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Abstract

Background—Large amounts of metabolomics data have been accumulated in recent years and 

await analysis. Previously we had developed a systems biological approach to infer biochemical 

mechanisms underlying metabolic alterations observed in cancers and other diseases. The method 

utilized the typical Euclidean distance for comparing metabolic profiles. Here we ask whether any 

of the numerous alternative metrics might serve this purpose better.

Methods and Findings—We used enzymatic alterations in purine metabolism that were 

measured in human renal cell carcinoma to test various metrics with the goal of identifying the 

best metrics for discerning metabolic profiles of healthy and diseased individuals. The results 

showed that several metrics have similarly good performance, but that some are unsuited for 

comparisons of metabolic profiles. Furthermore, the results suggest that relative changes in 

metabolite levels, which reduce bias toward large metabolite concentrations, are better suited for 

comparisons of metabolic profiles than absolute changes. Finally, we demonstrate that a sequential 

search for enzymatic alterations, ranked by importance, is not always valid.

Conclusions—We identified metrics that are appropriate for comparisons of metabolic profiles. 

In addition, we constructed strategic guidelines for the algorithmic identification of biochemical 

mechanisms from metabolomics data.
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Introduction

Since entering the post-genomic era, high-throughput methods and biomedical 

instrumentation have been generating unprecedented amounts of data. The sheer size of 

these datasets is staggering and easily exceeds our capability of mining them for hidden 

information and novel insights. Among the high-throughput data, metabolomics profiles are 

of special interest because they form the bridge between enzymes, which govern 

biochemical mechanisms, with metabolites, which are directly tied to physiological function. 

This connection is important to study, because a healthy cell, tissue, or organ often exhibits 

different metabolic profiles when it enters a disease state or is subject to severe external 

perturbations. For example, cancer cells frequently alter their metabolism to facilitate rapid 

growth and proliferation [1, 2]. Since details underlying the pathogenic mechanisms of a 

disease are typically unclear, but their resulting altered metabolic profiles can be measured, 

an important question arises, namely: Do metabolomics data contain sufficient information 

for the inference of the underlying pathophysiological mechanisms?

In recent work, we proposed systems biological approaches to address this inference 

challenge and applied them successfully to analyses of colorectal cancer and Parkinson’s 

disease [3, 4]. Briefly, the methods we introduced strive to identify reaction steps that are 

altered by a disease or an external perturbation that becomes manifest at the metabolic level. 

The methods do so by repeatedly simulating very many combinations of changes in 

reactions and assessing their effects on the resulting metabolic profile. This ensemble 

approach involves intensive searches within the high-dimensional space of possible changes 

in enzymatic activities and is followed by various screens that filter out the most likely 

scenarios. It combines strategies from reverse engineering, optimization, machine learning, 

and statistics.

Thus the inference method requires means of quantitatively comparing simulated metabolic 

profiles against the observed metabolic profile extracted from the metabolomics data. 

Expressed differently, any comparison of this type mandates a distance metric. In our 

previous studies, we used the default of the Euclidian norm. However, numerous other 

metrics with quite different characteristics are available, thus begging the question whether 

the Euclidian norm is optimal for this type of comparisons. All metrics treat a metabolic 

profile as a high-dimensional vector, whose dimension equals the number of metabolites, 

and calculate the difference between two profiles (such as the profiles in a healthy and a 

cancer cell) using their own characteristic formulae. The most prevalent metrics fall into two 

broad groups: distance-based and similarity-based (Table I).

The metrics have been extensively used for various purposes in multiple areas. For example, 

distance metrics have been applied to mechanical engineering [5], imaging processing [6], 

robotics [7], text matching [8], and phylogenetic analysis [9]. For metabolomics data, these 

metrics were used for genotype discrimination [10], clustering [11], cancer subgroup 

identification [12], and etc. Some comparisons among various metrics, especially in the 

context of clustering, have already been mad [13, 14]. Differently, we are comparing the 

performance of various metrics for inference of biochemical mechanisms. For this purpose, 

the following questions could be asked:
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Question 1: Given that metrics suggest different degrees of similarity between two 

metabolic profiles, do some metrics exhibit better performance in discerning 

metabolic profiles. If so, is one metric always superior for the inference of 

biochemical mechanisms from metabolomics data?

Question 2: Do some metrics deal better with uncertainties than others? When one 

searches for biochemical mechanisms that are affected by disease or perturbations, 

such as the activation or inhibition of an enzyme, one cannot necessarily expect to 

identify these mechanisms with mathematical precision when explore a high-

dimensional parameter space. In other words, one should merely expect the correct 

identification of a relatively small neighborhood surrounding the true target point 

within the large space. Therefore, an effective search method should be able to 

recognize when it approaches the correct neighborhood, which requires that metrics 

can tolerate uncertainties and subsequently keep the search within this neighborhood.

Question 3: Should absolute or relative changes in metabolite concentrations be used 

by a distance metric? Metabolites can be present in vastly different quantities even 

within the same system. For example, some metabolites have in vivo concentrations 

in the mM range, while others are at µM level. When a healthy system becomes 

perturbed or diseased, the changes in metabolites should be expected to differ 

correspondingly in magnitude, and these differences influence the distance between 

the healthy and perturbed metabolic profiles, especially if absolute changes are 

considered. As a consequence, absolute changes in a few metabolite concentrations 

may unduly dominate the distance between profiles and thereby bias the search for 

likely mechanisms in an unfavorable manner. By contrast, relative changes may 

provide certain advantages by reducing bias toward high metabolite concentrations.

Question 4: Is it necessary to search for all alterations simultaneously or is it feasible 

to identify alterations in biochemical reaction steps in a ranked, sequential manner? It 

is generally not known how many metabolic processes are affected by a disease or 

perturbation, where these changes are positioned within a pathway, and what their 

magnitudes are. One could consider all possible sites simultaneously, but such a 

strategy could be computationally prohibitive. Alternatively, it might seem reasonable 

to search for the most significant contributor first and then to progress to other sites in 

a sequential manner according to their contributions to changes in the observed 

metabolic profile. This much cheaper alternative raises the questions of whether a 

sequential search is valid and to what degree the choice of a distance metric affects 

this validity.

In the following, we test and compare the metrics listed in the Table I against these questions 

and within the context of effectively identifying metabolic reaction steps that are affected by 

a disease or perturbation.

Materials and Methods

The main pathway system selected for this study is purine metabolism in human renal cell 

carcinoma, which is characterized by abnormal growth in the kidneys. This carcinoma is 

estimated to cause 62,000 new cases and 14,000 deaths in US in 2015 [15].
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A mathematical model of purine metabolism

Purine metabolism supplies the body with purine nucleotides for DNA and RNA synthesis 

and synthesizes de novo compounds like ADP and ATP. Not surprising, it is of critical 

importance for cell growth and proliferation in cancers. The pathway constitutes a complex 

dynamical system (Fig. 1) that contains two routes for the synthesis of purines. The first is 

the de novo synthesis pathway for purine bases (red arrows in Figure 1), whose initial 

substrate is ribose-5-phosphate (R5P), while the second route is a salvage pathway (green 

arrows in Figure 1), through which purine bases can be recycled. Quite a detailed 

mathematical model of human purine metabolism was proposed by Curto et al. [16–18]. It 

consists of a system of ordinary differential equations with 16 variables and 37 fluxes. This 

mathematical model is used as the main test system in this study.

Metabolic information regarding human renal cell carcinoma

Weber performed an enzymatic assay for human renal cell carcinoma and discovered several 

changes in the activities of enzymes within purine metabolism [19]. The significantly 

affected enzymes are (indicated in Fig. 1): amidophosphoribosyltransferase (ATASE, 1.58), 

IMP dehydrogenase (IMPD, 2.53), adenylosuccinate synthetase (ASUC, 1.49), 

adenylosuccinate lyase (ASLI, 1.76), AMP deaminase (AMPD, 2.07), xanthine oxidase or 

xanthine dehydrogenase (XD, 0.25). In this list, the numbers in parentheses indicate the fold 

changes in activity between human renal cell carcinoma and normal kidney cells.

We used these experimental data with Curto’s model of purine metabolism to create “ideal” 

test data for the comparison of metrics. Namely, we introduced the measured changes in 

enzymatic activities into the model and computed the resulting metabolic profile for human 

renal cell carcinoma (Table II). This “dataset” constitutes an ideal metabolomics profile, 

because it is complete and mathematically precise. It allows us to know exactly what 

changes in enzyme activities led to this profile, which we consider as “observed.” 

Furthermore, we have complete information about the pathway in healthy individuals. Since 

the “data” are mathematically precise, all differences between results can be associated with 

the different metrics employed.

Each diseased or healthy metabolic profile is represented by a high-dimensional vector. In 

the case of purine metabolism, the dimension is 16, which corresponds to the number of 

metabolites or metabolite pools in the system. In the following, the “ideal” metabolic disease 

profile generated by the model is called “the target vector”, and vectors resulting from the 

simulation of other scenarios are called “simulated vectors”.

Normalization of metrics between vectors and statistical considerations

The general strategy for comparing metrics is to compute distances (similarities) between 

simulated vectors and the target vector. In this analysis, a shorter distance implies a closer 

similarity between two vectors. For fair comparisons, all metrics are normalized. 

Specifically, for the six distance-based metrics, the distance between the healthy metabolic 

profile and the cancer profile, as obtained from the model, is normalized to 100. For the 

three similarity-based metrics, which are based on angles between vectors, we first compute 

the inverse cosine of the computed similarities in order to obtain the angle between a 

Qi and Voit Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulated vector and the target vector. The angle of π/2 is then normalized to 100. Thus, the 

similarity is converted into a normalized distance.

Simulations

The All results are based on computer simulations. In each simulation, a certain perturbation 

of the activities of one or some purine enzymes is implemented in the model and the ODEs 

are integrated to yield the corresponding steady-state metabolic profile. Using the various 

metrics, the distance between this putative profile (a simulation vector) and the true disease 

target vector is computed.

The simulation study is performed in three phases. First, we implement all subsets of 

perturbations that are actually discovered in renal cell carcinoma, according to Weber [19]. 

Since six reactions are perturbed in this cancer, we implement changes in between one and 

six perturbations, where the six-perturbation case is used to compute the target vector. For 

these simulations, we use the measured magnitudes of perturbations. Secondly, we consider 

uncertainties in the quantification of the exact perturbations by considering a neighborhood 

surrounding the exact point in the high-dimensional parameter space. Different metrics are 

then compared with respect to their capability of reducing the distance when the search 

approaches the exact point within the neighborhood. Finally, we explore the feasibility of a 

sequentially nested identification strategy when different metrics are applied.

Statistics

Since uncertainties must be explored in these inferences, we devise a strategy that leads to 

ensemble results, which are collected as distributions. Statistical comparisons among the 

means of these distributions are performed with Student’s t-test and a significance level of 

0.01.

Results

The metrics under the comparison are to be used for the inference of altered metabolic 

reaction steps from metabolomics data. The inference method itself was published elsewhere 

and is not discussed here [3, 4]. The following results focus exclusively on the qualities of 

the different metrics in Table 1.

Subsets of experimentally measured enzymatic alterations

If only one out of the six experimentally measured enzymatic alterations is implemented 

with the correct magnitude, there are six choices. These six perturbations are grouped and 

considered as the scenario of exact perturbations of one enzyme. Similarly, we construct 

scenarios of two (15 different combinations of exact perturbations), three (20 different 

combinations), four (15 different combinations), and five enzymes (6 different 

combinations).

Distances for relative changes

For each scenario, we compute distances between the simulated metabolic profiles and the 

target vector, using various metrics. Figure 2 shows the distances or dissimilarities between 
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the same set of simulated metabolic profiles from the above scenarios and the target vector, 

using different metrics and relative changes of metabolites. Here and throughout the 

analysis, we use the parameter m = 3 in the Minkowski distance. The left-most symbol in 

each graph is the control, which corresponds to the distance between the healthy and 

diseased profiles and by definition has a normalized distance or dissimilarity of 100. The 

next set of symbols (red) corresponds to the scenario of a single perturbation, the following 

set (green) corresponds to the scenario of two perturbations, and so forth.

The dominant result of this analysis is that the metrics in subpanels A–D and G–H yield 

rather similar results, even though A–D refer to distances, while G–H are similarity metrics. 

For each case, the results are bimodal: Some perturbation combinations have distances close 

to 100, whereas others lead to much lower values. The former results are from perturbations 

of enzymes that are not very influential, so that the perturbation does not change the healthy 

profile much, whereas the latter results correspond to combinations of changes in influential 

enzymes. As a specific example, the red square with a normalized distance of 32 for a single 

perturbation identifies the most influential enzyme. In other words, one correct perturbation 

can account for about 70% similarity to the target vector that represents the renal cell 

carcinoma. A secondary result is that the Canberra metric and the relative metric yield 

extremely large distances, which are not seen in other metrics. These distances are much 

larger than the calibration distance, which has a value of 100 and represents the distance 

between the health and disease vectors. Finally, comparisons of different numbers of 

enzymatic alterations imply that the six perturbed enzymes may be divided into two groups 

of primary and secondary influence. Here, the terms primary and secondary indicate 

different magnitude of contributions of exact perturbations to the target vector.

Distances for absolute changes

When one uses absolute changes in metabolite concentrations instead of relative changes, 

similar results are obtained (Fig. S1). In this case, the single most significant perturbation 

accounts for about 80% of the difference between the control and target vector, whereas it 

accounts for about 70% when relative changes are used (Fig. 2). In both cases, two or three 

perturbations can be considered to have primary contributions to the cancer, while the 

remaining perturbations are of secondary importance.

Uncertainty in the quantification of exact perturbations

The identification of altered reaction steps requires an algorithmic search within a high-

dimensional parameter space, where the probability of hitting the exact optimal point is zero. 

However, an efficient search algorithm is expected to identify the neighborhood surrounding 

the optimal point. This capability of recognizing a relatively small neighborhood containing 

the correct perturbations depends critically on the metric used to compare metabolic profiles. 

If this neighborhood is reached, can a good metric keep the search algorithm within this 

neighborhood (also refer to the Question 2 in the Introduction section)? To address this 

question, it is necessary to study the error space generated by a metric in response to 

uncertain perturbations surrounding the exact point that determines the performance of a 

search algorithm.
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Among the enzyme alterations measured by Weber for renal cell carcinoma [19], two 

enzymes are most influential in terms of contributions to the metabolic alterations: IMPD is 

up-regulated 2.53 fold and ATASE is upregulated 1.58 fold. To model uncertainties, we 

consider solutions within 10% deviations of these values, without or with changes up to 10% 

in other enzymes. To obtain statistically significant results, we ran one million Monte Carlo 

simulations and report the corresponding distances between the simulated metabolic profiles 

and the target profile.

Effect of uncertainties for absolute changes

The results (Figure 3) show that the distances are similarly distributed with respect to 

changes in activities of the two most influential enzymes (IMPD & ATASE). In other words, 

when the algorithm searches a small neighborhood surrounding the exact perturbation 

(IMPD: 2.53; ATASE: 1.58), the uncertainty associated with these two enzymes and all other 

enzymes hamper the recognition of the target point, which corresponds to the correct 

perturbation in the cancer. Thus, this subspace containing the target point cannot be 

recognized as distinct even if it is reached. The effect of uncertainty in enzymes other than 

IMPD and ATASE is significant, because the distance landscape does provide a constraint 

(e.g., has local minima with statistical significance) to the search algorithm when these 

uncertainties are removed (Fig. S2).

Effect of uncertainties for relative changes

When relative changes are used for the comparison of metabolic profiles, the results are 

quite different (the Minkowski distance is shown as an example). Here, the distance 

landscape corresponding to the small neighborhood surrounding the exact perturbation 

(IMPD: 2.53; ATASE: 1.58) shows that this neighborhood can be recognized by the search 

algorithm (e.g., has local minima with statistical significance) and that it is therefore 

possible to converge toward the correct solution (Fig. 4). This landscape looks like a trough, 

for which the enzyme IMPD is the most significant factor. When the search algorithm 

reaches this small neighborhood, it is guided toward the exact perturbation. One should note 

that the minimum in this case does not exactly correspond to the target point, due to 

uncertainties in all other enzymes. The same conclusions are obtained for most other metrics 

(data not shown). An exception is the similarity-based metric using the cosine of the angle 

between vectors, which does not tolerate uncertainties as well as the other metrics (data not 

shown).

Three-dimensional distance landscapes

The distance landscape is not a surface but a three-dimensional object for simultaneous 

changes in two enzymes (IMPD and ATASE). Every combination of IMPD and ATASE 

activities within a 10% range of the exact perturbation can possibly return a very small 

distance due to the influence of uncertainties in other enzymes. In other words, when the 

activities of IMPD and ATASE is fixed, changes in other enzymes produce a whole range of 

distances from very small to moderate. To analyze this situation, a statistical analysis is 

needed.
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For the distance landscape shown in Figure 4, we composed a grid of enzymatic activities of 

IMPD and ATASE and calculated the mean value of distances for each grid box (Fig. 5A and 

5B). The results show that there is a minimal mean value, which is close to the target point 

representing the exact perturbations to IMPD and ATASE. The significance of the 

differences in mean values between the distribution associated with the minimal mean value 

and all other distributions is shown in Figure 5C. The result shows that when the enzymatic 

activities of IMPD and ATASE deviate away from the small area containing the minimal 

mean Minkowski distance, the mean distances are statistically significantly different. 

Statistically speaking, this result suggests that uncertainties in other enzymes than IMPD and 

ATASE do not prevent the search algorithm from finding the target perturbations on these 

two enzymes. The same conclusion is obtained when other metrics are used (data not 

shown).

Feasibility of a sequential identification strategy

Since it seems that enzyme perturbations can be divided into groups according to their 

metabolic influence, it is reasonable to devise a search algorithm with an iterative multi-

phase strategy. According to such a strategy, the primary group of alterations would be 

targeted first, followed by a secondary. The problem is that it is not known which enzymes 

belong to which group. As a consequence, all enzymes need to be targeted simultaneously, 

which can quickly become computationally expensive if the metabolic system under 

investigation is complex.

Alternatively, one could devise an algorithm that targets one enzyme at a time, retains the 

most influential enzyme, and then proceeds to a scan of the next important enzyme. Using 

the example of the Minkowski metric in Figure S1, we can easily simulate the results of this 

strategy. Namely, we connect the dots representing distances for a set of possible sequential 

perturbations involving one additional enzyme consecutively from 1 to 5 simultaneous 

perturbations. Each such a perturbation sequence starts with a randomly selected 

perturbation of a single enzyme and adds a new randomly selected but different perturbation 

at each step. This strategy leads to a total of 720 combinations of sequential enzymatic 

perturbations in the case of 6 enzymes. Figure 6B shows changes in the Minkowski 

distances along these paths of increasing numbers of enzymatic perturbations when absolute 

changes are used.

The most significant enzymatic perturbation returns a normalized Minkowski distance as 

small as 20; in other words, this alteration in enzyme activity explains 80% of the change in 

metabolic profile in human renal cell carcinoma. With the increase in the number of 

enzymatic perturbations, the simulated vector is expected to approach the target vector; a 

schematic illustration is shown in Figure 6A for a simple illustration system with only two 

metabolites. Ideally, the most significant enzymatic perturbation corresponds to a minimal 

distance in the scenario of one enzyme, and adding to it a second significant enzymatic 

perturbation has a smaller minimal distance in the scenario of two enzymes, and so forth. If 

a metric has this property, it allows the implementation of sequential identification strategy. 

Figure 6C shows sequential enzymatic perturbations with decreasing Minkowski distances. 

As shown, they have to start with some insignificant enzymatic perturbations to acquire a 
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chain of decreasing distances with increasing number of perturbations, which disables the 

identification of the most significant perturbation at the beginning using this strategy. If the 

first perturbation is forced to be the most influential one, each of the subsequent sequential 

perturbations leads to an increasing Minkowski distance at some point (Fig. 6D). The same 

results were acquired for other metrics (data not shown). These results indicated the 

infeasibility of sequential identification strategy, and the optimal set of perturbations can 

only be detected through simultaneous perturbations.

As a practical alternative to searching the space of all possible enzyme perturbations, which 

could be costly or time prohibitive, one might start with all combinations of two or three 

enzyme alterations. Similar to a principal component analysis, such combinations are likely 

to explain a substantial portion of metabolic alterations found in a disease. Furthermore, 

because the distance between the healthy and diseased profiles is known a priori, the 

analysis of two or three simultaneous alterations immediately reveals what percentage of the 

disease alterations is explained. If this percentage is high, one might stop and not worry 

about additional enzyme alterations that are comparatively uninfluential. Then again, if only 

a relative small percentage is explained, one would continue with all combinations of four or 

five enzymes.

Comparisons of various metrics

The study of human renal cell carcinoma shows that three metrics (Canberra distance, 

relative distance, and cosine of angle) are inferior to the other studied metrics for the 

inference of biochemical mechanisms from metabolomics data. The remaining four 

distance-based metrics (Minkowski distance, Euclidean distance, Manhattan distance, 

Jeffreys & Matusita distance) are similarly well suited for this purpose. The general 

Minkowski distance (here with m=3) behaves almost the same as its two special cases: the 

Euclidean distance where m=2 and Manhattan distance where m=1. Occasionally, the 

Jeffreys & Matusita distance performs slightly better than the Minkowski distance (data not 

shown). Therefore, this metric could also be considered in addition to the typical Euclidean 

distance. Dice’s coefficient and Jaccard similarity coefficient are also valuable metrics even 

though they consider similarity in terms of the angle between metabolic profile vectors.

Implementation

Some guidelines regarding the development of automated algorithms for the inference of 

biochemical mechanisms from metabolomics data are presented in the flow chart of Figure 

7. While these are not iron-clad, they have proven beneficial in our experience. First, a 

metric is chosen among those shown as superior above. Also, it seems generally beneficial to 

perform the inference using relative changes of metabolites rather than absolute changes. A 

sequential strategy should be tried first, as it is much cheaper computationally than an 

immediate full search. If deemed appropriate, some steps in the sequence could be skipped. 

For instance, one could immediately start with two or three simultaneous alterations. The 

main criterion for stopping or continuing the search is the percentage of the health-disease 

distance that is explained at each step. The result is a candidate list of biochemical 

mechanisms of a disease or perturbation. For due diligence, this list could be compared with 

the corresponding list resulting from the use of absolute change. If the sequential strategy is 
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not feasible, then the multi-phase strategy has to be considered. This multi-phase strategy 

allows the prediction of primary biochemical mechanisms at the phase one and secondary 

mechanisms at the phase two. There could be a possibility that both strategies are infeasible. 

However, our previous studies suggest that at least the primary mechanisms can be predicted 

using relative changes and the multi-phase strategy.

Conclusions and Discussion

Experimental and clinical findings suggested that cancers reprogram their metabolism for 

particular needs, including cell growth, proliferation, and the escape from the immune 

system [20, 21]. However, it is unclear what biochemical mechanisms underlie metabolic 

reprogramming in cancers. We have developed an algorithm for the inference of biochemical 

mechanisms from metabolomics data and demonstrated its capability in the context of 

different diseases. The algorithm searches the high-dimensional space of enzymatic 

alterations and compares metabolic profiles, a process that requires the selection of an 

appropriate metric for the calculation of distances between metabolite profiles. The various 

available metrics have their own characteristics, which make them superior or inferior for 

the proposed inferences. Based on the results and analyses in this study, we now can answer 

these questions listed in the Introduction section.

We showed here that several metrics, including the Euclidean distance, perform well, while 

others do not. Six metrics (Minkowski distance, Euclidean distance, Manhattan distance, 

Jeffreys & Matusita distance, Dice’s coefficient, Jaccard similarity coefficient) perform 

similarly well, whereas three metrics (Canberra distance, relative distance, and cosine of 

angle) seem inappropriate for the inference of biochemical mechanisms from metabolomics 

data. The well performing metrics can be divided into distance-based metrics (the former 

four) and similarity-based metrics (the latter two). The metrics in the two groups consider 

different aspects of comparisons between metabolic profiles: the metrics in the first group 

measure a distance between two profiles, while these in the second group measure an angle 

between two high-dimensional vectors representing two metabolic profiles. It is possible to 

construct situations where two metabolic profiles have different distances but the same angle 

or different angles but the same distance. Thus, it might be beneficial to combine metrics 

from both groups.

While searching the high-dimensional space of possible enzymatic alterations, the proposed 

algorithm assumes that biochemical actions of a disease constitutes a point, which is 

surrounded by a neighborhood of acceptable solutions associated with small distances to the 

disease metabolic profile. Thus, if the search algorithm reaches this neighborhood, the 

distance landscape should allow the algorithm to recognize this neighborhood which 

contains the target point and lead the algorithm move toward the correct point. Interestingly, 

this is the case when relative changes in metabolites are used, whereas the use of absolute 

values makes the algorithm occasionally fail, presumably because in vivo concentrations 

may vary by orders of magnitudes and thus the high components dominate the error so that 

the algorithm is pushed out of the correct neighborhood.
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For human renal cell carcinoma, most enzymatic alterations associated with purine 

metabolism increase enzymatic activity, which results in an elevation of most metabolites. In 

this case, the inexpensive sequential identification strategy is found as unlikely applicable. 

The feasibility of this strategy is also tested with an artificial metabolomics dataset, which is 

characterized by a mostly decreased metabolic profile in purine metabolism due to enzyme 

inhibition. In this case, the sequential identification strategy was found to be feasible, and 

the algorithm improved the solution with each enzyme addition, ultimately converging to the 

correct solution.

Metabolomics data contain rich but hidden information, such as the biochemical 

mechanisms underlying metabolic reprogramming in cancers. This theoretic study evaluated 

various metrics for the comparisons between metabolic profiles and provided a foundation 

for the selection of appropriate metric used in the inference of biochemical mechanisms by 

our algorithm. In addition, relative changes in metabolites are specifically suggested to be 

used in this context because it avoids the bias caused by metabolites with much higher 

concentrations than other metabolites, a usual characteristic of metabolism and 

metabolomics data. This is very beneficial since current metabolic platforms typically have 

difficulty in quantifying absolute metabolite levels but can provide relative changes reliably 

comparing different conditions or time points.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simplified diagram of human purine metabolism
Purine metabolism consists of a de novo synthesis pathway (red arrows) and a salvage 

pathway (green arrows) for purine bases. Reactions are represented with arrows. Metabolites 

are shown in dashed boxes and enzymes are indicated by italics. Table III lists enzyme 

names and their abbreviations. Chevron arrows point to altered enzymes in human renal cell 

carcinoma (magenta: activation; blue: inhibition). Regulatory signals are omitted for clarity. 

Metabolites and their abbreviations are: phosphoribosylpyrophosphate (PRPP), inosine 

monophosphate (IMP), adenylosuccinate (S-AMP), adenosine + adenosine monophosphate 

+ adenosine diphosphate + adenosine triphosphate (Ado_AMP_ADP_ATP), s-adenosyl-L-

methionine (SAM), adenine (Ade), xanthosine monophosphate (XMP), guanosine 

monophosphate + guanosine diphosphate + guanosine triphosphate (GMP_GDP_GTP), 

deoxyadenosine + deoxyadenosine monophosphate + deoxyadenosine diphosphate + 

deoxyadenosine triphosphate (dAdo_dAMP_dADP_dATP), deoxyguanosine 

monophosphate + deoxyguanosine diphosphate + deoxyguanosine triphosphate 

(dGMP_dGDP_dGTP), ribonucleic acid (RNA), deoxyribonucleic acid (DNA), 

hypoxanthine + inosine + deoxyinosine (HX_Ino_dIno), xanthine (Xa), guanine + guanosine 

+ deoxyguanosine (Gua_Guo_dGuo), uric acid (UA), ribose-5-phosphate (R5P).
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Figure 2. Performance of metrics on comparison of metabolic profiles resulted from 
experimentally measured enzymatic changes
Out of six experimentally measured enzymatic changes, all possible combinations are 

implemented. When an exact enzymatic change is implemented, the result in each subpanel 

is shown in the column next to the control, which corresponds to no perturbation at all. 

Subsequent columns show the results of two (15 different combinations of exact 

perturbations), three (20 different combinations), four (15 different combinations), and five 

combinatory alterations of enzymatic activities (6 different combinations). The y-axis 

represents the distance or dissimilarity which is normalized. Results are based on relative 

changes. Each red horizontal line shows the smallest distance or dissimilarity in each 

column. A: Minkowski distance (m = 3); B: Euclidean distance; C: Manhattan distance; D: 
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Jeffreys & Matusita distance; E: Canberra distance; F: relative distance; G: cosine of angle; 

H: Dice’s coefficient; I: Jaccard similarity coefficient. The corresponding plot for absolute 

changes is shown in Fig. S1. Note differences in magnitudes along the y-axis.
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Figure 3. Distance topology for the Neighborhood surrounding the targeted enzymatic changes 
using absolute changes
For human renal cell carcinoma, the observed enzymatic changes include the activation of 

IMPD (2.53 in fold change) and ATASE (1.58 in fold change). This targeted set of 

enzymatic changes is disturbed by uncertainty (10% relative noise sampled from a normal 

distribution). In addition, all other enzymes are also affected by 10% relative noise over 

normal activities. The x- and y-axes represent relative enzymatic activities of IMPD and 

ATASE in regard to their normal values, respectively. The z-axis shows the Minkowski 

distances between the simulated metabolic profiles and the targeted disease profile, using 

absolute changes. Subplot A schematically illustrates the uncertainty surrounding the 

targeted enzymatic changes (red cross). The same distance topology is viewed from different 

angles. B: horizontal rotation (−105) and vertical elevation (20); C: horizontal rotation (−15) 

and vertical elevation (20); D: horizontal rotation (0) and vertical elevation (20). Distances 

are similarly distributed within the neighborhood surrounding the targeted enzymatic 

changes.
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Figure 4. Distance topology for the Neighborhood surrounding the targeted enzymatic changes 
using relative changes
As described in Figure 3, the enzymatic changes consist of the activation of IMPD (2.53 in 

fold change) and ATASE (1.58 in fold change). Uncertainty is implemented as in Figure 3. 

The x- and y-axes represent relative enzymatic activities of IMPD and ATASE in regard to 

their normal values, respectively. The z-axis shows the Minkowski distances between 

simulated metabolic profiles and the targeted disease profile, using relative changes instead 

of absolute changes. Subplot A schematically illustrates the uncertainty surrounding the 

targeted enzymatic changes (red cross). The same distance topology is viewed from different 

angles. B: horizontal rotation (−105) and vertical elevation (20); C: horizontal rotation (−15) 

and vertical elevation (20); D: horizontal rotation (0) and vertical elevation (20). In contrast 

to Figure 3, distances are unevenly distributed within the neighborhood surrounding the 

targeted enzymatic changes. The surface looks like a trough, which identifies IMPD as the 

most significant factor.
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Figure 5. Mean values of distances for each grid area within the neighborhood surrounding the 
targeted enzymatic changes and significance of the differences in mean values
Targeted enzymatic changes (IMPD and ATASE) with up to 10% relative variations are 

gridded, and the mean value is calculated for each grid box. All other enzymes have similar 

variations around their normal activities. The x- and y-axes represent relative enzymatic 

activities of IMPD and ATASE in regard to their normal values, while the z-axis exhibits the 

Minkowski distances using relative changes. The same distances are viewed from different 

angles. A: horizontal rotation (−125) and vertical elevation (20); B: horizontal rotation (−25) 

and vertical elevation (20). C: Significance of the differences in mean values between the 

distribution in the grid box with the minimal mean value and all other distributions.
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Figure 6. Feasibility of the sequential identification strategy
Minkowski distances for all possible sequential enzymatic changes with one additional 

change per step are connected through lines. The x-axis shows the number of enzymatic 

changes in each sequential scenario, while the y-axis represents the Minkowski distances 

using absolute changes. With each increase in the number of enzymatic changes, the 

simulated vector might be expected to become closer to the target vector. A: Schematic 

illustration of positions of simulated vectors and the target vector for a demonstration system 

with only two metabolites. B: Changes in Minkowski distances with increasing numbers of 

sequential enzymatic changes (720 different combinations in the case of 6 enzymes). C: Out 

of all 720 possible sequential enzymatic changes, only those with decreasing Minkowski 

distances for subsequent steps are shown. D: Out of all 720 possible sequential enzymatic 

changes, only those are shown that start with the minimal Minkowski distance at 1st step and 

end with a minimum at the 5th step.
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Figure 7. Strategic guidelines for the algorithmic inference of biochemical mechanisms from 
metabolomics data
The flow chart shows recommendations for designing an algorithm for the inference of 

biochemical mechanisms underlying a disease from metabolomics data. Preferred metrics 

are Minkowski distance, Euclidean distance, Manhattan distance, Jeffreys & Matusita 

distance, Dice’s coefficient, and Jaccard similarity coefficient. These metrics have similar 

performance. The outputs from the sequential strategy and multi-phase strategy can be 

compared and provide further targets for experimental investigations.
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Table I

Metrics for comparison of metabolic profiles and their characteristics

Metrics Characteristics Characteristics

Minkowski distance A general metric, here implemented with m 
= 3.

Euclidean distance Commonly used; increases influences of 
errors from large components on distance to 

some extent

Manhattan distance Each component has the same influence on 
distance

Jeffreys & Matusita distance Based on Euclidean distance; increases 
influences of errors from small components 

on distance to some extent

Canberra distance A metric considering relative magnitudes of 
errors in components

Relative distance Similar to Euclidean distance but uses 
relative distance instead

Cosine of angle A similarity metric using the cosine of the 
angle between two vectors; not affected by 

absolute values of components

Dice’s coefficient A similarity metric comparable to the cosine 
similarity, using arithmetic averages instead 

of geometric averages

Jaccard similarity coefficient A similarity metric similar to general Dice’s 
similarity
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Table II

Metabolic profile of normal and human renal cell carcinoma

Metabolite Normal Cell
(µM)

Cancer Cell
(µM)

Absolute
Change (µM)

Relative
Change (%)

PRPP 5.017 4.698 −0.320 −6.376

IMP 98.264 82.785 −15.479 −15.752

S_AMP 0.198 0.156 −0.043 −21.484

Ado/AMP/ADP/ATP 2475.379 2177.100 −298.309 −12.051

SAM 3.992 3.887 −0.105 −2.618

Ade 0.985 0.878 −0.107 −10.851

XMP 24.793 925.311 900.518 3632.172

GMP/GDP/GTP 410.234 633.248 223.014 54.363

dAdo/dAMP/dADP/dATP 6.017 6.305 0.288 4.777

dGMP/dGDP/dGTP 3.026 3.293 0.267 8.816

RNA 28680.584 30152.000 1471.000 5.129

DNA 5180.797 5432.700 251.925 4.863

HX/Ino/dIno 9.519 9.579 0.061 0.639

Xa 5.06 34.879 29.819 589.310

Gua/Guo/dGuo 5.507 33.198 27.691 502.818
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Table III

Enzymes in purine metabolism

Enzyme or reaction Abbreviation EC Number

Hypoxanthine-guanine phosphoribosyltransferase HGPRT 2.4.2.8

GMP synthetase GMPS 6.3.5.2

Adenylosuccinate lyase ASLI 4.3.2.2

GMP reductase GMPR 1.7.1.7

AMP deaminase AMPD 3.5.4.6

5’(3’) Nucleotidase 3NUC 3.1.3.31

Diribonucleotide reductase DRNR 1.17.4.1

Adenosine deaminase ADA 3.5.4.4

DNA polymerase DNAP 2.7.7.7

DNases DNAN #

Guanine hydrolase GUA 3.5.4.3

‘hypoxanthine excretion’ hx $

‘xanthine excretion' x $

`uric acid excretion' ua $

Phosphoribosylpyrophosphate synthetase PRPPS 2.7.6.1

Amidophosphoribosyltransferase ATASE 2.4.2.14

Adenine phosphoribosyltransferase APRT 2.4.2.7

`pyrimidine synthesis' PYRS #

IMP dehydrogenase IMPD 1.1.1.205

Adenylosuccinate synthetase ASUC 6.3.4.4

Methionine adenosyltransferase MAT 2.5.1.6

Protein O-methyltransferase MT 2.1.1.77, 2.1.1.80, and 2.1.1.100

S-adenosylmethionine decarboxylase SAMD 4.1.1.50

5’-Nucleotidase 5NUC 3.1.3.5

RNA polymerase RNAP 2.7.7.6

RNases RNAN #

Xanthine oxidase or xanthine dehydrogenase XD 1.17.1.4 and 1.17.3.2

#
: Multiple enzymes.

$
: Non-enzymatic reaction.
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