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Abstract

Despite strong evidence supporting the heritability of Major Depressive Disorder, previous 

genome-wide studies were unable to identify risk loci among individuals of European descent. We 

used self-reported data from 75,607 individuals reporting clinical diagnosis of depression and 

231,747 reporting no history of depression through 23andMe, and meta-analyzed these results 

with published MDD GWAS results. We identified five independent variants from four regions 

associated with self-report of clinical diagnosis or treatment for depression. Loci with 

pval<1.0×10−5 in the meta-analysis were further analyzed in a replication dataset (45,773 cases 

and 106,354 controls) from 23andMe. A total of 17 independent SNPs from 15 regions reached 

genome-wide significance after joint-analysis over all three datasets. Some of these loci were also 

implicated in GWAS of related psychiatric traits. These studies provide evidence for large-scale 

consumer genomic data as a powerful and efficient complement to traditional means of 

ascertainment for neuropsychiatric disease genomics.
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Major depressive disorder remains one of the most significant contributors to morbidity and 

mortality1–3. Efforts to develop novel interventions have been hindered by a limited 

understanding of the underlying neurobiology. Despite strong evidence of heritability4,5, 

efforts to clarify this biology through common or rare variant association studies have been 

unsuccessful, which has been attributed to the heterogeneity of disease and absence of a 

biological gold standard diagnosis. One recent study of a Han Chinese population identified 

two risk loci, in the LHPP gene and near the SIRT1 gene, but neither was supported in 

European populations where the risk alleles are extremely rare6.

If one reasonable strategy adopted by that study is to develop more precise or refined 

phenotypes, another is to efficiently identify much larger cohorts for study despite less 

intensive phenotyping. This strategy has been validated in multiple non-psychiatric diseases, 

but not for psychiatric illness that is presumed to require more detailed interview. Here, we 

identified 75,607 individuals (62% female) who endorsed a prior clinical diagnosis of, or 

treatment for, major depression, and 231,747 (44% female) individuals reporting no clinical 

diagnosis of depression or treatment for depression. All subjects participated in the 

consumer genomics company 23andme’s optional research initiative (for population socio-

demographic features, see Table 1). These individuals were genotyped on one of four custom 

arrays containing genome-wide content and genotypes were imputed using the September 

2013 release of 1000 Genomes Phase1 reference haplotypes. Research participants with > 

97% European ancestry, excluding close relatives, were included in the GWAS analysis. The 

Manhattan Plot and Q-Q plot for the analysis are shown in Supplementary Figure 1a–b, p-

values were adjusted for inflation using LD score regression (Supplementary Table 1).

Novel major depression loci in a self-report population

From the discovery 23andMe dataset we identified two distinct regions containing SNPs 

with p-value < 1×10−8 and five additional loci with p-value < 5×10−8 (Supplementary Table 

1) to be associated with self-report of depression. We have chosen to consider only the SNPs 

with pval < 1×10−8 to be genome-wide significant in this GWAS due to correction for 15 

million SNPs in the 23andMe data. The most significant locus yielded an association at 

rs2806933 (adjusted p-value= 8.53×10−13, OR= 0.955, 95% CI= 0.943–0.968 effect allele 

frequency in controls= 0.61) in a region spanning the 3′ UTR for the olfactomedin-4 gene 

(OLFM4), not previously implicated in neuropsychiatric disease but known to be expressed 

in brain, including amygdala and medial temporal lobe7. The second, with peak association 

at rs768705 (p-value= 2.91×10−12, OR= 1.051, 95% CI= 1.036–1.067, effect allele 

frequency in controls= 0.25), spans a locus containing the myocyte enhancer factor 2C 

(MEF2C) and transmembrane protein 161B (TMEM161B) genes. Variants in MEF2C has 

been previously associated with multiple CNS phenotypes including epilepsy and 

intellectual disability8,9 and implicated in regulation of synaptic function10. TMEM161B, 

also brain-expressed, exhibits decreased levels of repressive dimethyl histone H3 Lys9/

Lys27 methylation in response to social isolation in a mouse model of depression11. While 

Schizophrenia and Alzheimer’s Disease GWAS both identify the MEF2C region as a disease 

susceptibility locus, the peak schizophrenia and AD-associated SNPs are not in strong LD 

with the MDD SNP (Schizophrenia: rs18190012; r2=0.001 Alzheimer’s disease: rs190982, 

r2=0.016). Using a population prevalence of 15% for MDD estimated by the PGC 
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Consortium13, we calculated heritability using LD score regression of h2
liab=0.0528 for this 

dataset. When using the 23andMe MDD observed population prevalence of 25%, this results 

in h2
liab=0.0612.

Meta-analysis of the 23andMe dataset with the previously reported Psychiatric Genomics 

Consortium (PGC) meta-analysis of MDD, which encompassed 9,240 cases and 9,519 

controls of European descent, is presented in Figure 1a–b (Supplementary Table 2). From 

the PGC cohort only 1.22 million SNPs overlapped with the 23andMe MDD data (no results 

were reported for X or Y chromosomes)14 and only these SNPs were used for downstream 

analysis. As a result, several lead SNPs from the discovery 23andMe GWAS are absent 

including rs77741769 (SPPL3-HNF1A), rs144294997 (N6AMT1), rs1432639 (NEGR1), 

and rs67744457 (EP300-L3MBTL2). Each cohort was individually adjusted for inflation 

using LD score regression (as described in the Methods) and subsequently meta-analyzed 

using a standard fixed-effects, inverse-variance weighted approach15. Final results from the 

meta-analysis were further adjusted for the meta-analysis LD score regression intercept of 

1.0025.

From the original 23andMe lead SNPs, only the N6AMT1 locus is not represented in the 

meta-analysis results at a p-value less than 5×10−6 due to absence of the lead 23andMe SNP 

in the meta-dataset as well as an absence of significant secondary signals in the region. SNPs 

in the OLFM4, TMEM161B-MEF2C (two independent SNPs), MEIS2-TMCO5A, and 

NEGR1 regions reached genome-wide significance in the meta-analysis (p < 5×10−8, 

correcting for 1.22 million SNPs) (Supplementary Table 2). Regional association plots are 

shown for these regions in Figure 2. Heritability for the meta-analysis was estimated at 

h2
liab=0.059 and 0.069, for 15 and 25% prevalence.

Replication of 15 loci associated with major depression

We assessed the ability of the top signals (p-val < 1.0×10−5) from the meta-analysis to 

replicate in a separate cohort of 45,773 cases and 106,354 controls from 23andMe (Table 1). 

All individuals in the replication dataset were independent from subjects included in the 

discovery 23andMe dataset and had similar characteristics for sex and age distributions. The 

replication cohort provided additional support for three of the five genome-wide significant 

SNPs in the TMEM161B-MEF2C (2 SNPs) and the NEGR1 locus. In a joint-analysis of the 

discovery 23andMe dataset, PGC, and the 23andMe replication dataset, a total of 15 

independent loci (17 SNPs) reached genome-wide significance (p-val < 5×10−8) (Table 2). 

Of the remaining 46 SNPs with a p-value less than 1×10−5 in the meta-analysis of the 

23andMe Discovery dataset and 23andMe, 41 had a consistent direction of effect between 

the meta-analysis and replication cohort (pvalues across all analyses including joint-analysis 

are shown in Supplementary Table 2 for SNPs that reached a pval < than 1×10−5 in the 

meta-analysis).

To explore the biological implications of our findings we used DEPICT to derive tissue 

enrichment, gene-set enrichment, and gene predictions (Supplementary Table 3) for SNPs 

with a p-value less than 1×10−5 in the meta-analysis. While identification of the functional 

variant or gene is not straightforward many of the top associations in our dataset appear in or 
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near transcription factors with known CNS developmental functions (for additional gene 

predictions from DEPICT and functional annotation for each region see Supplementary 

Table 4). Gene-set enrichment analysis prioritized the MEIS2 subnetwork (pval= 

2.30×10−6). MEIS2 is a TALE homeodomain transcription factor known to function in 

development. While most studies implicate MEIS2 in peripheral tissue development, recent 

studies have shown a role for MEIS2 regulated pathways in neurogenesis through 

interactions with Pax6, as well as interactions with Pax3 and Pax716,17. Notably, our analysis 

identified significant associations with MDD in the MEIS2, PAX6, and PAX5 regions (pval= 

2.04×10−8, 3.94×10−7, and 2.59×10−5 in the 23andMe Discovery dataset). Tissue 

enrichment analysis showed an over-representation of central nervous system, with 12 of the 

19 nominally associated tissues being from different brain regions (with a Nervous System 

as a second level MeSH term). Although these associations did not pass multiple-testing 

correction, the top results from our MDD GWAS are enriched for CNS expression and 

transcriptional function important for CNS development or neurogenesis. Further functional 

annotations of predicted genomic/molecular function, brain tissue or monocyte eQTLs, gene 

predictions for each region using DEPICT18, and disease associations using publicly 

available GWAS datasets and the OMIM database are presented in Supplementary Table 4 

for all 17 SNPs reaching genome-wide significance in the joint-analysis (Table 2).

After distance (300 kb) and LD pruning (r2>0.1), three regions had multiple SNPs with p-

values less than 1.0×10−6 in the meta-analysis results. We tested SNPs in each of these 

regions for independence in the replication dataset using Wald and likelihood ratio tests. We 

conducted this analysis in the replication dataset to avoid SNP selection bias from the 

original findings. By conditioning on each SNP within the models at each locus we find two 

SNPs in each of the TMEM161B-MEF2C and NEGR1 regions are likely independent 

(rs10514299 and rs454214, rs11209948 and rs2422321, respectively), with the variance in 

the region being explained best by both SNPs, while most of the variance in the MLF1 
region is explained by rs1656369 alone (with no additional significance provided by 

inclusion of rs4645169) (Supplementary Table 5).

Validity of the self-report phenotype for major depression

As the PGC cohort is substantially smaller than the 23andMe single cohort, power in the 

PGC MDD GWAS to detect the effect sizes for the two genome-wide significant loci 

observed in the preliminary 23andMe GWAS was less than 0.6 at a nominal level of 

significance (p<0.05 uncorrected), and the analogous power to replicate the remaining 

23andMe loci in PGC declined thereafter19. However, the probability of PGC showing the 

same direction of effect in 23andMe exceeded 90% for each of the top ten independent 

23andMe loci that were also evaluated in PGC (corresponds to all overlapping peak-pruned 

23andMe loci with unadjusted p < 1.0×10−7 in 23andMe). We therefore conducted a sign-

test examining concordance between PGC effect direction and the 23andMe effect direction 

for the top overlapping 23andMe peak loci. Nine of the top 10 loci matched sign, (Fisher’s 

exact test p = 0.033). The test continued to deviate significantly from chance at a range of 

thresholds, suggesting consistent signal between the PGC results and 23andMe. For the 82 

independent SNPs with nominal p-values less than 1×10−5 in 23andMe, the p-value for the 

sign test was p=2×10−6 with the odds ratio for a sign match being 10.6 (95% CI= 3.5–37.1). 
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Furthermore, the effect sizes for the top independent 23andMe loci are correlated with the 

effect sizes of those SNPs in PGC (removing loci with MAF < 5% to avoid highly variable 

values). This correlation peaks at the 39th peak 23andMe locus with 68% correlation 

(p=2.5×10−9). Additionally, we calculated the genetic correlation between the two datasets 

using LD score regression20 and found the two major depression datasets were highly and 

positively correlated (rg=0.725, SE=0.093, p=7.05×10−15).

Associations of lead SNPs with related phenotypes

To investigate the polygenic nature of this trait, we generated a genetic risk score from 17 

SNPs (Supplementary Table 6) with p-values < 5×10−8 in the joint-analysis (Discovery 

23andMe, PGC, and replication 23andMe) and tested for association of the weighted MDD 

GRS with reporting of related phenotypes, medication use, and age-at-onset (Table 3) in the 

combined discovery and replication cohort, adjusting for depression case/control status. The 

GRS was significantly associated (FDR < 0.05) with each of these phenotypes. Importantly, 

the MDD GRS significantly associated with an earlier-age-of-onset in cases (effect= −1.49 

years per unit of log odds, standard error= 0.37, p-val= 6.1×10−5).

The independent effect of each GRS SNP on this set of related phenotypes is presented in 

Supplementary Table 7. Importantly, while rs12552 in the OLFM4 region was not strongly 

supported in the replication dataset, this SNP is associated with increased reporting of panic 

attacks, use of medication to treat mental health problems, prescription sleep aids, and pain 

medication, BMI greater than 27, earlier age-of-onset of MDD, and commensurately 

associated with lower continuous age of onset. Individually, rs12552 and rs4543289 had the 

largest effect on age-at-onset, with a total of five SNPs having nominal significance (p-val < 

0.05).

Sex effects

Due to known sex-disparities in the presentation of depression, incidence rate, and the 

suggestion of differences in underlying biology, we tested for sex-specific effects on our top 

SNPs as well as genotype-sex interaction for each SNP in the 23andMe discovery cohort 

(Supplementary Table 8). In the discovery cohort, four SNPs had nominal P<0.05 but none 

survived a multiple testing correction. No results reached nominal P<0.05 in the replication 

cohort. Our GWAS results thus provide no support for gender differences in genetic 

predisposition to depression.

Cohort Characteristics

We further validated the novel self-report phenotype by assessing expected characteristics of 

medication use, comorbid symptoms, and risk factors commonly seen in MDD within the 

23andMe self-report cohort (Supplementary Table 9). Reporting of anxiety, panic attacks, 

insomnia were significantly increased (pval < 5.0 × 10−243 for all traits tested) among 

subjects reporting depression as well as a BMI greater than 27 (i.e. overweight) and a BMI 

greater than 30 (i.e. obese). Reporting of current SSRI use, medication for mental health 

problems, prescription sleep aids, and pain medication were also increased with the highest 
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odds ratio for any trait tested being for SSRIs and psychotropic use (13.35 and 44.83, 

respectively), further supporting the validity of the phenotype ascertainment. Cohort 

characteristics were also tested separately in males and females with no evidence of sex-

specific differences (Supplementary Table 10).

Studies have shown a degree of shared genetic liability for different psychiatric disorders, 

likely a result of multiple factors including genetic pleiotropy, diagnostic overlap, comorbid 

disease, or disease progression. To initially assess shared genetic risk across psychiatric 

disorders we present p-values across five psychiatric traits (Schizophrenia, Bipolar Disorder, 

Neuroticism, Depressive symptoms, and Subjective Well-Being) for SNPs with p-values less 

than 1×10−5 in the MDD meta-analysis (Supplementary Table 11)21. The MDD SNPs 

showed the highest degree of overlap (smallest p-values) in the Schizophrenia dataset, 

followed by Neuroticism, with less replication in the Bipolar, Depressive Symptoms, and 

Subjective Well-being phenotypes. Schizophrenia and Bipolar GWAS are from the publicly 

available PGC datasets12,22 while corresponding p-values for Neuroticism, Depressive 

Symptoms, and Subjective Well-being were provided by the bior The lack of correlation 

with SSGAC depressive symptoms self-report data may arise from the latter considering 

only depressive symptoms experienced during the previous two weeks-versus lifetime major 

depression in the primary cohorts. Conversely, the trait measure of neuroticism has 

previously been show to overlap with major depression, consistent with our results.

In order to rigorously assess genetic correlation of the MDD GWAS with other 

neuropsychiatric disease, we utilized available GWAS from PGC, including Bipolar 

Disorder and three Schizophrenia GWAS (different versions of the Schizophrenia PGC 

datasets), as well as neurodegenerative disease GWAS to test pairwise genetic correlation 

with the 23andMe MDD GWAS dataset using LD score regression. Due to the use of 

overlapping controls in the PGC datasets we did not use the results of the meta-analysis 

between 23andMe and PGC. The highest correlation with the primary 23andMe GWAS was 

observed for the PGC2 Schizophrenia GWAS (r = 0.282, SE = 0.03, p-val= 2.18×10−21) 

followed by Bipolar Disorder and the additional Schizophrenia GWAS (Table 4); however, 

we observed little to no correlation for the Parkinson’s disease and Alzheimer’s disease 

datasets. Additionally, we checked for correlation between 23andMe MDD and a trait with 

no known epidemiological correlation to depression (LDL Cholesterol) and observed no 

genetic correlation between the two traits.

Discussion

In this study we present a complementary approach to collecting large-scale genotypic data 

on major depression. By utilizing the self-report data on major depression from 23andMe, 

we were able to identify SNPs at a genome-wide level of significance associated with risk 

for depression in a cohort of European descent. Through a meta-analysis of the 23andMe 

data with PGC MDD GWAS and a joint-analysis with an independent 23andMe replication 

cohort, we identify 17 independent SNPs significantly associated with diagnosis of major 

depression. Through tissue and geneset enrichment analysis utilizing DEPICT, we find that 

these SNPs are predicted to be enriched in genes expressed in the CNS and function in 

transcriptional regulation related to neurodevelopment. We find no robust evidence for sex-
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specificity among our top results but this study combined both genders and only adjusted for 

sex as a covariate, and was therefore not structured to identify sex-specific loci. This would 

ideally be done through a sex-stratified GWAS.

Although the variance explained by these SNPs is small, we find that our cohorts identified 

by self-report of major depression are highly genetically correlated with cohorts identified 

by clinical interview, a result further corroborated by significant sign-test and effect size 

matching between the top 23andMe SNPs (nominal pval < 1×10−5) and their counterparts in 

PGC in self-report and clinical-interview datasets. To better understand the phenotypic 

characteristics of the 23andMe self-report subjects, we assessed reporting of medication use 

and comorbidities and found that all tested characteristics were significantly increased in the 

subjects reporting Depression, similar to what is seen in clinically ascertained subjects. 

Notably, many of the most significant SNPs show evidence of pleiotropy when examined in 

other clinically ascertained psychiatric disorders with the smallest p-values among 

individual SNPs seen for MDD SNPs in the PGC Schizophrenia and neuroticism datasets. 

This finding is unsurprising given the pleiotropy reported by other GWAS and cross-

psychiatric analyses13, and lends further support to the relevance of a self-report phenotype 

to clinical disease.

We were unable to replicate the genome-wide significant loci identified in the recent 

CONVERGE study6 although we identified modest associations in each region (LHPP, 

rs145655839, minimum p-val= 0.0024 out of 6,204 SNPs in the region, and SIRT1, 

rs187810158, minimum p-val=0.0102 out of 5,111 SNPs in the region). This is unsurprising 

given that our study looked for genetic determinants of susceptibility in both males and 

females of European descent, and likely represented a very different population structure 

than that of the CONVERGE study of Han Chinese women.

Taken together, our results indicate the utility of complementary strategy to intensive 

phenotyping for identifying common variant associations with phenotypically heterogeneous 

neuropsychiatric diseases. The inter-rater reliability of lifetime MDD diagnosis even with 

structured interview is modest, with a kappa of 0.32–0.5723,24; conversely, the reliance on 

treatment-seeking patients in the present analysis rather than volunteers responding to 

advertisements lends additional face validity to the phenotype25. The finding in other large-

scale analyses that cohorts ascertained based on treatment rather than structured interview 

yield similar associations12, and that such phenotypes are consistent with structured 

interview26, adds confidence to the validity of this approach12. In light of the massive impact 

of such disorders on health worldwide, any approach that can help elucidate 

pathophysiology merits consideration. The finding that a locus previously linked to other 

neuropsychiatric disease increases MDD risk also adds to a burgeoning literature indicating 

the pleiotropy of such risk genes.

Methods

Data Access

The full GWAS summary statistics for the 23andMe Discovery dataset will be made 

available through 23andMe to qualified researchers under an agreement with 23andMe that 
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protects the privacy of the 23andMe participants. Please contact David A. Hinds 

(dhinds@23andme.com) for more information and to apply to access the data. Information 

for the most significant 10,000 SNPs from the discovery 23andme GWAS are included in 

Supplementary Table 12.

Population and Study Design

Participants were part of the customer base of 23andMe, Inc., a consumer genetics company. 

This cohort has been described in detail elsewhere27,28. Participants provided informed 

consent and participated in the research online. The protocol was approved by an external 

AAHRPP accredited IRB, Ethical and Independent Review Services. The discovery cohort 

was selected from participant data available in January 2015, and the replication cohort was 

selected in January 2016 from additional data available at that time.

Genotyping, Quality Control, and Imputation

DNA extraction and genotyping were performed on saliva samples by National Genetics 

Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory 

Corporation of America. Samples were genotyped on one of four genotyping platforms. The 

V1 and V2 platforms were variants of the Illumina HumanHap550+ BeadChip, including 

about 25,000 custom SNPs selected by 23andMe. The V3 platform was based on the 

Illumina OmniExpress+ BeadChip, with custom content to improve the overlap with theV2 

array. The V4 platform use most recently is a fully custom array, including a lower 

redundancy subset of V2 and V3 SNPs with additional coverage of lower-frequency coding 

variation. The platforms contained 586,916; 584,942; 1,008,948; and 570,000 SNPs, 

respectively. Samples that failed to reach 98.5% call rate were re-analyzed. Individuals 

whose analyses failed repeatedly were re-contacted by 23andMe customer service to provide 

additional samples, as is done for all 23andMe customers.

Participant genotype data were imputed against the September 2013 release of 1000 

Genomes Phase1 reference haplotypes, phased with ShapeIt229. We phased using an 

internally developed phasing tool, Finch, which implements the Beagle haplotype graph-

based phasing algorithm30, modified to separate the haplotype graph construction and 

phasing steps. Finch extends the Beagle model to accommodate genotyping error and 

recombination, to handle cases where there are no consistent paths through the haplotype 

graph for the individual being phased. We constructed haplotype graphs for European 

samples on each 23andMe genotyping platform from a representative sample of genotyped 

individuals, and then performed out-of-sample phasing of all genotyped individuals against 

the appropriate graph.

In preparation for imputation, we split phased chromosomes into segments of no more than 

10,000 genotyped SNPs, with overlaps of 200 SNPs. We excluded SNPs with Hardy-

Weinberg equilibrium P<10−20, call rate < 95%, or with large allele frequency discrepancies 

compared to European 1000 Genomes reference data. Frequency discrepancies were 

identified by computing a 2×2 table of allele counts for European 1000 Genomes samples 

and 2000 randomly sampled 23andMe customers with European ancestry, and identifying 

SNPs with a chi squared P<10−15. We imputed each phased segment against all-ethnicity 
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1000 Genomes haplotypes (excluding monomorphic and singleton sites) using Minimac231, 

using 5 rounds and 200 states for parameter estimation.

For the X chromosome, we built separate haplotype graphs for the non-pseudoautosomal 

region and each pseudoautosomal region, and these regions were phased separately. We then 

imputed males and females together using Minimac2, as with the autosomes, treating males 

as homozygous pseudo-diploids for the non-pseudoautosomal region.

Ancestry Determination

We restricted the analysis to include individuals who have >97% European ancestry, as 

determined through an analysis of local ancestry32. Briefly, our algorithm first partitions 

phased genomic data into short windows of about 100 SNPs. Within each window, we use a 

support vector machine (SVM) to classify individual haplotypes into one of 31 reference 

populations. The SVM classifications are then fed into a hidden Markov model (HMM) that 

accounts for switch errors and incorrect assignments, and gives probabilities for each 

reference population in each window. Finally, we used simulated admixed individuals to 

recalibrate the HMM probabilities so that the reported assignments are consistent with the 

simulated admixture proportions. The reference population data is derived from public 

datasets (the Human Genome Diversity Project, HapMap, and 1000 Genomes), as well as 

23andMe customers who have reported having four grandparents from the same country.

A maximal set of unrelated individuals was chosen for each analysis using a segmental 

identity-by-descent (IBD) estimation algorithm33. Individuals were defined as related if they 

shared more than 700 cM IBD, including regions where the two individuals share either one 

or both genomic segments identical-by-descent. This level of relatedness (roughly 20% of 

the genome) corresponds approximately to the minimal expected sharing between first 

cousins in an outbred population. When constructing the replication cohort, we identified 

unrelated individuals who were also unrelated to all individuals used in the discovery 

analysis.

We used principal component analysis (PCA) to characterize residual population structure in 

the subset of 23andMe participants with European ancestry. We computed principal 

components using 82,654 SNPs that were genotyped on all 23andMe array designs, with 

Hardy-Weinberg P > 1e–40, minor allele frequency > 0.01, call rate > 99%, and excluding 

regions of extended long range linkage disequilibrium. We used the ARPACK library34 to 

compute principal components using data for 519,914 individuals across all array designs; 

additional individuals were then projected onto this set of eigenvectors.

Supplementary Figure 2a shows the proportion of variance explained by each principal 

component, and Supplementary Figure 2b shows the proportion of each component’s 

variance that is explained by country of ancestry, for a set of individuals reporting four 

grandparents from a single country. The first 5 PCs are largely explained by geographic 

ancestry, while higher order PCs are not.
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GWAS and Meta-analysis

In the GWAS and replication analysis, we computed association test results by logistic 

regression assuming additive allelic effects. For tests using imputed data, we use the imputed 

dosages rather than best-guess genotypes. We included covariates for age, gender, and the 

top 5 principal components to account for residual population structure. While we could 

justify the choice of 5 PCs based on the preceding ancestry analysis, we actually chose to 

use 5 based on computational considerations, and others have noted this to be a reasonable 

choice35.

For quality control of genotyped GWAS results, we removed SNPs that were only genotyped 

on our “V1” and/or “V2” platforms due to small sample size, and SNPs on chrM or chrY 

because many of these are not genotyped reliably. Using trio data, we flagged SNPs that 

failed a test for parent-offspring transmission; specifically, we regressed the child’s allele 

count against the mean parental allele count and flagged SNPs with fitted β<0.6 and 

P<10−20 for a test of β<1. We removed SNPs with a Hardy-Weinberg P<10−20 in Europeans; 

or a call rate of <90%. We also tested genotyped SNPs for genotype date effects, and 

removed SNPs with P<10−50 by ANOVA of SNP genotypes against a factor dividing 

genotyping date into 20 roughly equal-sized buckets. For imputed GWAS results, we 

removed SNPs with average r2<0.5 or minimum r2<0.3 in any imputation batch, as well as 

SNPs that had strong evidence of an imputation batch effect. The batch effect test is an F test 

from an ANOVA of the SNP dosages against a factor representing imputation batch; we 

removed results with P<10−50. Prior to GWAS, we identified, for each SNP, the largest 

subset of the data passing these criteria, based on their original genotyping platform – either 

v2+v3+v4, v3+v4, v3, or v4 only – and computed association test results for whatever was 

the largest passing set. After quality control, the 23andMe discovery GWAS included results 

for 13,474,321 imputed variants, and 60,949 genotyped variants that did not have imputed 

results passing our filters, for a total of 13,535,270 variants. Of these, 15,774 test results 

could not be computed due to logistic regression fitting problems, leaving 13,519,496 tests. 

HWE and batch-effect pvalues are presented in Supplementary Table 13.

Results from 23andMe were adjusted for variance inflation by multiplying the variance (i.e. 

square of the standard error) of each genetic effect estimate by the intercept of 1.0598 as 

calculated by LD score regression20. Meta-analysis with PGC was conducted by inverse-

variance fixed effects meta-analysis on overlapping SNPs after adjusting the standard errors 

of each individual analysis for its own lambda (LD score regression intercept in PGC was 

1.0243). Final results from the meta-analysis were further adjusted for the overall LD score 

regression intercept of 1.0025 (for more details on LD score regression methods see section 

on LD score regression).

LD score regression

We calculated LD scores (LD Score (LDSC) version 1.0.0) as previously described using the 

European 1000 Genomes reference panel (phase 3 version 5a) with a minor allele frequency 

cutoff for SNP inclusion greater than 5%. GWAS summary statistics data was collected from 

the following resources: Psychiatric Genomics Consortium (MDD, Bipolar Disorder, SCZ1, 

SCZ1+SWE, SCZ2), the International Genomics of Alzheimer’s Project (IGAP AD), the 
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International Parkinson Disease Genomics Consortium (IPDGC PD), and the Global Lipids 

Genetics Consortium (GLGC LDL). GWAS data was harmonized using the 

munge_sumstats.py function, (using the SNP list derived from LD score calculation) and 

genomic inflation control intercepts were calculated for the 23andMe MDD data, PGC 

MDD data, and PGC+23andMe meta-analysis data using the ldsc.py function (using all 

default settings and options). Additionally, we calculated liability heritability estimates for 

the meta-analysis using the same function, with a population prevalence estimation of 15%, 

and 25% as previously described13. Finally, we calculated the cross-trait regression between 

23andMe MDD GWAS and the PGC datasets, the IGAP data, the IPDGC data, and the 

GLGC data.

Trait Ascertainment

Subjects with depression were identified through self-report in web-based surveys. A total of 

six survey data sources were used to compose the depression phenotype:

1. (Your Medical History survey: 2009–2013) “Have you ever been diagnosed by a 
doctor with any of the following psychiatric conditions?” (options for 

Depression: Yes, No, I don’t know)

2. (Research Snippet: 2010–2014) “Have you ever been diagnosed with clinical 
depression?” (answers: Yes, No, I’m not sure)

3. (Health Intake survey, unbranched: 2014–2015) “Have you ever been diagnosed 
with or treated for any of the following conditions?” (options for Depression: 

Yes, No, I’m not sure)

4. (Health Intake survey, branched: 2013)

4a “Have you ever been diagnosed or treated for any of the following 
conditions?” (“A mental health or psychiatric condition”: Yes, No, I’m 

not sure)

4b “What mental health problems have you had? Please check all that 
apply” (check box: Depression)

5. (Health Profile survey: 2015–2016)

5a “Have you ever been diagnosed with or treated for any of the following 
conditions? Anxiety, Attention deficit disorders, Bipolar disorder / 
manic depression, Depression, Eating disorder (such as anorexia or 
bulimia)” (answers: Yes, No, I’m not sure)

5b “Have you ever been diagnosed with or treated for depression?” 
(answers: Yes, No, I’m not sure)

6. (Health Followup survey: 2014–2015) “In the last 2 years, have you been newly 
diagnosed with or started treatment for any of the following conditions?” 
(options for Depression: Yes, No, I’m not sure)

Sources 1, 3, 4, and 5 represent four different iterations of a general medical history survey, 

administered over successive time periods from 2009 to 2016. Source 2 used a different 
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mechanism for presenting individual questions to participants outside of the context of a 

formal survey. Source 6 was a survey administered to a subset of participants at least a year 

after they had completed one of the Health Intake surveys.

Sources 1 to 5 were combined by keeping the first non-missing response among these 

sources for each participant, evaluated in the specified order (the “coalesced response”). We 

then incorporated responses to source 6, by defining cases as the union of cases from the 

coalesced response and cases from source 6; and defining controls as individuals who were 

controls for either and cases for neither of these.

For the branched data sources 4 and 5, participants were first asked a screening question (4a 

or 5a), and if they answered affirmatively, were asked a specific follow-up question (4b or 

5b). Cases were defined as positive responses to the follow-up question, and controls were 

the union of ‘no’ responses to either the screening or follow-up questions.

As a result of the staging of the discovery and replication analyses, the discovery cohort did 

not include any responses from source 5, and the replication cohort consisted almost entirely 

of responses from sources 3 or 5.

In survey sources 1,3,4, and 5, we also asked for an age of first diagnosis of depression. This 

data was provided by a majority of participants, including 74% of cases in the discovery 

cohort and 85% of cases in the replication cohort.

We used Cohen’s Kappa to assess agreement across responses for sources 1 to 5, taking 

advantage of participants who had responded to more than one of the survey data sources 

(Table 14).

Agreement was good in most comparisons (κ > 0.7), but was somewhat worse for 

comparisons with branched source 4 (κ between 0.5 and 0.7). Source 4 systematically 

under-called cases compared to the other sources, apparently due to the wording of the 

screening question. This tendency is partially mitigated in the logic for the combined 

phenotype, where we preferentially use responses to sources 1 to 3 if available.

The logic for composing the depression phenotype in this way was based on several 

considerations. For most participants (>95%), we have either just one response, or the 

available responses are all in agreement, so a deeper analysis of the mismatch data was 

unlikely to substantially affect downstream results. Our strategy of selecting one response 

per participant without regard for their other responses also seemed least likely to introduce 

bias in classification of participants who provided multiple responses.

Secondary Phenotypes

A set of common co-morbidities of depression were defined based on responses to single 

questions, as follows:

• Anxiety (Health Intake survey, unbranched, 2014–2015): “Have you ever been 

diagnosed with or treated for anxiety?” (Yes, No, I don’t know)
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• Panic attacks (Health Intake survey, unbranched, 2014–2015): “Have you ever 

been diagnosed with or treated for panic attacks?” (Yes, No, I don’t know)

• Insomnia (Research Snippet, 2013–2016): “Do you routinely have trouble 

getting to sleep at night?” (Yes, No, I don’t know)

• Taking an SSRI (Research Snippet, 2013–2016): “Are you currently taking an 

SSRI (selective serotonin reuptake inhibitor) for any reason?” (options: Yes, No, 

I don’t know)

• Ever taken medication for a mental health condition; prescription sleep aids; or 

prescription pain medication (Health Intake survey, unbranched, 2014–2015): 

“Have you ever taken these medications?” “Medications to treat depression or 
anxiety or another mental health condition”, “Prescription sleep aids”, 
“Prescription pain medications” (checkbox for each category)

Overweight and obesity were defined based on BMI (>27, >30), computed from self-

reported height and weight, which were collected using fill-in forms in multiple survey 

contexts.

Associations with secondary phenotypes and age-of-onset

We computed genetic risk scores based on the 17 SNPs with p-values < 5e–8 in the joint 

analysis of 23andMe discovery, PGC, and 23andMe replication results, as a linear 

combination of independent single-SNP effect sizes estimated from that joint-analysis 

(Supplementary Table 2). We tested each secondary phenotype for association with these 

scores in the combined 23andMe discovery and replication cohorts; we tested for effects on 

age-of-onset in depression cases only (Table 3). For age-of-onset, we defined “early onset” 

as onset before age 30, and fit this binary outcome by logistic regression; we also fit a model 

for continuous age-of-onset using linear regression. In all these tests, we included covariates 

for age, gender, five PCs, and depression case/control status. In this way, we were testing for 

residual association not explained by depression status, and thus these associations are 

independent of the data that was used to identify these 17 variants. Separately, we tested 

each of the 17 SNPs individually for association with this same set of phenotypes, including 

the same covariates (Supplementary Table 7).

DEPICT Functional Analysis

We utilized DEPICT18 to determine the most likely causal gene at each of the depression-

associated loci, and to assess reconstituted gene sets enriched for and tissues highly 

expressing those genes. The reconstituted gene sets used in the analysis are derived from 

publicly available gene set annotations, which are then integrated with 77,840 gene 

expression arrays36 to predict which other genes are likely to be part of these gene sets.

For the analysis, we selected SNPs significantly associated to depression at p < 1 × 10−5. 

After clumping those SNPs using 500 kb flanking regions and an LD cutoff threshold r2 > 

0.1, 63 independent SNP signals were identified from 816 top variants. These 63 top SNPs 

were further merged into 59 non-overlapping loci containing 157 genes, which were then 
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assessed using the DEPICT algorithm for gene set and tissue enrichment18. Results shown in 

Supplementary Table 3 are not corrected for multiple testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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URL list

• Psychiatric Genomics Consortium (MDD, Bipolar Disorder, SCZ1, 

SCZ1+SWE, SCZ2 - https://www.med.unc.edu/pgc)

• International Genomics of Alzheimer’s Project (IGAP AD - http://

www.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php)

• International Parkinson Disease Genomics Consortium (IPDGC PD – 

www.pdgene.org)

• Global Lipids Genetics Consortium (GLGC LDL - http://csg.sph.umich.edu//

abecasis/public/lipids2013/).

• Social Science Genetics Association Consortium (SSGAC). The SSGAC 

phenotypes come from meta-analysis of self-report questionnaires and 

publicly available datasets (Subjective Well-Being, Neuroticism, Depressive 

Symptoms- http://biorxiv.org/content/early/2014/10/18/010512)
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Figure 1. 
Discovery phase meta-analysis of 23andMe self-report ascertainment of major depression 

(75,607 cases and 231,747 controls) and PGC MDD (9,240 cases and 9,519 controls). a) 

Manhattan plot of Discovery phase 23andMe GWAS. LD score regression calculated 

intercept was used for inflation correction. The threshold for genome-wide significance (p < 

5×10−8) is indicated by the purple line. Red dots represent SNPs with p-values smaller than 

the genome-wide significant threshold. Regions labeled in black denote loci that reached 

genome-wide significance in the join-analysis. b) Q-Q plot for the 23andMe MDD GWAS.

Hyde et al. Page 18

Nat Genet. Author manuscript; available in PMC 2017 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Regional association plots for genome-wide significant regions and secondary independent 

signals identified in each region. a) OLFM4 locus (rs12552), b) TMEM161B-MEF2C 
(rs10514299), c) MEIS2-TMCO5A locus (rs8025231), and d) NEGR1 locus (rs11209948). 

Secondary signals in TMEM161B-MEF2C and NEGR1 (rs454214, rs2422321 respectively) 

are shown. Purple diamonds represent smallest p-value for each locus.
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Table 1

Cohort Demographics for the primary and replication 23andMe datasets

Discovery Replication

MDD Controls MDD Controls

Total (n=) 75607 231747 45773 106354

Age, counts

under 30 12.1% 11.6% 13.8% 13.4%

30–45 29.9% 27.5% 29.8% 25.4%

45–60 28.8% 27.2% 29.6% 27.7%

60+ 29.3% 33.7% 26.7% 33.3%

Sex, count

Male 38.0% 56.2% 33.8% 52.6%

Female 62.0% 43.8% 66.2% 47.4%
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Table 3

MDD gene risk score association with secondary phenotypes. Gene risk score explained in Supplementary 

Table 6. MDD age-at-onset associations were conducted in subjects with MDD. All other trait associations 

were conducted in cases and controls and adjusted for case/control status from the general 23andMe research 

community.

Phenotype N effect (SE) pvalue FDR

Early-onset 94891 0.283 (0.095) 2.90E-03 3.20E-03

Age-of-onset 94891 −1.49 (0.372) 6.10E-05 8.40E-05

Anxiety 250528 0.323 (0.061) 1.00E-07 2.50E-07

Panic attacks 247167 0.319 (0.072) 9.80E-06 1.50E-05

Insomnia 248576 0.272 (0.051) 1.10E-07 2.50E-07

Taking an SSRI 52698 0.448 (0.162) 5.50E-03 5.50E-03

Medication for mental health 349287 0.421 (0.057) 1.40E-13 1.50E-12

Prescription sleep aid 350119 0.184 (0.05) 2.70E-04 3.20E-04

Prescription pain medication 346989 0.236 (0.041) 5.60E-09 3.10E-08

Overweight (BMI>27) 401552 0.212 (0.038) 3.00E-08 1.10E-07

Obesity (BMI>30) 401552 0.216 (0.045) 1.50E-06 2.70E-06
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Table 4

Cross-trait genetic correlation with 23andMe MDD (LD score regression). The observed heritability score for 

the 23andMe discovery cohort is h2= 0.038. Genetic correlation of the 23andMe Discovery MDD dataset with 

related psychiatric disorders (PGC MDD, PGC SZ1, PGC SCZ1+SWE, PGC SCZ2, PGC Bipolar Disorder), 

non-psychiatric neurological disorders (IGAP AD, IPDGC PD (2012)), and non-psychiatric and non-

neurological GWAS are shown (GLGC LDL). rg= genetic correlation

phenotype rg (se) nominal p-value cohort observed h2 significant after Bonferroni correction

PGC MDD 0.725 (0.093) 7.05E-15 0.128 *

PGC SCZ1 0.23 (0.042) 4.028E-08 0.543 *

PGC SCZ1+SWE 0.261 (0.036) 8.132E-13 0.411 *

PGC SCZ2 0.282 (0.03) 2.182E-21 0.371 *

PGC Bipolar Disorder 0.264 (0.049) 7.446E-08 0.350 *

IGAP AD −0.069 (0.071) 0.3331 0.039 ns

IPDGC PD (2012) 0.185 (0.091) 0.04123 0.200 ns

GLGC LDL 0.056 (0.031) 0.072 0.191 ns
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