment I, while species 4 to 6, 9, K, and J prefer environment II, and species 3, 8, and Y
live well in both environments I and II. (A to D) Extreme examples of the four different ecological processes. (A) Selection. The
four local communities are strongly controlled by niche selection. While the local communities in environment I consist of only
those species (species 1 to 3) that prefer environment I, the community in environment II is composed of only those species
(species 3 to 5) that prefer environment II. The two local communities at the left have the same structure because of selection
under the same type of environment (environment I), so-called homogeneous selection. The two communities at the right
have different structures due to selection under different environments (environments I and II), so-called heterogeneous
selection. (B) Dispersal. In the two communities at the left, there is very strong dispersal without any limitation between these
two local communities. Even though the two communities are in different environments (environments I and II), they have
exactly the same species (species 1 to 6) due to very strong dispersal, so-called homogenizing dispersal. In the middle two
communities, species (species 1 to 6) moving along the arrow lines from the metacommunity have different orders of
immigration to these two local communities. Due to priority effects, two different communities are formed even under
identical environmental conditions. Species 1, 3, and 5 occupy the niches of one community because they arrive earlier than
others, while species 2, 4, and 6 arrive earlier and dominate the other community. In the two local communities at the right,
the arrow lines show immigration from the metacommunity, and there is very limited dispersal between these two local
communities, so-called dispersal limitation. As a result, these two local communities have different structures even though
they are in the same environment (environment I). (C) Diversification. This example of diversification assumes that there is no
influence of either selection or dispersal. The two local communities (left) under the same environment, environment II, have
the same ancestral species, species Y, K, and J, in the beginning. Due to diversification (speciation and extinction) in different
communities, different new species could emerge from random mutations of the same ancestor (e.g., species 5 and 6 from
species J). Consequently, the structures of these two communities could be different even under identical environmental
conditions. (D) Drift. Species from the metacommunity occupy environmental niches only by chance due to random birth,
death, and reproduction, etc., without any relevance to their niche preferences. For instance, taxon 5 prefers environment II,
but because of drift, it is randomly present in communities in environments I and II. (E) Determinism versus stochasticity. The
widths of the blue and orange parts represent the relative importances of determinism and stochasticity associated with each
ecological process. Selection is solely deterministic, whereas drift is purely stochastic. In microbial ecology, dispersal and
diversification are often considered stochastic processes but could be deterministic in some cases, although an example of
deterministic dispersal or deterministic diversification is not shown.
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mental conditions in a new habitat will have dramatic effects on successful species
establishment, which is deterministic. Therefore, theoretically, dispersal limitation alone
could not be used as the sole evidence for stochastic processes (72) because dispersal
can be either deterministic, stochastic, or both. However, in practice, many studies still
treat dispersal as being neutral, because it is quite difficult for field studies to identify
dispersal traits, link dispersal traits to community structure patterns, or assess dispersal
processes and rates (112).

Due to the small size, high abundance, wide distribution, and short generation time
of microorganisms, microbial dispersal processes are much less examined, and hence,
they are poorly understood (66, 67). In microbial ecology, one of the main questions is
whether microorganisms are dispersal limited, which is still controversial (113–115).
Historically, microorganisms were considered to be everywhere and hence not disper-
sal limited (113, 114). After a decade of intensive studies, it is well recognized that
microorganisms show strong biogeographic patterns, which is evidence for dispersal
limitation (72, 116, 117). More importantly, although some microorganisms can propel
themselves to a certain degree within a short distance, microbial dispersal is typically
considered passive (67). Since passive dispersal is usually stochastic with respect to
species identity (34), microbial dispersal can be largely viewed as stochastic (67).
However, passive dispersal may not always be stochastic in some cases; e.g., the size or
shape of a microorganism can affect its rate of dispersal through small soil pores.

Like diversification, dispersal is a key factor influencing the regional species pool and
its associated community structure (108). A regional species pool is generally defined
as what consists of all trophically similar individuals and species in a regional collection
of local communities, also called a metacommunity, based on Hubbell’s unified neutral
theory (29). Within a large region, the degrees of dispersal could vary substantially
among different taxa (101), ranging from being extremely limited to being very high.
A high dispersal rate can homogenize the community structure and hence lead to little
variation or turnover in the community structure (118, 119), which is referred to as
homogenizing dispersal (37, 109). Low dispersal rates, coupled with drift or weak
selection, could increase community variation or turnover, which is often referred to as
dispersal limitation (37, 109).

Diversification

Diversification is an evolutionary process of generating new genetic variation (67,
108), and it is a balance between speciation and extinction (120). Diversification is
central to understanding the origination, maintenance, and distribution of biodiversity
and to predicting fundamental ecological patterns such as species abundance distri-
butions, species-area relationships, and distance-decay relationships (67, 72, 120).
Despite its importance in biodiversity research, diversification is very difficult to study,
particularly in the ecology of macroorganisms, because it generally involves long-term
evolutionary processes of thousands to millions of years for macroorganisms (120).
Consequently, the roles of diversification are largely ignored in community ecology
research (30, 67, 109, 118, 120). Many such studies generally aim to examine the
ecological influences of “contemporary” species pools on community assembly over
time scales within which diversification (speciation and extinction) largely does not
affect regional diversity (30).

It is well recognized that diversification plays important roles in governing regional
species pools over large spatial and temporal scales (Fig. 2), which could in turn be
potentially important in determining community dynamics and patterns at smaller
spatial and temporal scales (34, 108, 121–123) (Fig. 2C). Compared to plants and
animals, diversification could be detected in the changes in microbial composition at a
shorter time scale, particularly at a fine taxonomic/phylogenetic/genetic resolution (72),
due to the short microbial generation time, fast growth, and rapid genetic mutations
(124, 125). Since most genetic mutations are largely random at the molecular level
(DNA level), without a substantial impact on the species trait(s) or identity, they may
have little effect on microbial community composition. However, genetic mutations
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that alter a key functional trait(s) and/or species identity could have a considerable
influence on microbial community dynamics over a relatively shorter temporal scale
because microorganisms can evolve through mutations very rapidly (67, 124–128).
Although mutation is widely accepted as being a stochastic process in evolutionary
biology (34, 129), speciation could also be partly determined by the species traits and
intertwine with the actions of selection in some cases. Therefore, diversification can be
largely considered stochastic in ecology. In certain cases, it could encompass both
deterministic and stochastic components (Fig. 2E).

Given the fact that some strong microbial biogeographic patterns cannot be fully
explained by selection and dispersal (13, 14, 72, 116), the extremely high diversity and
the capability for rapid mutations in microorganisms suggest that diversification could
play an important role in shaping microbial community structure. However, to the best
of our knowledge, no method is available to assess the relative importance of diver-
sification in shaping microbial community structure. One reason for this is that the role
of diversification was thought to be impossible to infer from contemporary diversity
patterns (37). From an evolutionary perspective, various ecological processes interact
with each other in space and time to structure biodiversity (30). Thus, contemporary
diversity patterns at a single time point should reflect the combined actions of various
ecological processes over time (72, 101). If so, contemporary diversity patterns should
contain information to signify all deterministic and stochastic processes, including
selection, dispersal, drift, as well as diversification. By the same token, similar to
inferring the importance of selection, dispersal, and drift (29, 37, 109), the relative
importance of diversification in shaping community structure should also be able to be
inferred from the snapshot of contemporary diversity data, at least to some degree, but
the difficulty is how to detect such signals.

Drift

Ecological drift is a central concept in community ecology. It is referred to as
stochastic changes with respect to species identity in the relative abundances of
different species within a community over time due to the inherent random processes
of birth, death, and reproduction (34, 67, 108) (Fig. 2D). Various modeling and empirical
studies showed that drift can alter community structure and biogeographic patterns
even in the absence of selection (29), indicating the importance of ecological drift in
shaping community structure (67, 72, 108). Drift is more important when selection is
weak and the local community size is small (30). However, it is difficult to test pure
ecological drift empirically because no species in nature are exactly demographically
identical (108). Drift is unambiguously stochastic (34) (Fig. 2E).

Drift could play critical roles in shaping the structure of microbial communities (32,
35, 36). Although the size of a microbial community is typically large, substantial
numbers of microbial taxa are rare. These rare taxa should be very vulnerable to
ecological drift (67). In addition, functional redundancy, which means that different
populations share a similar or the same function, appears to be quite high in a microbial
community, especially compared to those in plant and animal communities (130–133).
Functional redundancy increases neutrality and makes functionally redundant popula-
tions more susceptible to drift. However, it is challenging to directly examine ecological
drift in microbial communities due to the uncertainty in assessing the extinction of
microbial taxa and the existence of dormancy, which allows the species to avoid
extinction and the effect of drift.

Historical Contingency and Contemporary Selection

Besides the four ecological processes described above, another widely used con-
ceptual framework classifies assembly processes as historical contingency and contem-
porary selection. Broadly, historical contingency is referred to as the legacy effects on
the current community structure left by historical processes, which typically include
drift and/or past selection along with dispersal (72) and diversification. Thus, concep-
tually, historical contingency should encompass both stochastic and deterministic
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components, but in practice, historical contingency is considered to be more or less
equivalent to stochastic processes in many studies (117, 134–136). It should be noted
that the term historical contingency also more specifically refers to the effects of the
order and timing of past biotic or abiotic events on community assembly (137). In
contrast to historical contingency, contemporary selection (72, 138) is referred to as the
selection imposed by present-day environments on the current community structure.
Contemporary selection is deterministic regardless of the impacts of past environments
on community structure.

Historical contingency can be caused solely by a priority effect (137), which is a
phenomenon where early-arriving organisms have negative or positive impacts on
late-arriving organisms (36, 72, 137, 139, 140) (Fig. 2B). Theoretically, niche preemption
and niche modification are two important mechanisms underlying priority effects (137).
The former is referred to as a situation where early-arriving species reduce the avail-
ability of resources (e.g., nutrients, space, and energy) to late-arriving species whose
abundance will be limited (137), which always produces inhibitory priority effects. In
contrast, the latter means that early-arriving species modify local niches affecting the
colonization of late-arriving species, which can then lead to inhibitory or facilitative
priority effects. Niche preemption generally affects species identity within func-
tional guilds, whereas niche modification impacts species identity primarily across
functional guilds (137). Thus, information on species distributions within and across
functional guilds could provide insights into the mechanisms underlying priority
effects. While niche modification should be deterministic, niche preemption can be
either stochastic or deterministic, since resource consumption could be regardless
of species identity.

Integrated View from Ecology and Evolution

Deterministic and stochastic processes represent two complementary parts along a
continuum of ecological forces shaping community structure (30, 92). Deterministic
processes are at one end of the continuum, whereas stochastic processes are at the
other end (Fig. 2E). Within the context of the deterministic-versus-stochastic dichotomy,
niche-based selection via interspecific interactions and abiotic environmental condi-
tions is a deterministic process, and drift is a stochastic process (30). Generally speaking,
dispersal and diversification are often considered components of stochastic processes,
particularly in microbial ecology (30). However, both of them can be deterministic in
some cases (Fig. 2E).

All four of these fundamental processes interact with each other directly or indirectly
and work in combination to shape community structure (30, 66, 72, 101). For instance,
selection and drift usually vary in opposite directions. If the local community size is
small and selection is relatively weak, the effects of selection could be overridden by
drift (108). A recent microbial population study showed that during evolution, demo-
graphic stochasticity was capable of reversing the direction of deterministic selection
(141). However, the importance of drift in shaping community structure is also depen-
dent on other forces. Strong diversification would enhance the influence of drift
because diversification affects the size of the regional species pool. Drift will have larger
role in governing the structure of local communities in regions with larger species pools
in which there is a greater chance of producing stochastic variations among local
communities (30). In addition, dispersal could have an impact on selection, and its roles
can also be shaped by other processes. Homogenizing dispersal or dispersal limitation
could potentially overwhelm the influences of selection on community structure (37,
66). Dispersal limitation alone does not create community variation without being
coupled with drift and diversification (67, 109). Finally, the magnitude of the influences
of diversification on community structure is dependent on the strength of dispersal.
When dispersal rates are low, diversification is a major process contributing to the
regional species pool (37, 109), and thus, diversification should be particularly impor-
tant in shaping community structure (37). If dispersal rates are high, the influences of
diversification on community structure variation or turnover would be minimal (37).
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From an evolutionary perspective, ecological communities can be viewed as being
assembled primarily via dispersal or diversification within the context of natural selec-
tion (142). The final outcomes for community structure will be affected by the balance
between dispersal and diversification rates, which have interactions with selection and
drift (37, 142).

Although Vellend’s conceptual framework on community assembly processes is
attractive and well accepted in the field of microbial ecology in general (67, 72),
determining how combinations of these four processes affect community assembly is
difficult (67, 72). Translating this conceptual model into a quantitative operational
framework is even more challenging (37). In the following sections, we describe
different approaches for assessing the roles of various ecological processes in shaping
community structure.

FROM PATTERNS TO PROCESSES: APPROACHES TO INFER STOCHASTICITY

With recent advances in large-scale high-throughput meta-omics (e.g., metagenom-
ics, metatranscriptomics, metaproteomics, etc.) technologies (69), community-wide
spatial and temporal information on microbial community structure, functions, and
activities can be rapidly obtained, which enables microbial ecologists to address
research questions that were previously difficult to approach, such as community
assembly mechanisms. Recently, numerous studies have focused on understanding the
mechanisms that control microbial community structure. Here, we focus on describing
various approaches used for assessing the importance of ecological stochasticity in
controlling community structure and highlighting some representative results, rather
than providing a comprehensive review. Several major approaches have been used to
infer ecological stochasticity, including multivariate analysis, neutral-theory-based pro-
cess models, and null modeling analysis.

Inferring Ecological Stochasticity by Multivariate Analysis

In parallel with theoretical development, numerous statistical approaches have been
developed and used to examine the relative importance of environmental control (i.e.,
selection) and dispersal limitation (143–147). Three major types of multivariate statis-
tical methods are often used. The first one is direct comparisons of community
structure differences between and within treatments (or different groups of commu-
nities in distinct environments), such as permutational multivariate analysis of variance
(PERMANOVA or Adonis) (148), analysis of similarities (149), permutational analysis of
multivariate dispersions (PERMDISP) (150), as well as more visualized ordination meth-
ods, e.g., principal-coordinates analysis (PCoA), nonmetric multidimensional scaling
(NMDS), principal-component (PC) analysis (PCA), and detrended correspondence anal-
ysis (DCA) (e.g., see references 35, 70, 151, and 152). Significant dissimilarity between
treatments or homogeneity within a treatment can be used to assess the effect of
selection but has very low power for inferring the importance of stochasticity, since
niche selection could also result in similarity between treatments and heterogeneity
within a treatment. Thus, this type of multivariate analysis was usually applied along
with null model analysis (described in detail below), e.g., comparing observed and null
expectations by PERMANOVA or PERMDISP (e.g., see references 31, 35, 153), to infer
assembly stochasticity.

The second type of analysis is correlation-type analyses between community struc-
ture and environment variables, such as the Mantel test (e.g., see reference 154),
multiple regression on (dis)similarity matrices (MRM) (e.g., see references 155 and 156),
redundancy analysis (RDA) (e.g., see references 61 and 157), and canonical correspon-
dence analysis (CCA) (e.g., see references 36 and 157). A high proportion of community
structure variation explained by environmental variables can provide evidence of the
importance of selection, whereas a very low proportion of explainable variation may
indicate the influence of stochastic processes. However, different processes (e.g.,
selection and dispersal) could produce similar spatial patterns (158), and hence, com-
munity variations due to environmental control and spatial influences need to be
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parsed out. Therefore, in most cases, correlation-type analyses have been extended to
the third type of multivariate approach, variation-partitioning analysis (VPA) (e.g., see
references 13, 14, 36, 45, 48, 72, 157, 158, and 159). To determine the relative
importance of environmental control (i.e., selection) and dispersal limitation, typically,
the correlation between community structure and environmental variables is estimated
as an environment effect after controlling for the influence of geographic distance,
whereas the correlation between community structure and spatial distance is quanti-
fied as a distance effect after controlling for the influence of environmental variables
(72). In addition, the interaction between environmental variables and spatial distance
can be quantified, and the remaining variation is termed unexplained variation (143).
While the environment effect signifies the sole impact of selection, the distance effect
is often considered to represent the influence of dispersal. However, it should be noted
that the distance effect could also include other spatially structured effects caused by
unmeasured variables or even drift. Unexplained variation could be due largely to
unmeasured environmental variables, biotic interactions, drift, and/or methodological
artifacts (13, 36, 37, 160, 161).

Basically, there are two types of VPA. One is a raw-data-based direct approach in
which the raw environmental data and spatial x-y coordinates are directly used to
correlate changes in community structure. Typical examples are VPA based on RDA for
linear regression (e.g., see references 145 and 157) or partial CCA (pCCA) for unimodal
regression (e.g., see references 14, 36, and 45). The other type of VPA is a distance-
based indirect approach in which three distance matrices (community dissimilarity,
geographic distance, and environmental similarity) are used to establish correlations
among the environment, space, and community structure, e.g., VPA based on a partial
Mantel test (rarely used now), MRM (e.g., see references 155 and 158), or distance-based
RDA (e.g., see references 61 and 162). This type of approach was referred to as DIST
(158, 163, 164). The raw-data-based direct approach addresses questions related to
observed variations in community structure. In contrast, the distance-based indirect
approach focuses on questions concerning the variation measured by various dissim-
ilarity metrics (144, 163), e.g., differences in species occurrence measured by the Jaccard
index, structure differences determined by the Bray-Curtis index, and phylogenetic
dissimilarity determined by the UniFrac index, etc. Although one may choose an
approach or a model with higher explained variation (e.g., R2) or more meaningful
factors in practice, different complementary and reinforcing approaches should be
used to explore relationships based on various dimensions of biodiversity.

By using multivariate statistical approaches, microbial ecologists tried to address the
relative importance of contemporary selection and historical contingency in shaping
community structure and biogeographic patterns over the last decades (72, 165–168).
Contemporary selection is typically measured with the partial correlation between
biotic structure and contemporary environmental variables by controlling for the
influence of geographic distance (i.e., contemporary environment effect). Both
contemporary selection and historical contingency were found to be important for
governing microbial biogeographic patterns (72, 169), although in a recent meta-
analysis, the selection imposed by the contemporary environment appeared to be
more important than historical processes (72). Interestingly, it is generally expected
that historical contingency might be more important at larger geographic scales and in
less-connected habitats, primarily due to dispersal limitation, but such trends were not
observed (72).

Multivariate analysis approaches are always compounded by the problem of un-
measured environmental factors, because it is almost impossible to measure all envi-
ronmental variables in practice. As a result, for instance, the distance effect is most likely
overestimated since it cannot exclude the impacts of unmeasured environmental
variables (72). Recently, a new approach for isolating the effects of unmeasured
environmental variables affecting microbial communities was proposed (109). First,
spatial distance is decomposed into various spatial variables based on spatial eigen-
vector analyses. Next, the spatial variables are combined with other environmental
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variables and further decomposed into principal components (PCs). Next, the PCs are
associated with �-diversity metrics related to selection (� nearest-taxon index [�NTI])
(described in detail below). If a PC is significantly associated with selection but has no
obvious loading of any measured environmental variables other than spatial variables,
it most likely represents unmeasured environmental factors. This is the first time that
the impacts of unmeasured environmental variables on community structure could
be possibly parsed out from stochastic processes. However, if not related to spatial
variables, the impact of unmeasured environmental variables could still be tangled with
the effects of drift and methodological artifacts in the unexplained part.

By using multivariate statistical approaches, the spatial distance effect on commu-
nity structure is often interpreted as support for neutral theory (168, 170). Although
VPA is widely used in ecology research to determine the relative importance of
deterministic versus stochastic processes for community structure, several recent
studies based on simulation models showed that VPA failed to correctly predict the
environmental and spatial components of community variation (158, 171, 172), and
hence, VPA could be difficult to use for inferring ecological processes (37). Nevertheless,
great caution is needed when using VPA to partition community variation, and it should
be used as an exploratory tool together with other approaches (e.g., neutral-theory-
based models and null model analysis, as described below) to develop hypotheses and
assess the relative importance of environmental variables and spatial distance (171).

Inferring Stochasticity by Neutral-Theory-Based Process Models

The second major approach for inferring processes from diversity patterns is testing
for the presence of stochasticity using neutral-theory-based process models. There are
over 10 different neutral models, each with slightly different predictions for different
factors (11). The most influential one, Hubbell’s neutral model (29), has only three
parameters, the population size of the local community (J), the rate of immigration (i.e.,
dispersal) (m), and the “fundamental diversity number” (�) (which depends on the
population size of the metacommunity, JM, and the speciation rate, v). Theoretically, it
is possible to estimate all of these parameters directly from ecological data, but in
practice, it is difficult to do so because estimating the population size of a metacom-
munity is problematic (11). Also, the rates of migration and speciation can almost never
be measured directly (173). Thus, the parameters can be only indirectly estimated by
fitting a neutral model(s) to the observed community structure data.

Neutral models have been applied to a wide range of ecological phenomena, but
the majority of research related to neutral theory is focused on species abundance
distribution (SAD), which characterizes the distribution of abundances of all species
within a sample or ecological community (11). Along with distance-decay relationships
and species-area relationships (SARs), SAD is one of the few universal patterns in
ecology (174). An ecological community in nature consists of many species with
different numbers of individuals of each species. One of the unique characteristics of an
ecological community is that the distribution of numbers of individuals is very uneven.
In general, there are a few species with many individuals but many species with a few
individuals. SAD is a basic metric to describe how many individuals of each species are
present in a community and is often used to test both niche and neutral models (29,
89, 175).

Despite their unrealistic assumptions, apparent simplicity, and very small numbers
of parameters, neutral models remarkably fit very well with numerous ecological
patterns, including SADs, SARs, abundance-occupancy relationships, species turnover,
and distance-decay relationships, in a variety of communities from tropical trees to
bacteria (32, 65, 176–186). Also, in some cases, neutral models fit the abundance of rare
species better than those predicted from niche models (185, 187). Besides fitting
numerous observed patterns, neutral models have been improved in terms of theory
and methodology. One direction is substantial improvements in the fitting methods,
including sampling theory, derived analytical forms, and likelihood functions (11, 94).
The other direction is to make some original assumptions more realistic. For instance,
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some neutral models relaxed the zero-sum assumption (when an individual dies, it is
immediately replaced by another individual, and thus, resources are fully saturated at all
times), but the results showed that the form of SAD was not changed (11, 188). Other
models improved the estimation of the speciation rate by incorporating protracted spe-
ciation into neutral models, where new species gradually evolve over a period of time
instead of appearing instantaneously as point mutations (189). Another important advance-
ment is spatially explicit neutral models. In the original spatially implicit models, dispersal
occurs between only two distinct spatial scales, from the metacommunity to each local
community. In spatially explicit neutral models, dispersal is simulated in multiscale
structures, for instance, as migration between cells on a 2-dimensional grid (11, 190).

When applying neutral models to microbial studies, a particular acute problem is the
sampling effect, the uncertainty/randomness due to a small sample size from a large
population, although it is not unique to microbial studies. Even though applications of
high-throughput sequencing technologies can greatly increase sampling efforts in
microbiome studies, the sequencing depths typically used in current studies (e.g., 104

to 105 individuals per sample for the 16S rRNA gene) are still far smaller than the huge
number of individuals in a microbial community (e.g., usually 1011 to 1014 individuals
per g soil sample). Thus, the vast rare species in a microbial community are mostly
undetectable or detected just by chance. Accordingly, the traditional way to fit neutral
models (e.g., SAD) is dramatically insensitive and problematic for microbial studies,
since modest changes in neutral model parameter values are reflected only in the
abundance of rare species (32, 191). Considering this problem, microbial ecologists
developed some neutral models particularly suitable for microbial studies (32, 177, 178,
192). One solution is to calibrate and validate a mathematical model of microbial
community assembly using a small sample size. A popular example is the neutral model
developed by Sloan et al. (177, 192), which fits the observed abundance-frequency
relationship with a beta distribution derived from neutral theory. Another solution is,
instead of removing taxon identities and considering merely their abundance/fre-
quency, to examine the dynamics of each abundant taxon with a modified neutral
model by considering the niche effect (32). To incorporate the niche effect, the
stochastic differential equation of the neutral birth-death process was extended by
including environmental variables in a linear least-squares analysis. This method partly
bypassed the above-described problems by focusing on abundant taxa, which are
much less affected by a limited sampling effort, and by analyzing their dynamics
separately instead of fitting patterns (e.g., SAD) of the whole community.

Although neutral models have been extensively examined against empirical data
from plants and animals, efforts in microbial studies are very limited. Recently, neutral
models have been applied to microbial communities in bioreactors (32, 36, 177, 178,
193), soils (64, 71, 157), lakes (194), and animal and human gut (195–197), but divergent
and controversial results were obtained. For instance, based on neutral models, several
related studies indicated that the microbial communities in wastewater treatment
plants and bioreactors were primarily controlled by stochastic (neutral) processes,
although deterministic processes were also important (32, 36, 177, 178, 193). Those
observations contradict the previous common belief (198) and are different from some
recent observations of anaerobic digesters, which showed that deterministic processes
governed microbial long-term population dynamics (70). In another example, the
importance of niche versus neutral processes also varied significantly among different
microbial functional groups in soils. Both neutral and null model analyses showed that
the phototrophic microbial communities in deserts are primarily controlled by stochas-
tic processes (64). However, heterotrophic microbial communities were most likely
shaped by deterministic processes (64). Therefore, it is compelling to further quantify
the relative importance of niche and neutral processes across spatial/temporal scales,
environmental gradients, and/or different functional groups.

Inferring Ecological Stochasticity by Null Model Analysis

The third major approach to understanding the potential importance of ecological
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stochasticity is the use of null models, which have been used widely in ecological
studies (199). Different from the process-oriented mechanistic models (e.g., neutral
model), null models generate statistically expected stochastic patterns via random
permutations of ecological data by deliberately excluding certain mechanisms (e.g.,
species interactions) of interest (200, 201). Null model analyses involve several major
steps (202). First, community similarity or dissimilarity is estimated based on empirical
data with appropriate metrics, e.g., incidence based (e.g., Jaccard’s and Sorenson’s
indexes) and abundance based (e.g., Bray-Curtis and Morisita-Horn indexes). Generally,
dissimilarity metrics are used for detecting community assembly mechanisms. Next,
community data are randomly shuffled by keeping some species properties constant.
This process is generally repeated multiple times (e.g., 1,000 times) to obtain average
null expectations. The standard deviation of the null expectation can then be esti-
mated. With the expected random patterns from null assemblages, ecologists can ask
whether the ecological patterns observed among local communities are different from
the random patterns produced by null models. If the observed ecological patterns are
not statistically different from null expectations, the community dynamics are largely
considered stochastic with respect to the processes excluded (30). Otherwise, they are
regarded as being deterministic.

Over the last 3 decades, numerous null models and algorithms (29–31, 195, 203,
204) have been developed to generate null expectations based on taxonomic (e.g., see
references 31 and 205), phylogenetic (e.g., see references 62, 109, and 206), and/or
functional (e.g., see references 155, 207, and 208) community structure data. Most of
the reported null models keep the following properties constant in the regional species
pool: the total number of taxa (richness), the number of individuals (abundance), and
the sum of all taxon occurrence frequencies. For incidence (i.e., presence/absence) data,
there are generally 9 null algorithms (also referred to as null models) (203), in which the
richness in columns (representing sites, samples, or communities) can be equiprobable
for each community (i.e., a taxon has equal probabilities of being present in all
observed communities) (209–212) or proportional (199, 213–215) or fixed (31, 204, 205,
216, 217) to the observed richness. The rows (representing different taxa) can also be
equiprobable for every taxon (i.e., all observed taxa have equal probabilities of being
present in a community) (211, 212, 218) or proportional (205, 209, 210, 212, 216) or
fixed (31, 204, 217, 219, 220) to the observed frequency. For abundance data, the
abundances can be assigned in three different ways after randomizing the incidence
pattern: (i) switching the above-described 9 incidence-based models (i.e., they consider
only the presence and absence of each species [also called binary or unweighted]) to
the corresponding individual-based models (i.e., they consider the abundance of each
species [also called abundance weighted]) (212, 221, 222), (ii) shuffling the observed
abundances within each community or each taxon (211), and (iii) a random draw where
the probability of drawing individuals into a taxon is proportional to the relative
abundance of the taxon in the regional species pool (109, 212, 216). Besides the
above-described models of taxonomic assembly, 3 types of null models were reported
to randomize phylogenetic relationships among taxa, including (i) shuffling the names
of taxa (so-called phylogeny shuffle) (62, 68, 211, 218), (ii) abundance-constrained
phylogeny shuffling (223), and (iii) randomizing the base pair composition of DNA
sequences (195). When randomizing phylogeny, taxonomic �-diversity was usually
fixed as observed. Since there are many different options, it is challenging to select the
appropriate null models for a particular study. Depending on ecological questions,
multiple null models should be explored for quantifying the mechanisms underlying
community assembly.

As with any other approaches, inferring processes from patterns by null model
analysis also faces some difficulties, with several major challenges. First, developing
randomization algorithms to produce appropriate patterns against a specified null
hypothesis is difficult. Imposing too few constraints on a null model will make it so
random that it is very easy for the null expectation to be different from the observed
pattern, which could increase the chances of a type I error. On the contrary, putting too
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many constraints will make the null results too close to the observed pattern, which
could lead to greater chances of a type II error (201). Different methods to constrain the
null model could lead to quite different results (201, 212). Thus, the experimental results
from null model analyses are very sensitive to the models, approaches, algorithms, and
diversity metrics used (201, 224).

Second, sample size, including the numbers of both taxa detected and communities
analyzed, could also be a concern. Most of the data sets in plant and animal community
ecology research are small or intermediate, often with fewer than 100 taxa and/or 100
communities (201). With the advance of high-throughput technologies, there are much
larger data sets in microbial ecology research, e.g., thousands to up to hundreds of
thousands of taxa. Null model analysis may be not well suited for such large data sets
due to false-positive significant pairs and data autocorrelation (201).

Third, the choice of the appropriate regional species pool (i.e., �-diversity) for null
model analysis is very important but challenging. The species pool should not be too
small or too large (205). As a rule of thumb, the regional species pool should include
those species that can possibly colonize a given site within a reasonable period of time
(205) (for microorganisms, weeks or months are usually reasonable, while years may
also be fine for large-scale research). It is worth noting that the absolute magnitude of
the deviation from the null model expectation will increase with the species pool size,
but the relative deviations among different pairs of communities generally will not be
affected (205). Thus, relative comparison (e.g., using a standardized effect size) should
be used.

Fourth, the majority of null modeling approaches have been developed based on
incidence data (203, 205). Abundance data potentially contain more information on
species associations than do incidence data, and hence, they could be more suitable for
inferring the underlying community assembly mechanisms (201). However, the inclu-
sion of abundance data in null modeling randomization is much more complicated and
challenging (109, 212), and further developments are needed (212).

In addition, null model analysis assumes that strong interactions always result in
communities that are significantly different from null expectations. However, strong
interactions, when combined with a variable immigration history, could produce an
apparently random community structure (136, 225). Null model analysis based on time
series data with an explicit or detectable immigration history could help to mitigate this
potential problem (136). Despite various challenges in null model analyses, their
applications to various ecological problems have continued to provide valuable in-
sights into community ecology (201).

Null model analysis has also been incorporated into the development of new
metrics to measure taxonomic �-diversity and phylogenetic �- and �-diversity for
inferring community assembly mechanisms. Classical �-diversity metrics (without null
model analysis) are useful for inferring the relative importance of stochastic versus
deterministic processes (30, 31, 35, 153, 162, 170, 226–228). For instance, the signifi-
cantly higher taxonomic �-diversity between biological replicate ponds with higher
productivity indicated the increased influence of stochastic processes (31). However,
comparison of classical �-diversity metrics among regions with different species pool
sizes could lead to a poor estimation of the overall importance of stochastic factors with
respect to environmental or spatial factors (162). Since classical �-diversity metrics are
not independent of local diversity (�-diversity) and regional diversity (�-diversity) (205),
most of the metrics and statistical analyses used to estimate �-diversity (e.g., Jaccard
and Sorensen dissimilarity indexes) are not always directly comparable, and it is difficult
to generate meaningful results (205, 229, 230). This is because the classical metrics of
all three diversity components (�, �, and �) are interconnected, and any changes in two
of the three components will affect the estimations of the third component (205, 231).

To remove the effects of �-diversity on the estimation of �-diversity, a probabilistic
null-model-based �-diversity metric (�RC) (205) was developed to control for the
differences in species richness by modifying a Raup-Crick measure (232). �RC can be
estimated for each pair of communities based on taxonomic cooccurrence data. If the
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�RC value is �0.95 (alpha � 0.05 by a two-tailed test), the given pair of communities
shares significantly fewer species. If the �RC value is less than �0.95, the given pair of
communities shares significantly more species than expected by random chance (205).
The mean �RC can also be obtained across all pairwise combinations of communities.
Based on the mean �RC across communities, one can test whether the variation and/or
turnover in the community structure is different from the null expectation, the degree
to which the communities deviate from the null expectation, and how abiotic and
biotic factors affect such a deviation (205). Assuming that the null model could reflect
a real stochastic assembly and exclude determinism, the mean �RC should be close to
zero when stochastic processes dominate and/or dispersal is relatively high (neither
limited nor too strong) among communities; if environmental conditions favor similar
species (e.g., environment filtering) and/or dispersal is very strong (e.g., homogenizing
dispersal), the mean �RC will approach �1; and if environmental conditions select for
dissimilar species (e.g., competitive exclusion) and/or dispersal is very limited, the mean
�RC will approach 1 (205). However, this metric uses only incidence data. Since
abundance-based metrics are more informative and powerful than incidence-based
metrics (229, 233), the Raup-Crick-based measure was extended to consider relative
abundance data, and the resulting metric is referred to as RCBray (109).

Besides taxonomic metrics, the null model approach has also been widely incorpo-
rated into the development of phylogenetic �-diversity metrics, such as NRI (net
relatedness index) and NTI (nearest-taxon index) (83, 206). The NRI is a standardized
metric to measure phylogenetic clustering based on the observed mean phylogenetic
distance (MPDobs) and the randomly expected mean phylogenetic distance (MPDexp)
and its standard deviation, whereas the NTI is a standardized measure of phyloge-
netic clustering based on the observed mean nearest-phylogenetic-neighbor distance
(MNTDobs) and the null expectation of the mean nearest-phylogenetic-neighbor dis-
tance (MNTDexp) and its standard deviation (83, 234). For a single community, if the NRI
or NTI is ��2 or ��2 (i.e., 2 standard deviations from the null expectation), the
coexisting taxa are phylogenetically more closely (i.e., phylogenetic clustering) or
distantly (i.e., phylogenetic overdispersion) related than null expectations, respectively.
A mean NRI or NTI across multiple communities that is significantly greater than zero
indicates phylogenetic clustering, whereas a mean NRI or NTI that is significantly less
than zero signifies phylogenetic overdispersion (62). Similar null model analyses have
also been extended to measure phylogenetic �-diversity so that the �MNTD-based
metrics (�NRI and �NTI) were developed (62, 235). Similarly, for a single pairwise
comparison, a �NRI or �NTI value of ��2 or ��2 suggests that phylogenetic turnover
is greater or less than the null expectation (62, 109). A mean �NRI or �NTI across all
pairwise comparisons that is significantly greater or less than zero indicates that
phylogenetic turnover is greater or less than the null expectation (62, 235). While a
significant (�)NRI or (�)NTI value as described above is related to deterministic pro-
cesses, a nonsignificant (�)NRI or (�)NTI value (between �2 and 2 for a single com-
munity or a single pairwise comparison) is usually considered to signify the influence
of stochastic assembly. These null-model-based phylogenetic and taxonomic metrics
have been used to assess the stochasticity of microbial assembly in a variety of
environments, such as soil (228, 236), the ocean (237, 238), groundwater (33, 62), and
animal feces (154). Recently, null-model-based �-diversity metrics (�NTI and RCBray)
were employed to develop a new null-model-based framework for quantifying various
community assembly processes (37, 68, 100, 101, 109) (see below).

Compared to neutral models, null model approaches are flexible due to various
options of algorithms. In addition, since null model approaches can be based on
taxonomic and phylogenetic diversity metrics and should extend to functional diversity
metrics, it could be easier to develop a statistical framework based on null model
approaches to disentangle the influences of different processes (see below). However,
null model approaches are built on heuristic randomization algorithms that lack a clear
biological mechanism (239). Neutral models are actually a special type of null model,
but as mechanistic dynamical models, neutral models should be closer to “actual”
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stochastic population dynamics. Nevertheless, current neutral model approaches lack
the ability to explore the information underlying phylogenetic and functional diversity
whereas null model approaches are applicable, which significantly reduces the power
of neutral models to infer the relative roles of different community assembly processes.
Both null model and neutral model approaches have an inherent problem, that an
observed pattern fitting a null/neutral model cannot reject the importance of deter-
ministic processes, since a niche model could show a pattern similar to that of
null/neutral models, as discussed above. To solve this problem, an important future
direction is to effectively combine niche and neutral models. Although they have
unsolvable drawbacks, as described above, multivariate analyses can help in the
development of niche models and in linking community structures with environmental
variables and ecosystem functioning parameters, which cannot be achieved by null or
neutral models. Therefore, all three types of approaches should be simultaneously
used in complementary and reinforcing fashions, and the results should be cau-
tiously interpreted by considering their strengths and weaknesses. In the future, a
unified framework of both niche and neutral theories will be built based on the
further development and integration of different approaches.

EXPERIMENTAL APPROACHES FOR TESTING THE IMPORTANCE OF ECOLOGICAL
STOCHASTICITY

Inferring the importance of ecological stochasticity from patterns determined by the
various methods discussed above is difficult because observational survey data are
always compounded by various other factors. Experimental tests of the role of ecolog-
ical stochasticity in controlling the diversity of ecological communities in both the field
and the laboratory are needed.

To directly test the relative importance of stochasticity in controlling community
structure, Chase (153) established long-term experimental artificial ponds in the field
(20 mesocosms, half under drought). The results showed that considerably higher
�-diversity was observed in the pond community of producers and invertebrates
without drought, which was most likely due to a combination of ecological drift and
priority effects. In contrast, the communities in the ponds experiencing drought were
much more similar due to niche selection imposed by drought. Also, higher �-diversity
was observed in the ponds with greater productivity, suggesting that stochasticity
increases with greater productivity (producers and small animals) (31). However, ex-
planations for these experimental results could be complicated by the lack of control
over assembly history in disturbed ponds and the initial environmental heterogeneity
(153, 240).

To discern the existence of stochastic assembly and its relative roles in determining
community assembly, an ideal experimental system should ensure that the initial
conditions (e.g., initial density and initial environmental heterogeneity) and environ-
mental conditions are identical among replicate communities (153, 240). Well-controlled
laboratory systems such as microbe-based bioreactors could help meet such challeng-
ing requirements. Compared to plant- and animal-based systems, microbe-based lab-
oratory systems have several unique advantages (36, 52, 241–243). First, microorgan-
isms are very small and have short generation times, which allow us to manipulate and
monitor the influences of stochastic and deterministic processes on community dy-
namics in tractable experimental units and at short time scales. Also, many replicate
reactors can be established and maintained under identical environmental conditions
with the same source communities so that any differences in initial conditions and the
effects of compounding factors on experimental results can be minimized. The avail-
ability of sufficient replicate samples is critical for addressing questions related to
stochasticity with the null model approach (35). In addition, laboratory systems are
closed systems, and hence, various functional parameters of interest can be measured
at the whole-system level to allow the linking of community structure to ecosystem
functioning, which is critical but very difficult to achieve in nature. Several years ago, a
microbial-electrolysis-cell-based reactor system was used to examine the roles of
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stochastic assembly in determining microbial community structure (36). After 2 months,
the functional community structures determined by using a functional gene array,
GeoChip (44, 69, 244, 245), were dramatically different among 14 replicate reactors that
were operated under identical conditions with the same source community. Further
null and neutral model analyses revealed that ecological drift (i.e., initial stochastic
colonization) and subsequent biotic interactions via priority effects were critical in
determining microbial community structure (36). This study provides explicit evidence
of the dominant roles of stochastic assembly (i.e., stochastic colonization) in controlling
microbial community structure.

The relative importance of contemporary selection and historical contingency in
community structure and biogeography has been a central, but highly controversial,
issue in microbial ecology research over the last decades (116, 138, 246). However, a
great challenge in ecology is that it is difficult, if not impossible, to obtain detailed
relevant historical information in most situations (137). Therefore, experimental manip-
ulations with a known history are greatly preferred. Numerous experimental manipu-
lation studies as well as theoretical analyses demonstrated the importance of historical
contingency in affecting community structure. The strength of historical contingency
(priority effects or stochasticity) is generally promoted by a small habitat patch
(247, 248), a large species pool (137, 249–251), high productivity (31, 135, 156), low
stress or disturbance (153, 240), and low predation (202, 252). Species functional
traits involved in competitive and dispersal abilities (e.g., flagella, cell size, and
metal resistance ability, etc.) are also important for historically contingent assembly
(136, 137). Finally, through thorough synthesis of experimental and theoretical data
it has been concluded that historically contingent community assembly occurs only
when the regional species contain species that together can produce priority effects
and when the early-arriving species can rapidly preempt or modify the niches
before late-arriving species arrive (137).

Although various experimental studies revealed that historical contingency affects
community structure, little is known about whether historical contingency affects
community functioning (36, 253). Recently, several studies showed that historical
contingency can influence ecosystem functional processes such as productivity, de-
composition, and nutrient and energy fluxes (36, 253–256). For instance, by using 10
wood-degrading fungal species in laboratory microcosms, it was demonstrated that
differences in early immigration histories resulted in dramatic variations in community
structure and ecosystem functions (i.e., decomposition and respiration) (253), indicating
that small differences in the species immigration history during community assembly
could lead to large differences in community functioning. Similarly, stochastic coloni-
zation in microbial-electrolysis-cell-based reactors resulted in communities with not
only different structures but also distinct functions (e.g., hydrogen production, metha-
nogenesis, or CO2 production via fermentation) (36).

The study of ecological succession remains at the core of ecology research because
information on temporal community dynamics can help predict the responses of
biodiversity and ecosystem services to environmental change (257, 258). While the
mechanisms shaping the structure of ecological communities have been intensively
studied (30–32, 36, 62, 64, 91, 157, 186, 193, 205, 221, 259), the drivers controlling
ecological succession in response to environmental perturbations are poorly under-
stood (260, 261). To understand the relative importance of stochastic and deterministic
processes in mediating microbial community succession, the responses of groundwater
microbial communities to nutrient inputs were examined (35). One of the main
advantages of the use of groundwater ecosystems for examining the importance of
stochasticity in controlling microbial community succession is that dispersal is not a
major limiting factor influencing community assembly at the local scale examined (�10
m) due to high hydraulic conductivity. The experimental results indicated that the
succession of groundwater microbial communities in response to nutrient amendment
is primarily stochastic but that the drivers controlling biodiversity and succession are
temporally dynamic rather than static (35). These results are also consistent with
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findings from several previous studies showing the importance of ecological stochas-
ticity in driving macroorganism community succession (31, 153, 257).

QUANTIFYING COMMUNITY ASSEMBLY PROCESSES
A Quantitative Framework

Although ecological stochasticity has been widely studied by using various ap-
proaches, as described above, few approaches were available to further disentangle
and quantify the relative importances of the four fundamental ecological processes
until several recent attempts based on null model analyses were made. As an explor-
atory effort, a null-modeling-based statistical framework was developed by Stegen et al.
(37, 109) to quantify the contributions of various ecological processes (e.g., selection
and dispersal) to microbial community structure, succession, and biogeography (37,
68, 100, 101, 109, 152) (Fig. 3).

In this framework, the variation or turnover of both phylogenetic diversity and
taxonomic diversity is first measured with null-model-based phylogenetic and taxo-
nomic �-diversity metrics (�NTI, �NRI, and RCBray). The conservation of phylogenetic
signals is then tested against different environmental variables, followed by the choice
of appropriate phylogenetic metrics, �NTI or �NRI, for subsequent analysis. Next,
selection is partitioned based on the phylogenetic diversity of a targeted gene across
various communities. Since homogeneous selection leads to communities that are
phylogenetically more similar, the percentage of homogeneous selection is estimated
as the fraction of pairwise comparisons with a �NTI value of ��2. In contrast,
heterogeneous selection, which results in communities that are less similar in phylog-
eny, is quantified as the fraction of pairwise comparisons with a �NTI value of ��2.
Subsequently, the taxonomic �-diversity metric RCBray is used to further partition the
pairwise comparisons with an absolute �NTI value of �2 (i.e., these pairwise comparisons
are not assigned to selection). Similarly, because homogenizing dispersal produces
communities that are more taxonomically similar, the relative influence of homogeniz-
ing dispersal is quantified as the fraction of the pairwise comparisons with an absolute
�NTI value of �2 and an RCBray value of ��0.95. On the other hand, dispersal
limitation leads to communities that are less similar in taxonomy, and hence, dispersal
limitation is quantified as the fraction of the pairwise comparisons with an absolute
�NTI value of �2 and an RCBray value of �0.95. Finally, the fraction of the pairwise

FIG 3 Ecological processes shaping microbial community diversity in the context of the determinism-versus-stochasticity
dichotomy. This scheme shows different steps in partitioning various ecological processes based on both phylogenetic and
taxonomic diversity under the assumptions discussed in text. �NTI (� nearest-taxon index) is based on a null model test of the
phylogenetic �-diversity index �MNTD (� mean nearest-taxon distance), and RCBray (modified Raup-Crick index) is based on
a null model test of the Bray-Curtis taxonomic �-diversity index. The two boxes indicate the major components of deterministic
selection and the undominated fraction, respectively. Besides less-influential selection, the weak selection in the undominated
fraction may also result from counteracting influential selective factors and/or a contrasting selection of different taxa. The
diagram was made primarily based on data reported previously by Stegen et al. (37, 109).
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comparisons with an absolute �NTI value of �2 and an absolute RCBray value of �0.95
was treated as an “undominated” fraction, which mostly consists of weak selection,
weak dispersal, diversification, and/or drift (37).

At the moment, no methods are available to further partition different components.
Besides the little influence of selection, “weak” selection could also be caused by
influential selective forces counteracting each other and/or contrasting selection (i.e.,
some taxa are under homogeneous selection, but some others are under heteroge-
neous selection), which could lead to random phylogenetic patterns (101). In addition,
it should be noted that the “selection” fraction detected by this approach could also
include deterministic components of dispersal (e.g., active propulsion) and some
degree of diversification, such as those derived from positive mutations (Fig. 3).

Simulation modeling analysis with predefined expectations indicated that this new
framework could accurately predict the relative importance of various ecological
processes in controlling spatial turnover among different communities (37). This new
framework has been applied to a limited number of microbial communities, and some
very interesting insights were obtained (37, 68, 100, 101, 109, 151, 152). For example,
using this new framework, Stegen et al. (109) showed that the spatial turnover of the
subsurface microbial communities in deeper finer-grained sediments were controlled
majorly by selection (60% of the turnover). However, in shallower coarser-grain sedi-
ments, selection was weaker (�30% of the turnover). Also, dispersal limitation contrib-
uted about 30% of the spatial turnover, while homogenizing dispersal explained about
20% of the spatial variation. In addition, undominated processes (37) control 25% of the
spatial turnover. This new framework provides inferences of the relative importance of
ecological processes in mediating community assembly, which could not be achieved
by using previous approaches (109). This represents a significant advance in microbial
ecology because this is the first time that microbial ecologists are able to obtain
quantitative information on community assembly processes from a statistical perspec-
tive.

Although this new statistical approach provided valuable insights into the contri-
butions of ecological processes to microbial community structure and succession (37,
68, 109, 152), there are several limitations of this approach. First, selection is estimated
as the fraction of pairwise community comparisons with an absolute �NTI value of �2
at the whole-community level (37, 109). In this way, at an absolute �NTI value of �2,
the turnover of the entire community is considered to be under strong selection. This
may not be appropriate because it is well known that the action of natural selection
typically occurs on the level of individual populations. Within a microbial community,
while some populations are under natural selection, some could be under strong drift.
This kind of difference cannot be identified by a metric at the whole-community level.
In a recent study on a groundwater microbiome, this framework was applied to
different classes separately instead of the whole community, and the results demon-
strated taxon-specific assembly processes (101). Since this framework could also be
applied to any functional gene/trait with a phylogenetic signal, further improvements
can be achieved by focusing on functional genes to obtain higher resolution. Second,
diversification is an important evolutionary and ecological process underlying microbial
community assembly (67, 72, 108), but it is not accounted for in this framework (37).
Third, in the extended framework, ecological drift was mixed with weak selection and
dispersal (37, 68, 152). It would be highly desirable to determine the relative importance
of ecological drift for controlling community dynamics by further parsing it out (37). In
addition, a broad application of this framework to different microbial communities from
diverse habitats is necessary to validate its generality and applicability.

Underlying Assumptions of the Statistical Framework

There are several important assumptions underlying the above-described frame-
work, although they are not explicitly expressed in the original publications. The first
assumption is that phylogenetic diversity reflects the diversity of functional traits. In
community phylogenetics, one important belief is that community assembly is medi-
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ated through functional traits, and thus, the trait dispersion of a community is assumed
to signify particular community assembly processes (262). Because of niche conserva-
tism, that is, the tendency of species to retain ancestral ecological characteristics (263),
phylogenetic diversity is often used as a proxy for functional trait diversity to infer the
underlying community assembly processes if there is a strong correlation between
phylogenetic distance and niche differences, i.e., phylogenetic signals (62). The exis-
tence of phylogenetic signals can be tested to some extent by multivariate analysis (62,
109), but this faces some difficulties. First, niche differences are the results of multiple
parameters (e.g., pH, temperature, and salt), and not all of them will have a strong
phylogenetic signal or similar phylogenetic signals (264). Many ecological niches are
not or cannot be measured. It is not clear whether phylogenetic signals exist for these
unmeasured niches. Also, due to rapid adaptive evolution, in general, a microbial
phylogenetic signal exists only within a short phylogenetic distance, among closely
related microorganisms (62, 68, 109, 265). The estimation of phylogenetic distance
among closely related microorganisms could be highly susceptible to sequencing
errors, quantitative accuracy, reproducibility, and the uncertainty of phylogenetic trees
due to different tree construction approaches (69, 160, 266). In addition, horizontal
gene transfer among microorganisms could be a significant problem by swiping out
phylogenetic signals, especially for some functional traits (e.g., antibiotic resistance),
which leads to a phenomenon where ecologically similar organisms are not phyloge-
netically closely related (267). Fortunately, a recent review showed that microbial traits
appear to be phylogenetically conserved (268), and there were strong phylogenetic
signals for many microbial traits (264). However, it should be noted that the results from
such analyses could vary substantially with the taxonomic/phylogenetic resolutions of
the molecular markers used. For instance, the widely used short sequences from the
16S rRNA gene (e.g., V3-V4 regions) are able to resolve differences only at the genus or
family level (69). Such a coarse level resolution may not be sufficient to allow the
detection of ecological forces at the species and strain levels.

The second underlying assumption is that phylogenetic information is better than
taxonomic information for discerning some ecological processes, particularly selection.
Historically, both phylogenetic diversity and taxonomic diversity have been used to
infer community assembly mechanisms (e.g., deterministic versus stochastic) (31, 62,
83, 109, 153, 205). However, in this framework, both types of diversity are not consid-
ered equal in discerning community assembly mechanisms, particularly because of the
phylogenetic signals detailed above. This framework first uses phylogenetic �-diversity
to parse out the importance of selection, followed by the use of taxonomic �-diversity
for dispersal and other processes. This implies that phylogenetic diversity is more
informative than taxonomic diversity in reflecting selection. This assumption may be
valid, as a recent perspective article argued that phylogenetic diversity better repre-
sents ecological differences of functional traits (269). This is because phylogenetic
diversity, especially the abundance-weighted phylogenetic metric, encompasses infor-
mation on both evolutionary history and the ecology of organisms (269).

The third underlying assumption is that there are differential effects of ecological
processes on community structure. The proposed statistical framework partitions eco-
logical processes in the following order: selection, dispersal, and undominated pro-
cesses (including diversification, drift, weak selection, and weak dispersal). The under-
lying assumption for such a sequential analysis is that all ecological processes are
important in shaping community structure, but selection has a more pronounced
influence than dispersal and other processes. This assumption appears to hold, as
numerous studies demonstrate that selection is critical for governing community
structure at a small local scale, while dispersal and diversification are key contributors
to the regional species pool (30, 142). If one is more interested in the research question
of how deterministic and stochastic processes shape community structure at the local
scale, diversification and dispersal should become less important than selection (108).
Therefore, it should be reasonable to define the effects of selection on community
structure first, followed by parsing out the effects of regional factors such as dispersal
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and diversification. Drift, as a pure stochastic process embedded in the null hypothesis
of all null models, should be the remaining part.

Another underlying assumption is that the methods used at each step can effec-
tively parse out the importance of various ecological processes: selection by phyloge-
netic �-diversity and dispersal by taxonomic �-diversity. Although simulation model
analysis indicated that this approach can effectively delineate the effects of various
processes on community assembly (37), it is still less certain whether this approach is
effective for all communities. Intuitively, its effectiveness could vary with the complexity
and dominant processes of the community assembly. For instance, this approach could
be very effective if deterministic processes dominate, but it could be less reliable if
stochastic processes are more important. The effectiveness of this approach could also
vary with the spatial scales examined, sampling efforts, sampling errors, taxonomic/
phylogenetic resolution of molecular markers, null model algorithms, and community
similarity metrics (35, 203).

It is worthwhile to note that ecological selection, dispersal, diversification, and drift
are generally not directly measurable in community ecology. Similar to the situation of
ecological neutrality (270), the above-described framework provides statistical estima-
tions of ecological processes, and they should be treated as statistical proxies for
various ecological processes for several reasons. First, because of possible violations of
the above-described assumptions underlying this framework, it could be difficult to
obtain measurements close to the “true” values. Second, there are some statistical
uncertainties associated with each step, especially with the variation of null model
algorithms, community similarity metrics, regional pool size, and incidence or abun-
dance data. The estimated values for various ecological processes could vary consid-
erably with different choices. In addition, particularly for microbial studies, due to the
complexity of natural ecosystems and the inherently high variation of molecular methods
for sampling and associated analyses (160, 161, 266, 271), obtaining accurate estima-
tions of experimental data could be very challenging. For the above-mentioned rea-
sons, it might be wise to adopt a pragmatic definition for different terms, such as
statistical selection, statistical dispersal, statistical diversification, and statistical drift.
Similar to the situation for stochasticity and determinism (34, 272), the operational
distinction among these processes can appear somewhat arbitrary. Although there
might be differences, or even considerably large differences, between the statistically
measured values and true values of ecological processes, this conceptual framework
should be useful for comparative purposes. If all communities are analyzed in the same
way, the results should be more comparative and meaningful on a relative basis.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Unraveling the mechanisms underlying biodiversity has recently received a great
deal of attention in microbial ecology research. In contrast to traditional wisdom, over
the last decade, various theoretical, observational, and/or experimental studies clearly
demonstrate the importance of stochastic processes in shaping microbial community
structure, succession, and biogeography (e.g., see references 32, 33, 35, 36, 64, 177, 178,
193, and 273). However, most of those studies are based on taxonomic and/or phylo-
genetic diversity but not functional diversity. It is believed that species functional traits
(i.e., functional diversity) could have critical impacts on mediating stochastic commu-
nity assembly (137). Future microbial community assembly studies must consider
functional diversity along with taxonomic and phylogenetic diversity (239, 274). New
statistical approaches considering functional diversity within the context of microbial
community assembly are also needed (63, 69). Such functional-trait-based approaches
could be useful for inferring the relative importance of environmental filtering versus
biotic interactions (e.g., competition) in shaping community structures (275–277). In
addition, new methods to integrate all relevant data (e.g., taxonomic, phylogenetic,
functional, environmental, and spatial) are needed to address interesting ecological
hypotheses.

Vellend’s conceptual framework for classifying ecological processes as selection,
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dispersal, drift, and diversification is well received in the field of microbial ecology (67,
72). Statistical approaches to quantify selection and dispersal have been developed in
accordance with this framework (37, 68, 109). However, diversification is not incorpo-
rated into the theoretical framework (37, 68). Diversification could play key roles in
shaping microbial community structure via mediating regional species pools over large
spatial and temporal scales (34). Thus, novel approaches for quantifying the relative
importance of diversification and integrating it into the existing framework are urgently
needed. A recently developed approach using the randomization of nucleic acid
sequences of a marker gene (195) could provide a useful way to quantify the relative
importance of diversification.

Ecological drift is a central concept in community ecology. Because drift is strongly
affected by selection, dispersal, and diversification, it is a great challenge to detect drift,
especially in microbial communities. Given the large population sizes and high dispersal
potential, it is often assumed that drift is not important in microbial communities,
which may not be valid (72). To detect ecological drift in microbial communities, future
studies should focus on investigating the dynamics of rare taxa and/or active popula-
tions under similar or identical environmental conditions with a well-replicated exper-
imental design (35, 36, 72). Also, it is difficult to estimate the relative importance of
ecological drift with recently developed frameworks (37, 68, 109), because it is mixed
with other processes in the undominated fraction. Novel approaches to separate the
effects of drift and diversification in the undominated fraction are needed. In addition,
neutral and niche models, as well as different approaches (e.g., multivariate, neutral
model, and null modeling approaches), should be integrated together in complemen-
tary and reinforcing fashions for systematically assessing the importance of ecological
stochasticity (e.g., drift and stochastic colonization), because no approach is perfect (33,
100, 101, 239). Such integration will be even more powerful if combined with experi-
mental approaches to determine the importance of ecological stochasticity. However,
it is still challenging to integrate various approaches in data analyses and interpretation
for quantifying ecological drift as well as other processes. Machine-learning-based new
computational approaches could greatly help in ameliorating integration problems.

Although great insights have been obtained over the last decade, the majority of
studies on disentangling the mechanisms controlling community assembly are based
on observational surveys. Direct experimental manipulation of community diversity and
assembly history is becoming increasingly important because observational survey data
are always compounded by various other factors (34). However, experimental manip-
ulation of assembly processes of microbial communities, especially in natural settings,
is extremely difficult. New, well-replicated, and controlled experimental strategies and
approaches, such as synthetic ecosystems that resemble natural ecosystems (278),
should be very valuable for rigorously evaluating the relative importance of determin-
istic versus stochastic processes in community structure and succession (136, 279). Such
synthetic ecosystems could allow researchers to precisely control microbial diversity
(e.g., diversity level and species traits), the parameters of system inputs and outputs,
assembly processes (e.g., colonization order and dispersal), and environmental factors
(280). Also, directly altering microbial communities to test assembly theories in the field
is even more challenging. Coupling theoretical analyses with ecosystem management
efforts to obtain well-replicated time series data could be a viable way to test the
concepts and theory of community assembly and succession in field settings (35, 136).

There is a very limited understanding of whether and how community assembly
history affects ecosystem functioning (36, 253). Numerous studies demonstrated that
biodiversity is important for ecosystem functioning (e.g., see references 281 and 282),
but the underlying mechanisms shaping the relationships between microbial biodiver-
sity and ecosystem functioning are less clear. Several recent studies indicated that
stochastic processes are important for regulating both microbial community structure
and functions (36, 253), but more systematic examinations across diverse ecosystems
are necessary to understand whether stochastic community assembly processes affect
ecosystem functioning and how environmental factors influence the relationships
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between microbial community assembly and ecosystem functioning. New, functional-
trait-based frameworks to integrate various ecological processes (selection, dispersal,
drift, and diversification) within the context of ecosystem functioning are needed,
particularly from an evolutionary perspective (67). However, the identification and
measurement of functional traits important for microbial community assembly and
ecosystem functioning are a great challenge (67).

One of the main objectives in the field of microbial ecology is to be able to project
a future scenario of microbial community structure and functions in a changing
environment. However, stochastic community assembly poses a serious challenge to
predictive microbial ecology research because stochastic processes make the structure
and functions unpredictable (69). As a result, the majority of previous studies on
microbial ecology were focused on deterministic processes and ignored the impor-
tance of stochastic processes (283). Despite this challenge, considerable progress was
made in understanding the importance of stochastic community assembly in ecological
communities. Although stochastic processes are unpredictable, the factors and condi-
tions affecting stochastic community assembly are more or less predictable. For in-
stance, as mentioned above, stochastic community assembly will more likely occur
when there is a small habitat, a large species pool, high productivity, low disturbance,
and/or low predation. By understanding the factors and conditions affecting stochastic
community assembly, it is still feasible to predict the range of possibilities of stochastic
community assembly (137). Thus, some important future research questions should
focus on when ecological stochasticity should matter and when it should not (137).
Microbial community ecology will become more predictable by determining when and
under which conditions a microbial community will be more sensitive to stochastic
processes. Such knowledge can also be used for assisting biodiversity preservation,
ecosystem restoration, environmental management, agricultural management, and
disease control (31, 35, 137). The appropriate manipulation of a community assembly
history could serve as a useful tool in ecosystem management for achieving the desired
ecosystem functions (137, 253).
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