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Summary

Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis 

of high dimensional datasets. Among methods for clustering, hierarchical approaches have 

enjoyed substantial popularity in genomics and other fields for their ability to simultaneously 

uncover multiple layers of clustering structure. A critical and challenging question in cluster 

analysis is whether the identified clusters represent important underlying structure or are artifacts 

of natural sampling variation. Few approaches have been proposed for addressing this problem in 

the context of hierarchical clustering, for which the problem is further complicated by the natural 

tree structure of the partition, and the multiplicity of tests required to parse the layers of nested 

clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance 

in hierarchical clustering which addresses these issues. The approach is implemented as a 

sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical 

justification is provided for our approach, and its power to detect true clustering structure is 

illustrated through several simulation studies and applications to two cancer gene expression 

datasets.
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1. Introduction

Clustering describes the unsupervised learning task of partitioning observations into 

homogenous subsets, or clusters, to uncover subpopulation structure in a dataset. As an 

unsupervised learning task, cluster analysis makes no use of label or outcome data. A large 

number of methods have been proposed for clustering, including hierarchical approaches, as 

well as non-nested approaches, such as K-means clustering. Since the work of Eisen et al. 

(1998), hierarchical clustering algorithms have enjoyed substantial popularity for the 

exploratory analysis of gene expression data. In several landmark papers that followed, these 

methods were successfully used to identify clinically relevant expression subtypes in 

lymphoma, breast, and other types of cancer (Perou et al., 2000; Bhattacharjee et al., 2001).

While non-nested clustering algorithms typically require pre-specifying the number of 

clusters of interest, K, hierarchical algorithms do not. Instead, hierarchical approaches 

produce a single nested hierarchy of clusters from which a partition can be obtained for any 

possible choice of K. As a result, hierarchical clustering provides an intuitive way to study 

relationships among clusters not possible using non-nested approaches. The popularity of 

hierarchical clustering in practice may also be largely attributed to dendrograms, a highly 

informative visualization of the clustering as a binary tree.

While dendrograms provide an intuitive representation for studying the results of 

hierarchical clustering, the researcher is still ultimately left to decide which partitions along 

the tree to interpret as biologically important subpopulation differences. Often, in genomic 

studies, the determination and assessment of subpopulations are left to heuristic or ad hoc 
methods (Verhaak et al., 2010; Wilkerson et al., 2010; Bastien et al., 2012). To provide a 

statistically sound alternative to these methods, we introduce statistical Significance of 

Hierarchical Clustering (SHC), a Monte Carlo based approach for assessing the statistical 

significance of clustering along a hierarchical partition. The approach makes use of the 

ordered and nested structure in the output of hierarchical clustering to reduce the problem to 

a sequence of hypothesis tests descending the tree. Each test is formulated such that the 

procedure may be applied even in the high-dimension low-sample size (HDLSS) setting, 

where the number of variables is much greater than the number of observations. This is of 

particular importance, as the number of measured variables in genomic studies continues to 

grow with advances in high-throughput sequencing technologies, such as RNA-seq (Marioni 

et al., 2008; Wang et al., 2009). A stopping rule along the sequence of tests is also provided 

to control the family-wise error rate (FWER) of the entire procedure.

Several approaches have been proposed to address the question of statistical significance in 

the non-nested setting. The Statistical Significance of Clustering (SigClust) hypothesis test 

was introduced by Liu et al. (2008) for assessing the significance of clustering in HDLSS 

settings using a Monte Carlo procedure. While well-suited for detecting the presence of 

more than a single cluster in a dataset, the approach was not developed with the intention of 

testing in hierarchical or multi-cluster settings. This approach is described in greater detail in 

Section 2.2. More recently, Maitra et al. (2012) proposed a bootstrap based approach 

(BootClust) capable of testing for any number of clusters in a dataset. However, in addition 

to not directly addressing the hierarchical problem, their approach has not been evaluated in 
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the important HDLSS setting. As such, neither approach provides a solution for handling the 

structure and multiplicity of nested tests unique to hierarchical clustering.

For assessing statistical significance in the hierarchical setting, Suzuki and Shimodaira 

(2006) developed the R package pvclust. The hypothesis tests used in pvclust are based 

on bootstrapping procedures originally proposed for significance testing in the context of 

phylogenetic tree estimation (Efron et al., 1996; Shimodaira, 2004). Since the procedure is 

based on a nonparamateric bootstrapping of the covariates, while pvclust can be used in 

the HDLSS setting, it cannot be implemented when the dataset is of low-dimension. In 

contrast, SHC may be used in either setting. To our knowledge, no other approaches have 

been proposed for assessing the statistical significance of hierarchical clustering.

The remainder of this paper is organized as follows. In Section 2 we first review hierarchical 

clustering and describe the SigClust hypothesis test of Liu et al. (2008). Then, in Section 3, 

we introduce our proposed SHC approach. In Section 4, we present theoretical justifications 

for our method under the HDLSS asymptotic setting. We then evaluate the performance of 

our method under various simulation settings in Section 5. In Section 6, we apply our 

method to two cancer gene expression datasets. Finally, we conclude with a discussion in 

Section 7. The SHC procedure is implemented in R, and is available at http://github.com/

pkimes/.

2. Clustering and Significance

We begin this section by first providing a brief review of hierarchical clustering. We then 

describe the K-means based SigClust approach of Liu et al. (2008) for assessing significance 

of clustering in HDLSS data.

2.1 Hierarchical Clustering Methods

Given a collection of N unlabeled observations,  in p dimensions, algorithms 

for hierarchical clustering estimate all K = 1 ,…, N partitions of the data through a 

sequential optimization procedure. The sequence of steps can be implemented as either an 

agglomerative (bottom-up) or divisive (top-down) approach to produce the nested hierarchy 

of clusters. Agglomerative clustering begins with each observation belonging to one of N 
disjoint singleton clusters. Then, at each step, the two most similar clusters are joined until 

after (N − 1) steps, all observations belong to a single cluster of size N. Divisive clustering 

proceeds in a similar, but reversed manner. In this paper we focus on agglomerative 

approaches which are more often used in practice.

Commonly, in agglomerative clustering, the pairwise similarity of observations is measured 

using a dissimilarity function, such as squared Euclidean distance , Manhattan distance 

(L1), or (1 − |Pearson corr.|). Then, a linkage function is used to extend this notion of 

dissimilarity to pairs of clusters. Often, the linkage function is defined with respect to all 

pairwise dissimilarities of observations belong to the separate clusters. Examples of linkage 

functions include Ward’s, single, complete, and average linkage (Ward, 1963). The clusters 

identified using hierarchical algorithms depend heavily on the choice of both the 

dissimilarity and linkage functions.
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The sequence of clustering solutions obtained by hierarchical clustering is naturally 

visualized as a binary tree, commonly referred to as a dendrogram. Figure 1A shows a 

simple example with five points in ℝ2 clustered using squared Euclidean dissimilarity and 

average linkage. The corresponding dendrogram is shown in Figure 1B, with the observation 

indices placed along the horizontal axis, such that no two branches of the dendrogram cross. 

The sequential clustering procedure is shown by the joining of clusters at their respective 

linkage value, denoted by the vertical axis, such that the most similar clusters and 

observations are connected near the bottom of the tree. The spectrum of clustering solutions 

can be recovered from the dendrogram by cutting the tree at an appropriate height, and 

taking the resulting subtrees as the clustering solution. For example, the corresponding K = 2 

solution is obtained by cutting the dendrogram at the gray horizontal line in Figure 1B.

2.2 Statistical Significance

We next describe the SigClust hypothesis test of Liu et al. (2008) for assessing significance 

of clustering. To make inference in the HDLSS setting tractable, SigClust makes the 

simplifying assumption that a cluster may be characterized as a subset of the data which 

follows a single Gaussian distribution. While no universal definition for a “cluster” exists, 

the Gaussian definition is often used as a reasonable approximation (Mclachlan and Peel, 

2000; Fraley and Raftery, 2002). While potentially restrictive, the Gaussian definition and 

SigClust approach have provided sensible results in real high-dimensional datasets (Verhaak 

et al., 2010; Bastien et al., 2012). Therefore, to determine whether a dataset is comprised of 

more than a single cluster, the approach tests the following hypotheses:

H0: the data follow a single Gaussian distribution

H1: the data follow a non-Gaussian distribution.

The corresponding p-value is calculated using the 2-means cluster index (CI), a statistic 

sensitive to the null and alternative hypotheses. Letting Ck denote the set of indices of 

observations in cluster k and using  to denote the corresponding cluster mean, the 2-

means CI is defined as

(1)

where TSS and SSk are the total and within-cluster sum of squares. Smaller values of the 2-

means CI correspond to tighter clusters, and provide stronger evidence of clustering of the 

data. The statistical significance of a given pair of clusters is calculated by comparing the 

observed 2-means CI against the distribution of 2-means CIs under the null hypothesis of a 

single Gaussian distribution. Since a closed form of the distribution of CIs under the null is 

unavailable, it is empirically approximated by the CIs computed for hundreds, or thousands, 

of datasets simulated from a null Gaussian distribution estimated using the original dataset. 

An empirical p-value is calculated by the proportion of simulated null CIs less than the 

observed CI. Approximations to the optimal 2-means CI for both the observed and simulated 

datasets can be obtained using the K-means algorithm for two clusters.
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In the presence of strong clustering, the empirical p-value may simply return 0 if all 

simulated CIs fall above the observed value. This can be particularly uninformative when 

trying to compare the significance of multiple clustering events. To handle this problem, Liu 

et al. (2008) proposed computing a “Gaussian fit p-value” in addition to the empirical p-

value. Based on the observation that the distribution of CIs appears roughly Gaussian, the 

Gaussian fit p-value is calculated as the lower tail probability of the best-fit Gaussian 

distribution to the simulated null CIs.

An important issue not discussed above is the estimation of the covariance matrix of the null 

distribution, a non-trivial task in the HDLSS setting. A key part of the SigClust approach is 

the simplification of this problem, by making use of the invariance of the 2-means CI to 

mean shifts and rotations of the data in the Euclidean space. It therefore suffices to simulate 

data from an estimate of any rotation and shift of the null distribution. Conveniently, by 

centering the distribution at the origin, and rotating along the eigendirections of the 

covariance matrix, the task can be reduced to estimating only the eigenvalues of the null 

covariance matrix. As a result, the number of parameters to estimate is reduced from p(p 
+ 1)/2 to p. However, in the HDLSS setting, even the estimation of p parameters is 

challenging, as N ≪ p. To solve this problem, the additional assumption is made that the null 

covariance matrix follows a factor analysis model. That is, under the null hypothesis, the 

observations are assumed to be drawn from a single Gaussian distribution, N(μ, Σ), with Σ 

having eigendecomposition Σ = UΛUT such that , where Λ0 is a low rank (< N) 

diagonal matrix of true signal,  is a relatively small amount of background noise, and Ip is 

the p-dimensional identity matrix. Letting w denote the number of non-zero entries of Λ0, 

under the factor analysis model, only w + 1 parameters must be estimated to implement 

SigClust. Several approaches have been proposed for estimating  and Λ0, including the 

hard-threshold, soft-threshold, and sample-based approaches (Liu et al., 2008; Huang et al., 

2015). Descriptions of these approaches and a new estimator for  are presented in Web 

Appendix D.

3. Methodology

To assess significance of clustering in a hierarchical partition, we propose a sequential 

testing procedure in which Monte Carlo based hypothesis tests are preformed at select nodes 

along the corresponding dendrogram. In this section, we introduce our SHC algorithm in 

two parts. First, using a toy example, we describe the hypothesis test performed at individual 

nodes. Then, we describe our sequential testing procedure for controlling the FWER of the 

algorithm along the entire dendrogram.

3.1 SHC Hypothesis Test

Throughout, we use j ∈ {1,…, N − 1} to denote the node index, such that j = 1 and j = (N 
− 1) correspond to the top-most (root) and bottom-most merges along the dendrogram, 

respectively. In Figure 2, we illustrate one step of our sequential algorithm using a toy 

dataset of N = 150 observations drawn from ℝ2 (Figure 2A). Agglomerative hierarchical 

clustering was applied using Ward’s linkage to obtain the dendrogram in Figure 2B. 

Consider the second node from the top, i.e. j = 2. The corresponding observations and 
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subtree are highlighted in panels A and B of Figure 2. Here, we are interested in whether the 

sets of 43 and 53 observations joined at node 2, denoted by dots and ×’s, more naturally 

define one or two distinct clusters. Assuming that a cluster may be well approximated by a 

single Gaussian distribution, we propose to test the following hypotheses at node 2:

H0: The 96 observations follow a single Gaussian distribution

H1: The 96 observations do not follow a single Gaussian distribution.

The p-value at the node, denoted by pj, is calculated by comparing the strength of clustering 

in the observed data against that for data clustered using the same hierarchical algorithm 

under the null hypothesis. We consider two cluster indices, linkage value and the 2-means 

CI, as natural measures for the strength of clustering in the hierarchical setting. To 

approximate the null distribution of cluster indices, 1000 datasets of 96 observations are first 

simulated from a null Gaussian distribution estimated using only the 96 observations 

included in the highlighted subtree. Then, each simulated dataset is clustered using the same 

hierarchical algorithm as was applied to the original dataset (Figure 2C). As with the 

observed data, the cluster indices are computed for each simulated dataset using the two 

cluster solution obtained from the hierarchical algorithm. Finally, p-values are obtained from 

the proportion of null cluster indices indicating stronger clustering than the observed indices 

(Figure 2D). For the linkage value and 2-means CI, this corresponds to larger and smaller 

values, respectively. As in SigClust, we also compute a Gaussian approximate p-value in 

addition to the empirical p-value. In this example, the resulting empirical p-values, 0.020 

and 0, using linkage and the 2-means CI, both suggest significant clustering at the node.

In estimating the null Gaussian distribution, we first note that many popular linkage 

functions, including Ward’s, single, complete and average, are defined with respect to the 

pairwise dissimilarities of observations belonging to two clusters. As such, the use of these 

linkage functions with any dissimilarity satisfying mean shift and rotation invariance, such 

as Euclidean or squared Euclidean distance, naturally leads to the invariance of the entire 

hierarchical procedure. Thus, for several choices of linkage and dissimilarity, the SHC p-

value can be equivalently calculated using data simulated from a simplified distribution 

centered at the origin, with diagonal covariance structure. To handle the HDLSS setting, as 

in SigClust, we further assume that the covariance matrix of the null Gaussian distribution 

follows a factor analysis model, such that the problem may be addressed using the hard-

threshold, soft-threshold and sample approaches proposed in Liu et al. (2008); Huang et al. 

(2015).

Throughout this paper we derive theoretical and simulation results using squared Euclidean 

dissimilarity with Ward’s linkage, an example of a mean shift and rotation invariant choice 

of dissimilarity and linkage function. However, our approach may be implemented using a 

larger class of linkages and appropriately chosen dissimilarity functions. We focus on 

Ward’s linkage clustering as the approach may be interpreted as characterizing clusters as 

single Gaussian distributions, as in the hypotheses we propose to test. Additionally, we have 

observed that Ward’s linkage clustering often provides strong clustering results in practice.

Note that at each node, the procedure requires fitting a null Gaussian distribution using only 

the observations contained in the corresponding subtree. We therefore set a minimum 
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subtree size, Nmin, for testing at any node. For the simulations in Section 5, we use Nmin = 

10.

In this section, we have described only a single test of the entire SHC procedure. For a 

dataset of N observations, at most (N − 1) tests may be performed along the dendrogram. 

While the total number of tests is typically much smaller due to the minimum subtree 

criterion, care is still needed to account for the issue of multiple testing. In the following 

section, we describe a sequential approach for controlling the FWER to address this issue.

3.2 Multiple Testing Correction

To control the FWER of the SHC procedure, one could simply test at all nodes 

simultaneously, and apply an equal Bonferroni correction to each test. However, this 

approach ignores the clear hierarchical nature of the tests. Furthermore, the resulting 

dendrogram may have significant calls at distant and isolated nodes, making the final output 

difficult to interpret. Instead, we propose to control the FWER using a sequential approach 

which provides greater power at the more central nodes near the root of the dendrogram, and 

also leads to more easily interpretable results.

To correct for multiple testing, we employ the FWER controlling procedure of Meinshausen 

(2008) originally proposed in the context of variable selection. For the SHC approach, the 

FWER along the entire dendrogram is defined to be the probability of at least once, falsely 

rejecting the null at a subtree of the dendrogram corresponding to a single Gaussian cluster. 

To control the FWER at level α ∈ (0, 1), we perform the hypothesis test described above at 

each node j, with the modified significance cutoff:

where Nj is used to denote the number of observations clustered at node j. Starting from the 

root node, i.e. j = 1, we descend the dendrogram rejecting at nodes for which the following 

two conditions are satisfied: , and (C2) the parent node was also rejected, where 

the parent of a node is simply the one directly above it. For the root node, condition (C2) is 

ignored. As the procedure moves down the dendrogram, condition (C1) and the modified 

cutoff, , apply an increasingly stringent correction to each test, proportional to the size of 

the corresponding subtree. Intuitively, if the subtree at a node contains multiple clusters, the 

same is true of any node directly above it. Condition (C2) formalized this intuition by 

forcing the set of significant nodes to be well connected from the root. Furthermore, recall 

that the hypotheses tested at each node assess whether or not the two subtrees were 

generated from a single Gaussian distribution. While appropriate when testing at nodes 

which correspond to one or more Gaussian distributions, the interpretation of the test 

becomes more difficult when applied to only a portion of a single Gaussian distribution, e.g. 

only half of a Gaussian cluster. This can occur when testing at a node which falls below a 

truly null node. In this case, while the two subtrees of the node correspond to non-Gaussian 

distributions, they do not correspond to interesting clustering behavior. Thus, testing at such 

nodes may result in truly positive, but uninteresting, significant calls. By restricting the set 
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of significant nodes to be well connected from the root, in addition to controlling the FWER, 

our procedure also limits the impact of such undesirable tests.

4. Theoretical Development

In this section, we study the theoretical behavior of our SHC procedure with linkage value as 

the measure of cluster strength applied to Ward’s linkage hierarchical clustering. We derive 

theoretical results for the approach under both the null and alternative hypotheses. In the null 

setting, the data are sampled from a single Gaussian distribution. Under this setting, we 

show that the empirical SHC p-value at the root node follows the U(0, 1) distribution. In the 

alternative setting, we consider the case when the data follow a mixture of two spherical 

Gaussian distributions. Since SHC is a procedure for assessing statistical significance given 

a hierarchical partition, the approach depends heavily on the algorithm used for clustering. 

We therefore first provide conditions for which Ward’s linkage clustering asymptotically 

separates samples from the two components at the root node. Given these conditions are 

satisfied, we then show that the corresponding empirical SHC p-value at the root node tends 

to 0 asymptotically as both the sample size and dimension grow to infinity. All proofs are 

included in Web Appendix A of the Supplementary Materials.

We first consider the null case where the data, , are sampled from a single 

Gaussian distribution, N(0, Σ). The following proposition describes the behavior of the 

empirical p-value at the root node under this setting.

Proposition 1

Suppose  were drawn from a single Gaussian distribution, N(0, Σ), with known covariance 

matrix Σ. Then, the SHC empirical p-value at the root node follows the U(0, 1) distribution.

The proof of Proposition 1 is omitted, as it follows directly from an application of the 

probability integral transform. We also note that the result of Proposition 1 similarly holds 

for any subtree along a dendrogram corresponding to a single Gaussian distribution. 

Combining this with Theorem 1 of Meinshausen (2008), we have that the modified p-value 

cutoff procedure of Section 3.2 controls the FWER at the desired level α.

We next consider the alternative setting. Suppose the data, , were drawn from a mixture of 

two Gaussian subpopulations in ℝp, denoted by  and . Let 

 and  denote the N = n + m observations of 

 drawn from the two mixture components. In the following results, we consider the 

HDLSS asymptotic setting where p → ∞ and n = pα + o(p), m = pβ + o(p) for α, β ∈ (0, 1) 

(Hall et al., 2005). As in Borysov et al. (2014), we assume that the mean of the difference 

 is not dominated by a few large coordinates in the sense that for some ε > 0,

(2)
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Given this assumption, the following theorem provides necessary conditions for Ward’s 

linkage clustering to correctly separate observations of the two mixture components.

Theorem 1

Suppose (2) is satisfied and the dendrogram is constructed using Ward’s linkage function. 

Let n, m respectively be the numbers of observations sampled from the two Gaussian 

mixture components,  and , with σ1 ≤ σ2. Additionally, suppose n = 

pα + o(p), m = pβ + o(p) for α, β ∈ (0, 1), and let μ2 denote . Then, if lim sup 

, X(1) and X(2) are separated at the root node with probability converging to 

1 as p → ∞.

Theorem 1 builds on the asymptotic results for hierarchical clustering described in Borysov 

et al. (2014). The result provides a theoretical analysis of Ward’s linkage clustering, 

independent of our SHC approach. In the following result, using Theorem 1, we show that 

under further assumptions, the SHC empirical p-value is asymptotically powerful at the root 

node of the dendrogram. That is, the p-value converges to 0 as p, n, m grow to infinity.

Theorem 2

Suppose the assumptions for Theorem 1 are satisfied. Furthermore, suppose  and  are 

known. Then, using linkage as the measure of cluster strength, the empirical SHC p-value at 

the root node along the dendrogram equals 0 with probability converging to 1 as p → ∞.

By Theorem 2, the SHC procedure is asymptotically well powered to identify significant 

clustering structure in the presence of multiple Gaussian components. While in this section 

we only considered the theoretical behavior of SHC using linkage value as the measure of 

cluster strength, empirical results presented in the following section provide justification for 

alternatively using the 2-means CI.

5. Simulations

In this section we illustrate the performance of our proposed SHC approach using simulation 

studies. Two implementations of SHC are considered, denoted by SHCL and SHC2, differing 

by whether the linkage value or the 2-means CI is used to measure the strength of clustering.

The performance of SHC is compared against the existing pvclust and BootClust 

approaches. In each simulation, Ward’s linkage clustering was applied to a dataset drawn 

from a mixture distribution in ℝp. A range of simulation settings were considered, including 

the null setting with K = 1 and alternative settings with K = 2, 3,…,8. To evaluate the 

robustness of the SHC approach to the underlying Gaussian assumption, simulations were 

completed with each cluster generated from Gaussian as well as t-distributions with 3 and 6 

degrees of freedom, denoted t3 and t6. Simulation settings with both balanced and 

imbalanced cluster sizes were also considered. For all values of K, low (p = 10), moderate (p 
= 100), and high (p = 1000) dimensional simulations were explored. All settings were 

replicated 100 times. A representative set of results are reported in this section. Complete 
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simulation results may be found in Web Appendix B of the Supplementary Materials. In the 

interest of space, all simulation results for K = 2 (Web Tables S5–S9), and K = 4 (Web 

Tables S18–S20) are left to Web Appendix B.

In all simulations, SHC p-values were calculated using 100 simulated null cluster indices, 

and the corresponding Gaussian-fit p-values are reported. When p = 10, the covariance 

matrix for the Gaussian null was estimated using the sample covariance matrix. Otherwise, 

the soft-threshold approach described in Huang et al. (2015) was used. The BootClust 

implementation was provided by the authors of Maitra et al. (2012). BootClust requires 

specifying an upper limit on the possible number of clusters, which was set to 10 for all 

simulations. In our simulations, the BootClust approach showed degenerate behavior when p 
= 1000, and therefore, performance using BootClust is not reported for these settings. A 

more complete discussion of this is provided in Web Appendix B and Web Table S1, along 

with a brief review of the fundamental differences between pvclust and our proposed SHC 

method. Both the pvclust and BootClust approaches were implemented using 100 

bootstrap samples. The pvclust method of Suzuki and Shimodaira (2006) computes two 

values: an approximately unbiased (AU) p-value based on a multi-step multi-scale bootstrap 

resampling procedure (Shimodaira, 2004), and a bootstrap probability (BP) p-value 

calculated from ordinary bootstrap resampling (Efron et al., 1996). In the interest of space, 

results for pvclust BP p-values are left to Web Appendix B as the approach showed 

consistently negligible power throughout the simulations considered in this section. A 

significance threshold of α = 0.05 was used with all three approaches.

5.1 Null Setting (K = 1)

We first consider the null setting to evaluate the ability of SHC to control for false positives. 

In these simulations, datasets of size N = 50, 100, 200 were sampled from a single Gaussian, 

t6 or t3 distribution in p = 10, 100, 1000 dimensions with diagonal covariance and one 

dimension scaled by  to mimic low-dimensional signal for v ⩾ 1. The v = 1 case reduces 

to the spherical covariance setting. A subset of the simulation results are presented in Table 

1, with complete results provided in Web Tables S2, S3, and S4.

For each method, we report the number of replications with false positive calls and the 

corresponding median computing time of a single replication. As both AU and BP p-values 

are computed simultaneously, only a single computing time is reported for pvclust.

In Table 1, both SHCL and SHC2 show generally conservative behavior in settings using 

Gaussian simulated data. The conservative behavior of the classical SigClust procedure was 

previously described in Liu et al. (2008) and Huang et al. (2015) as being a result of the 

challenge of estimating the null eigenvalues and the corresponding covariance structure in 

the HDLSS setting (Baik and Silverstein, 2006). As both SHCL and SHC2 rely on the same 

null covariance estimation procedure, this may also explain the generally conservative 

behavior observed in our analysis. The BootClust approach shows anti-conservative 

behavior for p = 100, and becomes intractable when p = 1000 under the Gaussian setting. 

The pvclust AU p-values shows slight anti-conservative behavior in the Gaussian setting 

with low-dimension and high variability (p = 10 and v = 100). Similar performance is 
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observed across all methods for data generated from the heavy-tailed t6 distribution. 

However, using the heavier-tailed t3 distribution, both SHCL and SHC2 exhibit anti-

conservative behavior similar to BootClust and pvclust, illustrating the effect of the 

Gaussian null assumption made by both SHC methods. The behavior is particularly 

pronounced for large sample sizes, as the null estimation of the t3-distribution is improved. 

BootClust again shows the strongest anti-conservative behavior. Both SHC approaches 

required an order of magnitude less time than pvclust across all settings, and required less 

than one minute in high-dimensional settings.

5.2 Three Cluster Setting (K = 3)

We next consider the alternative setting in which datasets were drawn equally from three 

spherical Gaussian, t6 or t3 distributions. The setting illustrates the simplest case for which 

significance must be attained at multiple nodes to discern the true clustering structure from a 

dendrogram using SHC. Two arrangements of the three components were studied. In the 

first, the components were placed along a line with distance δ between the means of 

neighboring components. In the second, the components were placed at the corners of an 

equilateral triangle with side length δ. Several values of δ were used to evaluate the relative 

power of each method across varying levels of signal. For each dataset, N = 150, 300 or 600 

samples were drawn randomly from the three components with probabilities π1, π2, π3. 

Select simulation results for the triangular arrangement with equal cluster proportions (π1, 
π2, π3 = 1/3, 1/3, 1/3) are presented in Table 2. Similar results were observed when clusters 

were arranged in a line, as well as when unequal cluster proportions were used. Complete 

results are presented in Web Tables S10–S17.

For each method, we report the number of replications out of 100 in which statistically 

significant evidence was detected for the correct number of clusters as well as the mean 

number of significant clusters and the median computing time across replications. 

Additionally, to assess how well detected clusters agree with the true cluster labels, we 

report the mean adjusted Rand Index (ARI) for each method. The ARI provides a measure of 

cluster agreement corrected for randomness, with larger values corresponding to higher 

agreement.

Across all settings under the triangular arrangement, the SHCL and SHC2 approaches show 

the highest sensitivity, while pvclust AU p-values consistently over-estimate the number of 

clusters. The problem appears to be exacerbated in the low-dimensional (p = 10) setting. In 

contrast, the BootClust approach shows similar sensitivity to both SHCL and SHC2 when p 
= 10, but greatly over-estimates the number of clusters when p = 100 (Web Table S14) and 

becomes intractable when p = 1000 (Web Table S15). As expected, performance decreases 

when clusters are generated from the heavy-tailed t3 distribution.

5.3 Increasing Cluster Count Setting (K = 5, 6, 7, 8)

Finally, we consider the alternative setting in which datasets were drawn from a mixture of 

K = 5, 6, 7 or 8 Gaussian or t-distributions. All simulations were performed with N = K·50 

samples. Cluster sizes were determined by sampling from a multinomial distribution with 

equal probabilities across clusters. In each replication, the K cluster centers were uniformly 
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randomly placed within a (K − 1)-dimensional sphere centered at the origin with radius δ, 

such that larger values of δ roughly correspond to greater separating signal between clusters. 

Select simulation results are presented in Table 3, with complete results presented in Web 

Tables S21–S24. As in Simulation 5.2, for each dataset, we report the number of replications 

in which the correct number of clusters were predicted, the mean number of significant 

clusters, the median computing time, and the mean ARI across replications.

The results presented in Table 3 largely support the results observed in Simulation 5.2. 

Again, the pvclust AU p-values provide little power to detect the correct clusters in the 

simulated settings, as shown by the relatively low mean ARI values achieved by the method. 

The BootClust approach achieves performance comparable to SHCL and SHC2 in the heavy 

tailed (t3) setting. However, the approach shows poor performance in the moderate-

dimensional (p = 100) settings (Web Tables S21–S24), and cannot be applied when p = 

1000. Both SHCL and SHC2 methods show consistent performance across both low (p = 10) 

and high (p = 1000) dimensional settings.

6. Real Data Analysis

To further demonstrate the power of SHC, we apply the approach to two cancer gene 

expression datasets. In this section, we consider a cohort of 337 breast cancer (BRCA) 

samples, previously categorized into five molecular subtypes (Parker et al., 2009). 

Additionally, in Web Appendix C and Web Figures S1 and S2, we consider a dataset of 300 

tumor samples drawn from three distinct cancer types. The greater number of 

subpopulations, as well as the more subtle differences between them, make the BRCA 

dataset more challenging than the dataset described in Web Appendix C. Data were clustered 

using Ward’s linkage, and the SHC2 approach was applied using 1000 simulations. FWER 

was controlled at α = 0.05.

6.1 BRCA Gene Expression Dataset

A microarray gene expression dataset of 337 BRCA samples was obtained from the 

University of North Carolina (UNC) Microarray Database (https://genome.unc.edu/pubsup/

clow/) and compiled, filtered and normalized as described in Prat et al. (2010). Gene 

expression was analyzed for a subset of 1645 well-chosen intrinsic genes (Prat et al., 2010). 

We evaluate the ability of our approach to detect biologically relevant clustering based on 

five molecular subtypes: luminal A (LumA), luminal B (LumB), basal-like, normal breast-

like, and HER2-enriched (Parker et al., 2009). The dataset is comprised of 97 LumA, 54 

LumB, 91 basal-like, 47 normal breast-like, and 48 HER2-enriched samples. Per-subtype 

separation and marginal variances are shown in Web Figure S3. The observed values 

illustrate that real data, indeed, fall within the range of parameters used in the simulations of 

Section 5.

The expression dataset is shown as a heatmap in Figure 3A, with the corresponding 

dendrogram and subtype labels reproduced in Figure 3B. The corresponding SHC2 p-values 

and modified significance thresholds are given only at nodes tested while controlling the 

FWER at α = 0.05. SHC2 identifies at least three significantly differentiated clusters in the 

dataset, primarily corresponding to luminal (LumA and LumB), basal-like, and all 

Kimes et al. Page 12

Biometrics. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genome.unc.edu/pubsup/clow/
https://genome.unc.edu/pubsup/clow/


remaining subtypes. Diagnostic plots investigating the SHC model assumptions are shown in 

Web Figure S4. While the data appear to be heavier tailed than Gaussian, this may be 

partially attributed to the factor analysis model, which is also shown to hold in the plots. The 

diagnostics suggest that while still useful, the SHC test may lack some power as in the 

moderately heavy-tailed simulations of Section 5. The corresponding ARI for the clusters is 

0.42, while the highest achievable ARI using Ward’s linkage clustering was 0.52 at K = 5. 

At the root node, the LumA and LumB samples are separated from the remaining subtypes 

with a p-value of 8.07e − 4 at a threshold of . However, Ward’s linkage clustering 

and SHC2 are unable to identify significant evidence of clustering between the two luminal 

subtypes. The difficultly of clustering LumA and LumB subtypes based on gene expression 

was previously described in Mackay et al. (2011). Next, the majority of basal-like samples 

are separated from the remaining set of observations, with a p-value of 0.0198 at a cutoff of 

. The remaining HER2-enriched, normal breast-like and basal-likes samples show 

moderate separation by Ward’s linkage clustering. However, the subsequent node is non-

significant, highlighting the difficulty of assessing statistical significance for larger numbers 

of clusters while controlling for multiple testing. When analyzed using pvclust as 

described in Section 5, only a single statistically significant cluster of more than 10 samples 

was identified, corresponding to the HER2 samples. Finally, when the BootClust approach 

was applied with a maximum of 30 clusters, as in the moderate and high-dimensional 

simulations of Section 5, the maximum possible number of clusters was predicted.

7. Discussion

While hierarchical clustering has become widely popular in practice, few methods have been 

proposed for assessing the statistical significance of a hierarchical partition. SHC was 

developed to address this problem, using a sequential testing and FWER controlling 

procedure. Through an extensive simulation study, we have shown that SHC provides 

competitive results compared to existing methods. Furthermore, in applications to two gene 

expression datasets, we showed that the approach is capable of identifying biologically 

meaningful clustering.

In this paper, we focused on the theoretical and empirical properties of SHC using Ward’s 

linkage, and in general, we suggest using SHC2 over SHCL based on our simulation results. 

However, there exist several different approaches to hierarchical clustering, and Ward’s 

linkage may not always be the most appropriate choice. In these situations, as mentioned in 

Section 3, SHC may be implemented with other linkage and dissimilarity functions which 

satisfy mean shift and rotation invariance. Further investigation is necessary to fully 

characterize the behavior of the approach for different hierarchical clustering procedures.

Some popular choices of dissimilarity, such as those based on Pearson correlation of the 

covariates between pairs of samples, fail to satisfy the necessary mean shift and rotation 

invariance properties in the original covariate space. As a consequence, the covariance of the 

Gaussian null distribution must be fully estimated, and cannot be approximated using only 

the eigenvalues of the sample covariance matrix. When N ≫ p, the SHC method can still be 

applied by estimating the complete covariance matrix. However, in HDLSS settings, 

estimation of the complete covariance matrix can be difficult and computationally expensive. 
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A possible direction of future work is the development of a computationally efficient 

procedure for non-invariant hierarchical clustering procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hierarchical clustering applied to 5 observations. (A) Scatterplot of the observations. (B) 

The corresponding dendrogram. This figure appears in color in the electronic version of this 

article.
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Figure 2. 
The SHC testing procedure illustrated using a toy example. Testing is applied to the 96 

observations joined at the second node from the root. (A) Scatterplot of the observations in 

ℝ2. (B) The corresponding dendrogram. (C) Hierarchical clustering applied to 1000 datasets 

simulated from a null Gaussian estimated from the 96 observations. (D) Distributions of null 

cluster indices used to calculate the empirical SHC p-values. This figure appears in color in 

the electronic version of this article.
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Figure 3. 
Analysis of gene expression for 337 BRCA samples. (A) Heatmap of gene expression for 

the 337 samples (columns) clustered by Ward’s linkage. (B) Dendrogram with 

corresponding SHC p-values and α* cutoffs given only at nodes tested according to the 

FWER controlling procedure at α = 0.05. This figure appears in color in the electronic 

version of this article.
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