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The cell cycle is a highly conserved and tightly regulated biological system that controls cellular
proliferation and differentiation. The cell cycle regulatory proteins, which include the cyclins, the
cyclin-dependent kinases (CDKs), and the CDK inhibitors, are critical for the proper temporal and
spatial regulation of cellular proliferation. Conversely, alterations in cell cycle regulatory proteins,
leading to the loss of normal cell-cycle control, are a hallmark of many cancers, including gastroin-
testinal cancers. Accordingly, overexpression of CDKs and cyclins and by contrast loss of CDK inhibitors,
are all linked to gastrointestinal cancers and are often associated with less favorable prognoses and
outcomes. Because of the importance that the cell cycle regulatory proteins play in tumorigenesis,
currently there is a broad spectrum of cell-cycle inhibitors under development that, as a group, hold
promise as effective cancer treatments. In support of this approach to cancer treatment, the growing
availability of molecular diagnostics techniques may help in identifying patients who have driving
abnormalities in the cell-cycle machinery and are thus more likely to respond to cell-cycle inhibitors. In
this review, we discuss the prevalence of cell-cycle abnormalities in patients with gastrointestinal
cancers and provide a preclinical and clinical overview of new agents that target cell-cycle abnor-
malities with a special emphasis on gastrointestinal cancers. (Am J Pathol 2015, 185: 1185e1197;
http://dx.doi.org/10.1016/j.ajpath.2015.01.008)
Unrestrained proliferation is a hallmark feature of gastroin-
testinal (GI) cancers.1 The molecular pathogenesis of GI
cancers is linked to oncogene activation such as RAS,
dysfunction of tumor suppressor genes such as adenomatous
polyposis coli, alternations in DNA repair pathways such as
mismatch repair gene abnormalities, and cell-cycle dysre-
gulation such as cyclin-dependent kinase (CDK) 4 over-
expression.1e3 Other events that play integral roles in the
development of GI cancers include inflammation and im-
mune dysregulation, and the interaction of these causative
factors was recently reviewed.3 Given the prevalence of cell-
cycle abnormalities in GI cancers, there is growing interest in
developing and testing inhibitors that target the cell cycle.1
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Overview of the Mammalian Cell Cycle

The cell cycle is a highly structured and regulated system,
composing of multiple regulatory, catalytic, and inhibitory
stigative Pathology.
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proteins that act to direct normal mammalian cell prolifer-
ation and differentiation. It is not surprising, therefore, that
the mechanisms that control normal cell division are
frequently altered in many diseases, and aberrant cell-cycle
control is a hallmark of most cancers.4 Cell division is
divided into two distinct stages, mitosis (M), in which the
cell prepares for and undergoes cell division,5 and inter-
phase, which is further divided into three subphases, G1, S,
and G2 (Figure 1). All phases of the cell cycle are controlled
primarily through the cyclic expression of the regulatory
cyclins and their catalytic partners, the CDKs, and inhibited
by the CDK inhibitors (CDKis).4,6 At least nine CDKs are
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Figure 1 Key regulators of the mammalian cell
cycle. The green plus signs represent positive
regulators of cell cycle progression, whereas the
red minus sign are cell cycle inhibitory proteins.
The yellow P represent phosphorylation events on
the Rb. Also shown are three CDK4/6 inhibitors
that are currently in various stages of clinical
development: PD-033299 (Pfizer, New York, NY),
LY2835219 (Eli Lilly, Indianapolis, IN), and LEE011
(Novartis, Basel, Switzerland). CDK, cyclin-
dependent kinase; Rb, retinoblastoma protein.
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described, although only five of them have defined roles in
the cell cycle6 (Table 1). CDK4/6 associates with the D-type
cyclins (D1, D2, and D3) to regulate cell-cycle progression
in the G1 phase.4,6 Similarly, the cyclin E/CDK2 complex
regulates the late G1 phase and the induction of DNA syn-
thesis in early S phase. CDK2 also associates with cyclin A
to control proper DNA replication and synthesis in the S
phase.7 As the cell-cycle progresses, cyclin A then associ-
ates with CDK1 to promote cell entry into the M phase. This
function is also aided by the activity of CDK7 and cyclin H.
CDKis include several families that differ on the basis of
their structure and target.8 Finally, CDK1 and cyclin B
function as the key mediators of mitotic entry.8
The Cell Cycle

The G1 or Gap 1 phase was originally described as the
period of time that occurred before the onset of DNA syn-
thesis (the S phase).9 Normal cells deprived of the proper
growth conditions arrest in a resting or G0 part of G1.

7 On
stimulation by mitogenic signals, these quiescent cells begin
to progress toward a major G1 checkpoint termed the re-
striction (R) point in G1. The R point is regulated by the
retinoblastoma 1 (Rb1) tumor suppressor gene. In its
hypophosphorylated state Rb binds to members of the E2F
family of transcription factors, most notably E2F1.7 This
Rb/E2F interaction suppresses transcription of critical E2F-
regulated cell-cycle genes through the recruitment of chro-
matin remodeling enzymes such as histone deacetylases.10

Early G1 progression is controlled by the D-family of
cyclins and their catalytic protein partners, CDK4 or CDK6.
Cyclin D (CCND1) gene expression and protein amounts are
1186
low in quiescent cells and are rapidly induced on stimulation
by growth-supportive conditions or through the activity of
many oncogenes.7 Cyclin D then dimerizes with CDK4 or
CDK6 to form a catalytically active protein complex. One of
the major substrates for the cyclin D/CDK4 or CDK6 com-
plex is Rb. The phosphorylation of Rb by the cyclin D/CDK
complex begins the stochastic inactivation of Rb and allows
the cell cycle to progress toward the R point of the cell cycle.
Once past the R point, cells become committed to entering
the S phase. The inactivation of Rb relieves its inhibitory
action on the transcription factor E2F, which thereby sup-
ports further progression through the cell cycle.7 E2F directs
the synthesis of cyclin E and CDK2 which further inactivates
Rb. It is now evident that E2F regulates the expression of a
variety of genes that mediate DNA replication, nucleotide
biosynthesis, and DNA repair activities such as DNA poly-
merase a, thymidine kinase, thymidylate synthase, ribonu-
cleotide reductase, and RAD51.9

To maintain proper early G1 regulation, the activity of the
cyclin D1/CDK4 or CDK6 complex is antagonized by
members of the INK4 family of CDKis. The INK4 family is
composed of p16INK4a, p15INK4b, p18INK4c, and p19INK4d,
which specifically inhibit the catalytic subunits of CDK4
and CDK6.9 Similarly, the CDK interacting protein/kinase
inhibitory protein (CIP/KIP) family of CDKis (p21Cip1,
p27Kip1, and p57Kip) are potent inhibitors of the E- and
A-type cyclins and their catalytic partners, CDK2 and
CDK1, and to a lesser extent of the CDK1/cyclin B complex
in G2.

3,8 Progression through late G1 and the induction of
DNA synthesis in S phase are induced by the increased
cyclin E protein amounts, and the resultant association with
CDK2, the primary catalytic partner of cyclin E. The ac-
tivity of the cyclin E/CDK2 complex is potentiated by
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Table 1 Cyclins, CDKs, and Their Inhibitors

Cell-cycle phase Cyclins and CDKs CDK inhibitors (manufacturer)

G1 Cyclin D1, D2, D3 þ CDK4,6 Flavopiridol* (Sanofi-Aventis, Bridgewater, NJ)
PD-0332991* (Pfizer, New York, NY)
P276-00* (Piramal Life Sciences Limited, Mumbai, India)
PHA-848125* (Nerviano Medical Sciences, Nerviano, Italy)
LY2835219* (Eli Lilly, Indianapolis, IN)
LEE011* (Novartis, Basel, Switzerland)
Fascaplysin (Sigma-Aldrich, St. Louis, MO)
Cynnamaldehydes (Sigma-Aldrich)
AZD5438* (Astra Zeneca, London, England)
BAY 100394* (Bayer, Barmen, Germany)
P1446A-05* (Piramal Life Sciences Limited)
PD183812 (Pfizer)
Pyrrolo-carbazoles, indolocarbazoles, tryaminopyrimidine, dioxobenzothiazoles

S Cyclin E þ CDK2
Cyclin A þ CDK2

Flavopiridol*
SNS-032* (Sunesis Pharmaceuticals, South San Francisco, CA)
Bryostatin-1* (Tocris Bioscience, Ellisville, MO)
Roscovitin*(Cyclacel Pharmaceuticals, Short Hills, NJ)
Dinaciclib* (SCH727965) (Merck, Whitehouse Station, NJ)
P276-00*
PHA-848125*
UCN-01* (Sigma-Aldrich)
BAY 100394*
Olomucine (Sigma-Aldrich)
Purvalanol A (Tocris Bioscience)
Aloisines (Enzo Life Sciences, Farmingdale, NY)
Indirubins (Enzo Life Sciences)
Hymenialdisine (Enzo Life Sciences)
SU 9516 (Tocris Bioscience)
AZD5438* (Astra Zeneca), CVT-313 (Enzo Life Sciences), butyrolactone I (Sigma-Aldrich),
pyrazolo-pyridine (Sigma-Aldrich), pyrazolo-quinazolines (Astra Zeneca), indenopyrazoles
(Bristol-Myers Squibb, New York City, NY), nitroso-pyrimidines (Sigma-Aldrich)

G2 Cyclin A þ CDK1 Flavopiridol*
AZD 5438*
UCN-01*
SNS-032*
Bryostatin-1*
Roscovitin*
Dinaciclib* (SCH727965)
BAY 100394*
Olomucine
Purvalanol A
Aloisines
Indirubins
SU 9516
CVT-313, butyrolactone, hymenialdisine, PHA-848125, pyrazolo-pyridine, pyrazolo-
quinazolines, indenopyrazoles, nitroso-pyrimidines

M Cyclin B þ CDK1

*Compounds that have entered clinical development.
CDK, cyclin-dependent kinase.

CDK Inhibitors
Cdc6,11 and this complex phosphorylates p27Kip1, further
facilitating the entry of cells into S phase.9 It is thought that
removal of p27Kip from the cyclin E/CDK2 complex is
essential for entry of cells into the S phase.7

CDK2 also forms a functional complex with cyclin A, a
major E2F target gene. The cyclin A/CDK2 complex is
necessary for proper DNA replication and synthesis in the S
phase.12 In late G2 and early M phase, cyclin A also
The American Journal of Pathology - ajp.amjpathol.org
associates with CDK1 to promote cell entry into the M
phase.13 This occurs in part through the activity of CDK7
and cyclin H which form a regulatory complex referred to as
the CDK-activating kinase.7 Finally, cell-cycle progression
through G2 into the M phase is controlled by the cyclin
B/CDK1 complex, a tightly regulated and nonredundant
cyclin/CDK complex that is required to promote the proper
traversing of the cell into M phase. Ubiquitin-mediated
1187
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Table 2 Cell-Cycle Abnormalities in Patients with Gastrointestinal Cancers

Malignancy Abnormality Prevalence Significance

Colon CDK4/6 overexpression15

Cyclin D2 overexpression16
Associated with APC loss and intestinal
proliferation

CDK4 overexpression15 74/74 specimens; 33/74 yielded
strong expression

Strong expression-associated with
worse prognosis

CDK2 overexpression17 86% in carcinoma cells; 28%
in adenomas

CDK1 overexpression18 Higher risk of distant metastasis (HR, 6.2)
Cyclin D1 overexpression19,20 55% of tumors Better overall mortality (HR, 0.74)
p16 overexpression15 73/74 specimens Better prognosis
Loss of p2721e23 10% tumors Worse prognosis; risk ratio of death, 2.9
p27 overexpression24 30% of tumors

Esophagus Chromosomal region for
CDK4 amplified25,26

10% Worse overall survival

CDK4þ6 amplification25,26 4/116 tumors Poor survival
CDK1 overexpression25,26 54% Poor prognosis
CDK2 overexpression26 56%
Cyclin D1 overexpression26 41% Poor prognosis
p27 overexpression26 Poor survival; higher grade tumors

Stomach CDK4 overexpression27 48% of 260 specimens
Cyclin D1 overexpression27 34% of specimens
Cyclin D2 overexpression27 30% of specimens Disease progression
Cyclin E overexpression27 44% of specimens
Low p27 expression27,28 62% Poor survival (RR, 2.64)
Loss p2129 Distant metastasis

Pancreas CDK4 overexpression19 50%e75%
Cyclin D1 overexpression16 68% Poor survival
p21 overexpression30,31 85%
p16 Loss19 83% Increased risk of early metastasis and

poor survival
HCC CDK4 overexpression24 73% Poor survival

Cyclin D1 overexpression24 33% Poor prognosis
Cyclin E overexpression24 36%
p16 expression24 90%

Biliary cancers Cyclin D122 62%
p16 loss22 31%e40% Poor prognosis

APC, adenomatous polyposis coli; CDK, cyclin-dependent kinase; HCC, hepatocellular carcinoma; HR, hazard ratio; RR, relative risk.

Mikhail et al
degradation of cyclin B1 is required for the cells to properly
progress through mitosis.7

As mentioned earlier, the dysfunction of the cell cycle
occurs in most human cancers as a result of aberrant cyclin
and CDK function.14 Therefore, targeting CDK is a poten-
tially effective strategy in developing cancer therapeutics
(Table 1).

Cell-Cycle Abnormalities in GI Tumors

Colon Cancer

To get a better understanding of the mechanisms of
tumorigenesis in GI cancers and to design better, more-
effective therapies, numerous studies have investigated the
alterations in cell-cycle regulation that occur in GI tumors
and the concomitant effects that these changes have on
tumor aggressiveness, drug and radiation sensitivity, and
overall patient outcome (Table 2). Perhaps, not surprisingly,
1188
the data underline the complexity of cell-cycle regulation
and the importance of knowing which pathways are altered,
on a patient-by-patient level, when designing therapeutic
regimens. For example, Cole et al32 found that cyclin D2
and CDK4/6 are overexpressed after APC loss in the in-
testinal epithelium which suggests that deregulation of
CDK4/6 is required for enterocyte proliferation and ade-
noma formation. In addition, Zhao et al33 evaluated paraffin
sections of 74 cases of colorectal carcinoma and found
stronger immunostaining of p16INK4a and CDK4 in the
cytoplasm of carcinomas than in adenomas and adjacent
normal tissue. Of the 74 specimens examined, 73 stained
positive for p16INK4a of which 53 showed a strong expres-
sion pattern. Prognosis was substantially better for tumors
with strong expression of p16INK4a. The expression of
p16INK4a and CDK4 was scored by multiplying the extent of
positivity and its intensity and by grading it on a scale of
0 to 12 where strong staining was defined as a score of 9 to
12. All 74 specimens showed CDK4 expression, but only 33
ajp.amjpathol.org - The American Journal of Pathology
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specimens showed strong expression. Stronger immuno-
staining for CDK4 was predictive of a worse prognosis
(P < 0.001). Conversely, Ogino et al34 conducted an
intriguing study to evaluate the prognostic relevance of
cyclin D1, independent of other confounding variables such
as p53, p21Cip1, p27Kip1, KRAS (alias Ki-ras), BRAF mu-
tation, microsatellite instability, the CpG island methylator
phenotype, and long-interspersed nuclear element-1 hypo-
methylation. Their cohort study of 602 patients with colon
cancer found that cyclin D1 was overexpressed in 55% of
tumors. Surprisingly, cyclin D1 overexpression was asso-
ciated with low cancer-specific mortality on multivariate
regression analysis [hazard ratio (HR), 0.57; 95% CI,
0.39e0.84; P Z 0.0048). A similar favorable trend was
observed for overall mortality (HR, 0.74; 95% CI,
0.57e0.98; P Z 0.036). These results indicate that cyclin
D1 expression in colon cancer tumors may be associated
with a favorable prognosis, a finding that was previously
reported35 but contradicts the common belief about the poor
prognosis of cyclin D1 and the observations by Zhao et al36

that reported the association of overexpression of the cyclin
D1 heterodimeric partner CDK4 with worse prognosis.

Yamamoto et al12 found that CDK2 was overexpressed in a
higher percentage of colon cancer tumor cells than of adenoma
cells (86% versus 28%), and Zeestraten et al37 found that
elevated expression of CDK1 in tumor specimens from 254
patients with stage II colon cancer correlated with higher risk of
distant metastasis (HR, 6.2; 95% CI, 1.44e26.9; P Z 0.012).
Moreover, CDK1 amounts were substantially elevated in
microsatellite-stable tumors. This finding may be a result of the
rigorous multivariate regression analysis conducted by the in-
vestigators or could be a statistical aberration. Loda et al38

examined a series of 149 primary human colorectal cancer
(CRC) specimens and determined that absence of the CDKi
p27Kip1 resulted in a risk ratio for death of 2.9 (P Z 0.003).
p27Kip1 expressionwas absent in 10% of tumors, low (�50%of
cells staining positive) in 60% of tumors, and high (�50% of
cells staining positive) in 30% of specimens. Median survival
was 69 months in tumors that lacked p27Kip1 expression versus
151 months in p27Kip1-positive tumors. These results indicated
that the lack of p27Kip1 expression conferred worse prognosis in
patients with CRC. Subsequent studies found that loss of
p27Kip1 expression (both nuclear and cytoplasmic) correlated
with microsatellite instability in patients with CRC,17 high-
lighting an association between loss of CDKi and tumorigen-
esis. The same group also described a statistically significant
association between cyclin D1 overexpression and microsatel-
lite instabilityehigh status (P � 0.02).39 In addition, others
have observed a positive association between p21Cip1 over-
expression and microsatellite instabilityehigh status.40

Gastroesophageal Cancer

In esophageal cancer a study conducted by Ismail et al41

evaluated a cohort of 116 patients and found that the
chromosomal region that contained CDK4 was amplified in
The American Journal of Pathology - ajp.amjpathol.org
10% of tumors and was associated with worse overall sur-
vival (P Z 0.019). Only 4 of 116 tumors showed amplifi-
cation of both CDK4 and CDK6, and this was associated
with poor survival (HR, 2.1; P Z 0.0008). Similarly, loss of
p27Kip1 expression correlated with higher grade (P < 0.001)
and poor survival (P Z 0.05).42 Takano et al,27 found that
CDK4 overexpression was detected by immunohistochem-
istry (IHC) in 48% of 260 gastric cancer cases. Cyclin D1,
D2, and E were overexpressed in 34%, 30%, and 44% of
cases, respectively. Overexpression of CDK4 and cyclin D2
and loss of p27 substantially correlated with tumor pro-
gression on univariate analysis.43 On multivariate analysis,
only cyclin D2 and p27Kip1 changes correlated with pro-
gression. In gastric cancer, Mori et al28 analyzed p27Kip1

expression in 138 patients. Low p27Kip1 expression was
present in 62% of tumors and correlated significantly with
increased tumor size, invasion outside the gastric wall, the
presence of lymph node metastasis, and higher stage. Loss
of p27Kip1 staining was independent of prognostic markers
for survival on multivariate analysis (relative risk, 2.64;
P < 0.01). Similar results were observed with p21Cip1. The
loss of p21Cip1 predicted increasing histologic grade, depth
of invasion, and distant metastasis in patients with gastric
cancer.29

Pancreatic Cancer

Cell-cycle abnormalities are frequently observed in
pancreatic cancer. Cyclin D1 overexpression was found in
68% of pancreatic cancer specimens with the use of IHC,28

consistent with the known induction of cyclin D1 by
oncogenic ras,15 a driver oncogene in pancreatic cancer. In
addition, Southern blot analyses revealed amplification of
the cyclin D1 coding region in 25% of the pancreatic cancer
specimens, and mRNA was overexpressed with RT-PCR in
82% of the examined tissue.16 Investigators have also re-
ported that cyclin D1 overexpression correlated with poor
survival (median survival, 18.1 months versus 10.5 months
for normal expression versus cycling D1 overexpression;
P < 0.01). Overexpression of CDK4 and CDK2 was noted
in approximately 10% of pancreatic intraepethelial
neoplasia (PanIN) 1B lesions. Although there was a pro-
gressive increase in higher grades of PanIN and invasive
cancer, the trend was not statistically significant. The me-
dian percentage of expression was 60% to 75% in carci-
noma cells.19 In pancreatic cancer, p21Cip1 overexpression is
also common and appears to be an early event in pancreatic
neoplasia. An analysis by Biankin et al44 found that p21Cip1

overexpression was present in 9% of normal pancreatic
ducts, 16% of PanIN1A lesions, 32% of PanIN1B lesions,
56% of PanIN2 lesions, and 85% of patients with pancreatic
adenocarcinoma (P < 0.01). Similarly, p16INK4a inactiva-
tion was observed in the majority (83%) of pancreatic
cancer tumors in a study conducted by Rozenblum et al.20 It
was also thought to be an early event in pancreatic tumor-
igenesis.18 Sasaki et al18 observed that partial loss of
1189
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p16INK4a expression was observed in 9 of 16 and 12 of 13
pancreatic adenoma and carcinoma samples, respectively. In
addition, low amounts of p16INK4a expression were associ-
ated with larger tumors, risk of early metastasis, and poor
survival.18

Hepatocellular Carcinoma

Several studies have evaluated the expression of cell-cycle
proteins in hepatocellular carcinoma (HCC) cells. A study
by Ito et al24 found that p21Kip1 was expressed when eval-
uated by IHC in 54 of 104 specimens. p21Kip1 expression
was substantially higher in cases of intrahepatic metastasis,
but no other correlation could be established between
p21Kip1 and the tumors’ clinicopathologic features. 16INK4a,
however, was expressed in 94 of 104 cases. The labeling
index of 16INK4a in HCC cells was lower in stages III or IV
than in stages I and II (36.5 � 26.8 versus 51.0 � 28.2;
P Z 0.121). The labeling index of p27Kip1 was overex-
pressed in HCC cells and was substantially decreased in
cases with portal invasion, poor differentiation, and larger
tumor size. Cyclin D1 was overexpressed in 34 of 104 HCC
specimens. Overexpression of cyclin D1 was associated
with higher Ki-67 and poor differentiation. Similarly, cyclin
E was overexpressed in 37 of 104 specimens, and its
overexpression was associated with higher Ki-67 and higher
stage.24 A study by Lu et al21 found that CDK4 was over-
expressed by IHC in 73% of 59 specimens. Overexpression
of CDK4 was an independent prognostic factor for poor
survival.

Biliary Cancers

Cell-cycle abnormalities are also common in biliary
neoplasm. Cyclin D1 overexpression was observed in 62%
of patients with intrahepatic cholangiocarcinoma. In addi-
tion, loss of p16INK4a and p27Kip1 was detected in 31% and
12% of tumors, respectively.22 Similarly, another study
found that p16INK4a expression was lost in 40% of extra-
hepatic biliary neoplasms and was associated with poor
prognosis.45 In gallbladder cancer, cyclin D1 over-
expression was detected in 41% of the examined specimens.
Cyclin D1 overexpression was significantly associated with
decreased overall survival (P < 0.05) in those patients.23

Genetic Alternations Affecting the Cell-Cycle
Components in GI Tumors

The association between genetic mutations and CDK over-
expression has been the focus of several studies. Grady et al46

found that CDK4 overexpression was found in colorectal tu-
mors that carry type II transforming growth factor-b receptor
mutations, a mutation that results in tumor microsatellite
instability. These results are important because approximately
15% of human colon cancers have microsatellite instability
1190
caused by this mutation46 and provided evidence that dereg-
ulation ofCDK4can be a consequence of transforminggrowth
factor-b receptor mutations. Similarly, inherited mutation of
CDKN2A (the gene that encodes p16INK4a)25 is responsible for
familial cutanenous melanoma and was associated with an
increased risk of pancreatic cancer in families that harbor the
mutation. The CDKN2A gene is located on chromosome 9p,
the most frequently inactivated gene in pancreatic cancer.47

Loss of p16INK4a in pancreatic cancer can also occur through
homozygousdeletion (40%), single allelic loss associatedwith
a mutation in the second allele (40%), and promoter hyper-
methylation (15%).47 TheCDKN2A gene was also found to be
inactivated in 40% of colon cancers.48 The inactivation of
CDKN2Awas thought to be secondary to de novomethylation
of 50 CpG island of the gene.30 Cyclin D1 protein over-
expression is rather common in CRC.49 The mechanism of
cyclin D1 overexpression is thought to be secondary to tran-
scription activation of the CCND1, the gene coding for cyclin
D1. A study by Bondi et al,31 however, found that extra gene
copies of cyclin D1 were seen in 50% of 219 colon adeno-
carcinoma tumors. Another study suggested copy number
changes, predominately gains (7.6%) and rarely amplifications
(2.5%), may be associated with the increase in the cyclin D1
expression.31 These results suggest that several mechanisms
may contribute to the overexpression of cyclin D1 in patients
with CRC. Taken together, these studies suggest cell-cycle
abnormalities occur frequently in GI tumors. It appears that
overexpression of CDK and cyclins and by contrast loss of
CDKis such as p21Cip1 and p27Kip1 are associated with less
favorable tumor phenotypes and poor prognosis. Therefore,
targeting the cell cycle represents a promising treatment
modality and perhaps identifying patients who have abnor-
malities in the cell-cycle machinery, either through IHC or
genetic sequencing, may enrich the population of patients
most likely to respond to treatment with agents that target the
cell-cycle abnormalities. Currently, many cell-cycleetargeting
agents are in various stages of clinical development
(Table 1).

Preclinical Data for Cell-Cycle Inhibitors in
GI Tumors

Colon Cancer

Preclinical models have evaluated the use of pharmacologic
CKDis in solid tumors and GI malignancies.50,51 PD-0332991
(palbociclib; Pfizer, New York, NY) is an orally administered,
highly specific inhibitor of CDK4 and CDK6. In mice
bearing Colo-205 human colon carcinoma, PD-0332991
produced marked tumor regression.50 With 14 days of
therapy at a dose of 150 mg/kg, there was a tumor growth
delay of 50 days and greater than on log of tumor-cell kill.
Retreatment of the tumors with PD-0332991 was not
associated with development of resistance. As expected
from a CDK4/6 inhibitor, PD-0332991 administration
eliminated phosphorylated Rb, down-regulated genes
ajp.amjpathol.org - The American Journal of Pathology
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regulated by E2F, and caused a G1 cell-cycle arrest.
Conversely, PD-0332991 was not active against Rb-
negative tumors. Similarly, Yamamoto et al12 evaluated
the use of butyrolactone I, a specific CDK2 inhibitor, in
four colon cancer cells lines (HCT116, LoVo, HT29, Colo
320DM). Butyrolactone I inhibited proliferation of the four
colon cancer cell lines and induced apoptosis in the LoVo cell
line with induction of p53. Another CDK2 inhibitor, SU 9516
(Tocris Bioscience, Ellisville, MO), was investigated by Lane
et al52 in human colon cancer cell lines (RKO, SW480, and
Colo250). Administration of SU 9516 resulted in selective
inhibition of CDK2 and either a G0 to G1 or a G2 to M arrest.
A novel pan-CDK inhibitor RGB 286199 was also investi-
gated in human colon carcinoma cell line HCT-116.53 Cell
lines treated with RGB 286199 showed loss of Rb phos-
phorylation, accompanied by loss of cyclin A protein. In vivo,
RGB 286199 results in cell-cycle arrest and loss of viability.
CDKi combination with DNA-damaging agents was also
investigated in preclinical models. Takagi et al54 found that
the CDKi SU 9516 reduced the expression of thymidylate
synthase in human CRC DLD-1 cells. This effect enhanced the
sensitivity of colon cancer cells to 5-fluorouracil (5-FU) and
suggested that a CDKi/5-FU combination may be a promising
future treatment option. Correspondingly, Pishvaian et al42

found that the combination of PD-0332991 and oral 5-FU
(capecitabine) resulted in synergistic anticancer activity in
mice bearing HCT-116 colon cancer xenografts. Similarly
Ziemke et al55 found that the combination of PD-0332991 and
multiple mitogen-activated protein extracellular signal-related
kinase inhibitors was associated with higher frequency of
regression of colon cancer cell lines compared with either agent
alone. These data suggest that combination therapy, including
cell-cycle inhibitors, may be a promising strategy in treating
patients with CRCs.

Hepatocellular Carcinoma

PD-0332991 was also evaluated in human hepatocellular car-
cinoma cells Huh7, HepG2, and Hep3B and xenograft models
that harbor Rb knockdown and mice with liver-specific Rb
deletion.51 PD-0332991 resulted in arrest of cell-cycle pro-
gression in hepatoma cells, irrespective of Rb status. Themodel
suggested that cell-cycle arrest can be achieved in Rb-deficient
tumors exposed to CDK4/6 inhibitors. Pishvaian et al56 found
that most hepatoma cell mouse models exhibit increased
expression of cyclin D1 and CDK4. Moreover, in human HCC
cell lines, PD-0332991 inhibited cell growth by 30%. This was
associated with a decrease in cyclin E expression. Finally,
PD-0332991 antitumor effects were additive to doxorubicin in
HepG2 xenografts. These results suggest that CDK4/6 inhibi-
tion may be a feasible treatment for HCC.

Gastroesophageal Carcinoma

Investigators have combined flavopiridol (Sanofi-Aventis,
Bridgewater, NJ) with radiation therapy in a human
The American Journal of Pathology - ajp.amjpathol.org
esophageal adenocarcinoma (SEG-1) cell model.57 This
model showed that flavopiridol given before or after radiation
therapy exhibits a radiosensitizing effect. The cells were
arrested at the G1 phase of the cell cycle. Moreover, fla-
vopiridol enhanced radiation-induced apoptosis and inhibited
transcription activity as evidence by reduction in RNA po-
lymerase II. These results suggested that CDKis can poten-
tially be combined with radiation therapy as radiosensitizers.
Moreover, PD-0332991 was shown to have potent anti-
proliferative activity at low nanomolar range in multiple
gastric cancer cell lines. Of note, cyclin D1- and HER2-
amplified cells exhibited greater sensitivity to this agent. In
addition, combination therapy of trastuzumab and PD-
03329991 indicated substantial synergy in HER2-amplified
gastric cancer models.58

Pancreatic Cancer

Studies in pancreatic cancer cell lines suggested that the CDKi
flavopiridol (alvocidib) has synergistic activity when combined
with gemcitabine, a commonly used chemotherapeutic agent in
pancreatic cancer.59 The observed synergy is mediated through
up-regulation of RR-M2, a DNA enzyme involved in DNA
synthesis and gemcitabine resistance that is regulated by E2F.
Similarly, another study found that treatment of pancreatic
cancer cell lines with E2F-1 virus and roscovitine (Seliciclib;
CYC202; Cyclacel Pharmaceuticals, Short Hills, NJ), a CDK2,
CDK7, and CDK9 inhibitor, results in an additive effect on cell
growth inhibition and induction of apoptosis.60 In addition, in-
vestigators have reported that roscovitine can effectively block
the proliferation of human pancreatic cancer cells, regardless of
their mutational status of KRAS, p53, or p16 genes.61
Clinical Data for Cell-Cycle Inhibitors in
GI Tumors

Flavopiridol remains the most extensively studied CDKi in
solid tumors and specifically in GI cancers. Flavopiridol
inhibits CDK1, CDK2, CDK4, CDK7, and CDK9 by their
respective ATP-binding sites.62 Flavopiridol also has the
ability to enhance apoptosis induced by chemotherapy.62 It
is thought that the proapoptotic effect of flavopiridol is
mediated through the inhibition of antiapoptotic genes at the
transcription level.63 This effect is often sequence depen-
dent. As an example, tumor cell killing is enhanced when
flavopiridol is administered after exposure to taxanes.64

Flavopiridol was therefore investigated in combination
with chemotherapy agents. For example, flavopiridol was
tested in combination with irinotecan by Shah et al65 in a
phase 1 trial that involved 45 patients with advanced ma-
lignancies. Irinotecan was administered first, followed 7
hours later by escalating doses of flavopiridol administered
over 1 hour weekly 4 weeks on/2 weeks off. The recom-
mended phase 2 dose was irinotecan 100 mg/m2/flavopiridol
60 mg/m2 or irinotecan 125 mg/m2/flavopiridol 50 m/m2. At
1191
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irinotecan dose of 125 mg/m2/flavopiridol 60 mg/m2, dose-
limiting hyperbilirubinemia, fatigue, and myelosuppression
were observed. Three patients had a partial response (PR),
and 36% of patients had prolonged stable disease (SD) (>6
months). Of the 27 patients with CRC, 14 (52%) had SD, 1
had PR, and 12 patients (44%) had progressive disease. The
median duration of disease control (PR þ SD) was 6.8
months. Flavopiridol was also evaluated in a phase 1 trial of
48 patients with advanced solid tumors in combination with
FOLFOX (5-FU, leucovorin, and oxaliplatin).66 Patients
were treated with a biweekly sequential regimen of fla-
vopiridol at a starting dose of 40 mg/m2 over 1 hour,
concomitant oxaliplatin at a starting dose of 60 mg/m2 and
leucovorin, followed by a bolus of 5-FU at a fixed dose of
400 mg/m2 and continuous 5-FU at a starting dose of 1800
m/m2. The maximum tolerable doses (MTDs) were fla-
vopiridol 70 mg/m2, oxaliplatin 85 mg/m2, and 5-FU 1800
mg/m2 continuous infusion. Encouraging clinical activity
was noted in platinum-resistant germ cell tumors. Responses
were also observed in pancreatic and gastric cancers. A
similar regimen was evaluated by Meng et al67 in a phase 1
trial that involved 19 patients with advanced solid tumors.
The regimen included a fixed 40-mg/m2 dose of flavopiridol
administered over 1 hour concurrently with escalating doses
of oxaliplatin given as part of a modified FOLFOX6
regimen given at standard doses every 2 weeks. Grade 3
hyponatremia and syncope were encountered at an oxali-
platin dose of 85 mg/m2 and 5-FU dose of 1200 mg/m2 per
day. This regimen was clinically active with one PR in a
patient with pancreatic cancer and SD in gastric cancer, anal
cancer, and CRC. Flavopiridol was also evaluated in a phase
1 trial in combination with standard dose of 5-FU and iri-
notecan (FOLFIRI) every 2 weeks.68 Two assessments of
the MTD were planned. MTD1 was evaluated with fla-
vopiridol administered over 1 hour, and MTD2 was evalu-
ated with flavopiridol as a 30-minute bolus followed by a
4-hour infusion. Seventy-four patients were treated, 63
were evaluable for toxicity and 56 for response. MTD1 of
flavopiridol was 80 mg/m2 and the dose-limiting toxicities
(DLTs) were diarrhea, fatigue, neutropenia, and neuropathy.
MTD2 was a bolus of 35 mg/m2 and 35 mg/m2 over 4 hours.
DLTs were diarrhea, neutropenia, and fatigue. Of 25 pa-
tients with CRC, 11 had SD lasting >3 months (median, 6
months; range, 4.2 to 15.4 months), despite prior progres-
sion on �1 irinotecan-containing regimen. Six of those
patients had significant reduction (36% to 78%) in their
carcinoembryonic antigen amounts. One patient with small
bowel cancer had a PR that lasted 10.3 months.

Phase 2 trials of flavopiridol include a single-agent study
with flavopiridol in patients with previously untreated
advanced CRC.69 Twenty patients were treated with fla-
vopiridol at a dose of 50 mg/m2 per day as a 72-hour
continuous infusion every 2 weeks. No objective re-
sponses were observed, and five patients had SD that lasted
a median of 7 weeks, the median survival was 65 weeks,
and the median time to progression was 8 weeks. The most
1192
commonly occurring toxicities were diarrhea (21%), fatigue
(11%), and hyperglycemia (11%). A similar regimen of
flavopiridol was investigated in 16 patients with advanced
gastric cancer. There were no objective responses. Grade 3
or 4 fatigue and diarrhea occurred in 27% and 20% of
patients, respectively. An unexpectedly high number of
patients (5 of 14 evaluable patients) developed central linee
associated venous thrombosis. This study added more evi-
dence that flavopiridol has minimal activity as a single agent.
Attention was therefore shifted to the role of flavopiridol in
combination with other chemotherapeutic agents. Flavopir-
idol was evaluated in phase 2 trials in combination with
docetaxel in 10 patients with refractory metastatic pancreatic
cancer.70 The regimen included docetaxel 35 mg/m2 fol-
lowed by flavopiridol 80 mg/m2 on days 1, 8, and 15 of a 28-
day cycle. Three patients had SD, and median survival was
4.2 months. Adverse events (AEs) included transaminitis
(11%), grade 4 neutropenia, grade 3 fatigue, and grade 3
diarrhea. This regimen was thought to have minimal activity
in patients with pancreatic cancer. Although preclinical
studies of flavopiridol sparked optimism about the role of
flavopiridol as a new option for cancer treatment, clinical
studies to date have not found that it possesses any mean-
ingful activity as single agent or combination in GI tumors,
likely because of the substantial toxicity that may be a result
of pan-CDK inhibition and off-target effects.
PD-0332991 has gained interest because it is a selective

CDK4/6 inhibitor. It was investigated in two phase 1 clin-
ical trials. PD-0332991 was administered for 14 days,
followed by 7 days off treatment to 33 patients with
Rb-positive advanced solid cancers.71,72 Six patients had
colon cancer. The MTD was 200 mg daily. Six patients
(18%) had DLTs. Treatment-related AEs were encountered
in 29 patients (88%). These AEs were generally mild to
moderate. The most common nonhematologic AEs were
fatigue, nausea, diarrhea, constipation, epistaxis, and rash.
Grade 3 and 4 hematologic toxicity included neutropenia
(24%), leukopenia (21%), thrombocytopenia (9%), and
anemia (3%). No responses were reported in patients with
GI malignancies. A second phase 1 dose escalation trial was
conducted with the use of a 21 days on, 7 days off schedule.
Forty-one patients were enrolled, including three with CRC,
in six-dose escalation cohorts in a standard 3 þ 3 fashion.
The MTD was 125 mg. Five patients (12%) experienced
DLTs. Neutropenia was the only DLT. After cycle 1, neu-
tropenia, leukopenia, and anemia occurred in five patients
(12%), one patient (2%), and three patients (7%), respec-
tively. The most common nonhematologic AEs were fa-
tigue, nausea, and diarrhea. Of the patients with GI cancers,
SD was observed in one patient with appendiceal carcinoma
treated at the 100-mg dose until the time of data cutoff (39
cycles).
PD-0332991 was investigated in a phase 2 trial in patients

with HCC. Patients with refractory HCC received PD-
0332991 at a dose of 125 mg daily for 3 weeks with a
1-week break. Preliminary results from 10 patients indicated
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Predictive Biomarkers for CDK4/6 Inhibitors

Author Agent Setting (n) Biomarker Outcome

Wainberg58 PD-0332991 Gastric cancer cell lines (17) Cyclin D1 amplification [Sensitivity
Cyclin E [Resistance

Colon cancer cell lines (27) p16 loss [Resistance
p21 gain [Resistance

Konecny78 PD-0332991 Ovarian cancer cell lines (40) p16 low expression [Sensitivity
Finn79 PD-0332991 Breast cancer cell line (47) p16 decrease [Sensitivity

Cyclin D1 increase [Sensitivity
pRb [Sensitivity

von Euw77 PD-0332991 Melanoma cell lines Hedgehog pathway activation [Resistance

CDK, cyclin-dependent kinase; pRb, phosphorylated retinoblastoma.

CDK Inhibitors
that the most common toxicities were neutropenia and
thrombocytopenia. Three patients developed grade 3 neu-
tropenia that required treatment delay. Preliminary efficacy
results were encouraging with four patients remaining on
the trial with the best progression-free survival being 8
months.73 Of note, other CDK4/6 inhibitors, LY2835219
(Eli Lilly, Indianapolis, IN) and LEE011 (Novartis, Basel,
Switzerland),74e76 have also entered clinical development
and have shown promising activity in breast cancer, lung
cancer, and other solid tumors. In a preliminary report, LEE-
01 has demonstrated encouraging activity and safety profiles
in a phase 1 study in patients with advanced solid tumors.75

Furthermore, a preliminary report of LY2835219 suggested
that it had a favorable safety profile as monotherapy in
metastatic breast cancer and in combination with fulvestrant
in hormone-receptorepositive breast cancer.76 As mono-
therapy, LY2835219 had promising clinical activity [eight
confirmed and three unconfirmed PR (n Z 47)]. Clinical
activity of the combination was not reported, however,
because of the preliminary nature of the report. Similarly, a
phase 1 study of LY2835219 in 49 patients with advanced
nonesmall cell lung cancer indicated an encouraging safety
profile. Disease control rate was 51% with one confirmed
PR.74 To date, this is the most encouraging data to indicate
that cell-cycle inhibitors may have promising antitumor
activity and an acceptable safety profile.

Emerging evidence suggests that certain aberrations in
cell-cycle proteins could predict clinical outcome of patients
treated with CDK4/6 inhibitors58,77e79 (Table 3). These
data, although preliminary, may allow for selection of
subgroups of patients that may preferentially benefit from
treatment with CDKis.

BAY 1000394 (Bayer, Barmen, Germany) is also a pan-
CDKi that targets CDK1, CDK2, CDK4, CDK7, and CDK9
but is available in tablet form and as an oral solution. A
recent report of a phase 1 trial of BAY 1000394 as an oral
solution suggested limited tolerability with a regimen of 28
days on/14 days off. The main DLTs were hyponatremia
and hypokalemia. Four of 10 patients, however, had SD,
including a patient with esophageal cancer who had SD for
2.5 to 3 months.80 Interestingly, when the same agent was
administered in tablet form with the regimen of 3 days on/4
The American Journal of Pathology - ajp.amjpathol.org
days off, it showed acceptable tolerability.81 Main grade 3
AEs were asthenia, nausea, and vomiting. SD was observed
in 9 of 34 patients, including 1 patient with chol-
angiocarcinoma who had SD that lasted for 5 months.

UCN-01 (Sigma-Aldrich, St. Louis, MO) is another cell-
cycle inhibitor that has gained interest recently.82 p53-
deficient cells depend on activation of Chk1 pathway for
G2 cell-cycle arrest and DNA repair after DNA damage.83

This pathway represents a survival pathway for tumor cells.
UCN-01 inhibits Chk1 and Chk2 kinases, thereby leading
cells to exit the G2 phase before DNA repair can be
completed.82 This mechanism forces cells to undergo
apoptosis. The clinical utility of UCN-01 was complicated by
the development of UCN-01erelated hyperglycemia.84 This
complication was reported in patients with and without dia-
betes mellitus. Grade 3 and 4 hyperglycemia, occasionally
requiring hospitalization, was reported in patients who
received UCN-01. The cause of hyperglycemia remains un-
clear. There is evolving evidence, however, that inhibition of
the phosphatidylinositol-3 kinase signaling protein AKT and
downstream targets of the insulin receptor are responsible for
the UCN-01einduced hyperglycemia.85 Other Chk1 in-
hibitors, such as CHIR124 and 17-AAG, are currently in
clinical development.86,87 They differ structurally from
UCN-01 and have shown encouraging preclinical data.

Bryostatin (Tocris Bioscience) is a cell-cycle inhibitor
that induces p21Kip1, resulting in inactivation of CDK2 and
inhibition of tumor cell growth.87,88 Phase 1 studies of
bryostatin found that myalgia is the DLT.88,89 Phase 2
studies of bryostatin in GI cancers were conducted.90,91 The
combination of bryostatin with paclitaxel was explored in
pancreatic cancer and proved to be ineffective. The
paclitaxel/bryostatin combination was also explored in
esophageal cancer. This regimen was, however, found to be
associated with grade 3/4 myalgia in 50% of patients. In
another phase 2 clinical trial, bryostatin did not find any
substantial single-agent clinical activity in colon cancer.

R-roscovitine (Seliciclib; CYC202; Cyclacel Pharma-
ceuticals) is also an inhibitor of CDK2, CDK7, and CDK9.
One phase 1 trial was completed and found that nausea,
vomiting, asthenia, and hypokalemia were DLTs.92 One
patient with HCC experienced a PR.
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Other CDK2 inhibitors include SNS-032 (Sunesis Phar-
maceuticals, South San Francisco, CA)93 (formerly BMS-
387032) and imidazopyridines94 that are undergoing early
phases of development. Several other new cell-cycle in-
hibitors are currently in various stages of development
(Table 1).
Conclusion and Future Directions

It is well documented that abnormal cell division is the
hallmark of the initiation and progression of cancers. The
role of cell-cycle inhibition as an effective and durable
cancer treatment modality remains yet to be fully elucidated,
in part because of the complexity of the cell cycle and the
known compensatory function of some of the cyclins and
CDKs.88 Although cell-cycle abnormalities are commonly
observed in GI tumors, to date, efficacy of CDKis was at
best modest in these tumors. Flavopiridol has been the most
extensively studied CDKi and has shown disappointing
results both alone and in combination therapy. Nevertheless,
other cell-cycle inhibitors may prove to be clinically useful
as monotherapy or in various combinations. PD-0332991
has shown encouraging activity as monotherapy in lip-
osarcoma and nonesmall cell lung cancer and in combi-
nation with letrozole in breast cancer.95e97 Further research
is also needed to explore the use of cell-cycle inhibitor-
containing combinations in GI tumors, to identify the
patients most likely to benefit, and to determine the mech-
anisms of resistance to this novel class of drugs. Finally, one
of the most important obstacles to the effective application
of personalized medicine has been the inability to perform
meaningful testing for drug sensitivity on the patient’s own
tumor cells. This unmet need was recently addressed by a
powerful new epithelial cell culture technique developed
at Georgetown University and the National Institutes of
Health. Termed conditionally reprogrammed cells, this
approach allows for the rapid and prolonged culturing of
primary epithelial cells and is now applied to a wide variety
of both normal epithelium and epithelial cancers.98e100 In
fact, we have recently applied the conditionally reprog-
rammed cell approach to successfully diagnose and treat a
patient who was succumbing to a rare, malignant form of
recurrent respiratory papillomatosis.101 The patient had
endured 350 operations to clear his respiratory track of
cancerous obstructions and had failed numerous other at-
tempts at therapeutic intervention. Within 14 days of initial
culturing of the patient’s normal and malignant cells, the
causative underpinning of the disease was defined, and,
importantly, a drug approved by the US Food and Drug
Administration was identified (vorinostat) which selectively
killed the tumor cells and not the normal epithelium at
therapeutic doses. The patient responded extremely well to
vorinostat treatment and remains alive to date, a major
advancement because the window for surgical intervention
was closing as a result of the scarring associated with the
1194
previous operations. Obviously, much emphasis is being
placed on validating the possibility of a broad application of
this approach to many tumor types, including GI cancers,
and we have recently reported on the use of prostate-derived
conditionally reprogrammed cells for the testing of novel
therapeutic compounds.100,102 Should the conditionally
reprogrammed cell approach continue to prove to be a
robust method for drug sensitivity testing, the possibility
exists that patient outcomes, similar to those described for
the papillomatosis patient above, may become a reality for
rapidly testing a GI patient’s tumor cells against a battery of
CDKis and other therapeutic compounds.
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