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Abstract

Objective—Covariate adjustment is a standard statistical approach in the analysis of randomised 

controlled trials. We aimed to explore whether the benefit of covariate adjustment on statistical 

significance and power differed between small and large trials, where chance imbalance in 

prognostic factors necessarily differs.

Study Design and Setting—We studied two large trial datasets (GUSTO-I, N=30,510 and IST, 

N=18,372) repeatedly drawing random samples (500,000 times) of sizes 300 and 5000 per arm 

and simulated each primary outcome using the control arms. We empirically determined the 

treatment effects required to fix power at 80% for all unadjusted analyses and calculated the joint 

probabilities in the discordant cells when cross-classifying adjusted and unadjusted results from 

logistic regression models (i.e., p<0.05 vs. p≥0.05).

Results—The power gained from an adjusted analysis for small and large samples was between 

5–6%. Similar proportions of discordance were noted irrespective of the sample size in both the 

GUSTO-I and the IST datasets.

Conclusion—The proportions of change in statistical significance from covariate adjustment of 

strongly prognostic characteristics were the same for small and large trials with similar gains in 

statistical power. Covariate adjustment is equally recommendable in small and large trials.
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1. Introduction

Randomised clinical trials (RCTs) provide key information for the assessment of treatment 

efficacy. At its simplest, eligible patients are randomly allocated to receive either an active 

intervention or a placebo; they are then followed for a specified period of time at the end of 

which their outcomes are suitably compared. Randomisation ensures that on average 

observed and unobserved patient characteristics are similar between treatment arms. It is an 

allocation mechanism with no preferential favouring toward treatment (1). However, it does 

not ensure full balance. Differences in baseline prognostic factors can arise between the 

treatment groups simply by chance. In the presence of such imbalance the comparability of 

the treatment groups may be questioned, especially with regards to any known important 

prognostic factors (e.g., severity of disease or age). Covariate adjustment can be used to 

account for such imbalances of known prognostic variables, although, even in the presence 

of balance, there are still gains to be made with regards statistical power (2–5). The 

CONSORT (Consolidated Standards of Reporting Trials) statement recommends that the 

unadjusted average treatment effect and the adjusted treatment effect be reported (Item No.’s 

12b and 18) (6). Despite these recommendations and the known benefits, covariate 

adjustment is often underutilised in randomised trials (7).

Other things being equal, small trials are subject to a greater chance of imbalance than large 

trials. It may be anticipated that correcting for such imbalance through covariate adjustment 

may therefore be more of a concern in smaller trials than larger trials. On the other hand, the 

stability of fitting a regression model will be less in a small trial. We sought to determine 

whether covariate adjustment led to similar power gains as in larger trials; and whether 

chance imbalance in small trials would lead to more discordance in statistical significance 

than in large trials contrasting unadjusted and adjusted treatment effects. We hereto devised 

a simulation study with small and large sample sizes drawn from two real trial datasets: the 

Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO-I) trial and the first 

International Stroke Trial (IST).

2. Methods

2.1 Trial datasets

We obtained data from two large randomised trials, both have been described in detail 

elsewhere (8–10). We chose these trials for their size and availability only. The Global Use 

of Strategies to Open Occluded Coronary Arteries (GUSTO-I) trial recruited patients with 

acute myocardial infarction (MI) and randomised them to receive either: tissue plasminogen 

activator (tPA); or streptokinase in combination with heparin. To meet the inclusion criteria 

patients had to be within six hours of symptom onset, suffered at least 20 minutes of chest 

pain and had the appropriate electrocardiographic signals. The primary outcome was patient 

mortality by 30 days. The first International Stroke Trial (IST) was a large randomised, 2×3 

factorial designed, open control, trial of patients who had suffered an acute ischaemic stroke 

within 48 hours of randomisation. The uncertainty principle was used to randomise patients 

to one of the treatment options. The uncertainty principle states that if an eligible patient 

presents for which the treating clinician is either certain that benefit or harm will come from 

giving the active treatment then the clinician should treat accordingly; otherwise, if the 
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clinician is suitably unsure of the likely response, then the patient may be randomised. 

Patients with a small chance of treatment benefit or a high risk of treatment harm were 

excluded. Patients were randomised to receive either aspirin or no aspirin in combination 

with two separate doses of heparin or no heparin. The primary outcome was six month death 

or disability. We restricted the IST data to definite or probable ischaemic strokes only. In 

addition, missing baseline data in IST were imputed once from a single run of a multiple-

imputation model producing one complete data set for analysis. For all simulations with the 

IST data we compared aspirin with no aspirin.

2.2 Adjusted and unadjusted treatment effects

Logistic regression can be used to model the relationship between a binary outcome and one 

or more prognostic risk factors. Multivariable binary logistic regression is often applied in 

clinical trials when the primary outcome is dichotomous. There are a number of known 

important prognostic risk factors both for the risk of 30 day mortality following MI and for 

the risk of six month death or disability after acute ischaemic stroke (11, 12). For each 

dataset we considered three covariate adjustment strategies using logistic regression. The 

first two were the same for both GUSTO-I and IST: Model 0, an unadjusted model fitting 

treatment only; and Model 1, an age adjusted model. For GUSTO-I we defined Model 2a, a 

fully adjusted model, which included six important covariates, fitting: age; Killip class; 

systolic blood pressure (mmHg); pulse (beats/min); infarct location (anterior vs. inferior/

other); and previous myocardial infarction (MI) (11). Killip class is a strictly ordinal 

measure with four unique levels summarising left ventricular function, though was fit as a 

linear term in Model 2a. Both systolic blood pressure and pulse were fit as piecewise linear 

functions split at 120mmHg and 50 beats/min respectively. In each case no effect is assumed 

below the specified cut-point with a linear association fit above the cut-point. For IST our 

fully adjusted model, Model 2b, included five important covariates: age, consciousness at 

randomisation (drowsy/coma vs. alert), visible infarct on CT scan, evidence of any arm or 

leg deficit and prior history of atrial fibrillation. Note that whilst decisions made in model 

development for the purpose of prediction are important they were not of any direct interest 

in the current paper. For the full model fits – Models 2a and 2b – variable selection was pre-

specified and in the case of the GUSTO-I data, functional form (i.e., handling of continuous 

variables) was based on existing modelling work already published on this trial (13, 14).

2.3 Simulation

We simulated small (300 patients per arm, with approximately 29/600 events for GUSTO-I 

and 346/600 events for IST) and large (5000 patients per arm, approximately 665/10000 

events for GUSTO-I and 6188/10000 for IST) samples from both the GUSTO-I (N=30,510) 

and the IST (N=18,372) trial datasets. Additionally, we explored an even smaller trial size 

using the IST data simulating a sample size of 50 patients per arm (approximately 50/100 

events). In each scenario we assumed a comparison of two treatment arms of equal size. In 

order that the simulated trials had the same unadjusted type II error rate we empirically 

searched for the unique treatment effects such that an estimated power (1-type II error) of 

80% was obtained for each trial sample size. Although a closed form solution for the 

asymptotic sample size formulae with sample size and type I and II error rates fixed is not 

tractable, an approximate solution can be reached through iterative computation. By varying 
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treatment effect across a range of values we were able to reach the treatment effects which 

obtained an estimated power of 80% for unadjusted analyses in each of the trial size 

scenarios. We then simulated 500,000 draws without replacement from each of the trial 

datasets at each of the sample sizes. We quantified the degree of chance imbalance in 

simulation for small and large trials by retaining from each draw the absolute difference in 

proportions for binary categorical variables between treatment and control and similarly the 

absolute difference in the mean for continuous variables. We then calculated the proportion 

of chance imbalance as those that exceeded a fixed difference across each of the simulated 

sample sizes.

We used those randomised to receive control (N=20,162 in GUSTO-I and N=9,189 in IST) 

to model patient outcome in each of the simulated replications. A separate simulation model 

was developed within the control arms for each of the trials using the covariates specified in 

Models 2a and 2b. From each replication we retained the estimated treatment effect and its 

estimated standard error (SE). We estimated the type I error rate under the null hypothesis 

(H0) of no treatment effect (an odds ratio of one) and the power under the alternative 

hypothesis (H1) with the empirically determined treatment effects. The type I error rate and 

the power were calculated as the ratio of significant results (p<0.05) to the total number of 

simulations. Significance was calculated using the Wald statistic (the ratio of the estimated 

coefficient and its estimated standard error). We quantified the proportion of discordant 

entries when cross-classifying the unadjusted and adjusted results defined at the 

conventional p<0.05 significance level, i.e., an absolute Wald statistic which exceeds a 

standard normal deviate of 1.96.

We carried out all simulations and analyses in R version 3.0.1 with the add-on package rms 

(15).

3. Results

Patient characteristics were well balanced between the treatment arms (Table 1). A formal 

likelihood ratio test of imbalance for each of the measured baseline covariates is provided 

for illustrative purposes only – none were significant at the 5% level.

The full multivariable simulation model for GUSTO-I included all six risk factors for 30 day 

mortality as used in Model 2a (Table 2). The relative contribution of each risk factor to the 

overall Chi-square (χ2) amongst those 20,162 patients randomised to receive control showed 

that age was the most important covariate followed by SBP. Model 2a had an R2 of 23% 

suggesting a good amount of explained variation. The event rate amongst those randomised 

to receive the control treatment was 7.0%. The empirically determined ORs were: 0.27 (an 

approximate absolute risk reduction (ARR) of 5%) and 0.77 (ARR of 1.5%) for small and 

large trials respectively. Similarly for IST patient age and alertness were amongst the most 

important predictors of six month death or disability – Model 2b explained a large amount of 

the variation in the IST data with an R2 of 25%. The event rate amongst those randomised to 

receive control was 50.5%. The empirically determined ORs were: 0.25 (ARR of 30.2%), 

0.57 (ARR of 13.7%) and 0.87 (ARR of 3.5%) for extra small, small and large trials 

respectively. The probability of imbalance in both GUSTO-I and IST quantified using the 
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absolute difference measure highlights the greater probability of imbalance that can be 

expected in a small trial contrast to a large trial. Joint imbalance between covariates was not 

explored. Note that different thresholds where adopted in each trial as this was a within trial 

comparison.

Table 3 shows a cross-tabulation of our findings from the GUSTO-I data. This illustrates the 

way the proportions of discordance were obtained. Similar results were found using the IST 

data. The findings from our simulation are provided in full in Table 4.

In the absence of a true treatment effect (OR=1) the type I error rate was slightly 

conservative for small trials (4.6% without adjustment for covariates) and close to 5% for 

large trials (Table 4). The power to detect a true treatment effect using the unadjusted model, 

Model 0, was empirically fixed at about 80% for trial size. The gain in power under the two 

adjustment strategies was approximately the same for both small and large trials in GUSTO-

I (+2% for Model 1 and +5% for Model 2a) and for IST (+2% for Model 1 and +6% for 

Model 2b). The overall performance of each model under each sample size is summarised 

through the average R2 illustrating the added benefit of adjusting for strong prognostic 

variables (Models 1, and 2a/b) describing the heterogeneity within each of the populations. 

Nagelkerke’s R2 depends on the size of the sample as noted in Table 4 (16).

With a true treatment effect (under H1), the proportion of discordance between a significant 

unadjusted treatment effect (Model 0) and a non-significant adjusted treatment effect (Model 

2a and Model 2b) result was similar for both small and large trials in GUSTO-I and IST 

(approximately 2%). The proportion of discordance between a non-significant unadjusted 

treatment effect (with Model 0) and a significant adjusted treatment effect (with Model 2a 

and Model 2b) was approximately 7% in GUSTO-I and 9% in IST. Hence, if the alternative 

hypothesis was true, a covariate-adjusted model correctly concluded significance where an 

unadjusted model would not in more trials than the other way around. A similar degree of 

equivalence was found between small and large sample sizes: when contrasting Model 0 

with Model 1; under H0 (with approximately equivalent proportions); and with a smaller 

sample size (in IST).

There was an indication that covariate adjustment in the smaller trial sizes (i.e., 300 per arm 

and 50 per arm) introduced a bias in the treatment effect estimates resulting in a somewhat 

overestimated treatment effect relative to the true known effect under H1 (Table 4). A similar 

bias was observed under the unconditional model when adjusting for un-associated variables 

(data not presented) indicating that this bias in small samples was likely caused by 

adjustment.

4. Discussion

Our simulation suggests similar power gains for small and large RCTs through covariate 

adjustment for strongly predictive risk factors. Contrary to what we anticipated, the impact 

of chance imbalance in small versus large trials did not result in more discordance between 

unadjusted and adjusted statistical significance. Covariate adjustment is hence equally 

recommendable in small and large trials.
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We explored covariate adjustment using binary logistic regression in randomised trial data. 

In contrast to linear models, the impact of covariate adjustment on the estimated treatment 

effect through non-linear regression models such as binary logistic, and Cox proportional 

hazards regression, is somewhat counterintuitive (17, 18). Adjusting for important covariates 

in a linear model has no impact on the estimated treatment effect but will be met by a 

reduction in the SE (a gain in precision and efficiency). In logistic regression, however, the 

SE is actually inflated by covariate adjustment (as seen in Table 4) although this is offset by 

an increase in the expected size of the treatment effect. Hauck et al. point out that the 

estimated ORs from a conditional and unconditional model are informative of the effect of 

treatment in separate reference populations. The moment additional information is included 

via covariate adjustment the definition of the reference population, and hence the odds ratio, 

changes and takes on an interpretation specific to that population (19). For this reason the 

treatment effect estimate from an adjusted non-linear model can be viewed as a move 

towards a more patient oriented estimate of the treatment effect accommodating for the 

individual’s risk profile through the addition of prognostic covariates (20, 21).

Hence, the benefit of covariate adjustment is two-fold. It accommodates for the impact 

caused by chance imbalance as well as accounting for baseline prognostic risk. Conditioning 

on this extra information increases the statistical power and yields estimates of treatment 

effects that are more relevant to the individual patient. The gains from covariate adjustment 

in the context of continuous outcomes can be interpreted through the strength of the 

correlation between predictor and outcome, whilst with a binary response the R2 may be 

used for a similar interpretation (14, 22). In our simulation we observed that with lower R2 

values (i.e., with Model 1) there was little benefit from adjustment, but with models 

adjusting for a number of strongly predictive covariates (i.e., Models 2a and 2b) there were 

substantial gains to be made. Based on our findings we suggest that in practice the gain 

made in statistical power from adjusting for strong prognostic factors (with R2 values ≥20%) 

may exceed that of correcting for the impact of chance imbalance alone. Additionally, with 

equivalent gains in power in both small and large trials similar reductions in sample size 

should be anticipated (5). The reduction in required sample size is approximately equal to 

the R2 of the prognostic model (23).

The observed number of events drives the reliability of estimation of parameters in a binary 

logistic regression model (i.e., the smallest frequency in a binary response). Some authors 

recommend a minimum of 10 events per variable (EPV) (24), while an EPV of 5 may be 

sufficient in the context of adjusting for confounders (25). We do not advocate a blithe 

approach to covariate adjustment in randomised trials. Indeed others have shown that 

adjusting for too many variables in small trials can in fact increase the type I error rate (26). 

Given the anticipated incidence of the outcome trialists would be wise to only consider 

adjusting for covariates that are known to be of prognostic importance and therefore 

predefined within the trial analysis plan (27). This practice is advocated by the European 

drug regulatory authority (EMA) (28). In their current guidance on covariate adjustment the 

EMA places emphasise on including a small number of prespecified and important 

prognostic characteristics within a model of simple form; only utilising non-linear 

transformations when there is strong a priori evidence to support it. Alternatively if an 

existing prognostic model was available trialists could adjust for predicted risk therefore 
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saving on the degrees of freedom spent on re-estimating parameters as well as minimising 

the risk of false positives by avoiding multiple subgroup analyses (29). We stress that 

covariate adjustment is as important in small trials as it is in large trials. A large trial has a 

smaller chance of imbalance but this is not a justification for ignoring patient characteristics; 

neither is a small trial too small to consider adjustment for important prognostic factors.

A similar study to ours considered the impact that chance imbalance in a single binary 

prognostic factor had on the estimation of treatment effect (30). This was a more artificial 

simulation than ours, exploring the impact of several trial level parameters, including: the 

size of the risk factor effect; the treatment effect; sample size; prevalence of the risk factor; 

and the incidence of the outcome. They identified an underestimation of a moderate 

treatment effect with sample sizes of 50 patients per arm or less (where the probability of 

chance imbalance was high) when failing to adjust for an important prognostic factor. Above 

this sample size estimation was unbiased. For a Normally distributed response and baseline 

measure, each with known variance and correlation Senn has demonstrated that on 

theoretical grounds covariate imbalance shares equal concern in both small and large trials 

where the effect on size is independent of the sample size (31). Our findings fit well with 

both of these studies. By fixing statistical power at 80% and exploring the operation of 

covariate adjustment exclusively on statistical significance our findings place further 

emphasis on the importance of multivariable covariate adjustment in the analysis of clinical 

trial data, yielding greater statistical power and – under H1 – a greater proportion of correct 

significant conclusions irrespective of sample size.

Although small in contrast to our large trial size, our definition of a small trial size was 

rather arbitrary and may be regarded by some as ‘large’. Indeed, it has been suggested that 

for trials with fewer than 50 patients per arm where chance imbalance could be more of a 

concern, trialists might consider employing minimisation – a dynamic approach to treatment 

allocation which ensures good balance between treatment arms for a set of important 

covariates (1, 32). An important point which is frequently overlooked by those who adopt 

minimisation though is that the same conditions imposed during randomisation must also be 

accounted for during analysis. Without appropriate adjustment the standard error of the 

obtained treatment effect is biased upwards, the statistical power is reduced and the type I 

error rate is low (33). Furthermore, the incidence of 30-day mortality in GUSTO-I was 

relatively low (7.0%). This implied that in simulation the required treatment effect for a trial 

containing fewer than 300 patients per arm for a fixed power of 80% would be so large that 

it would prevent all observed events in the treated arm and would preclude the estimation of 

a treatment effect. It was for this reason that we repeated our simulation method using data 

from the First International Stroke Trial (IST) (10). The primary outcome in IST had a far 

greater incidence permitting us to explore much smaller trial sizes. However, despite this 

there was little difference in discordance, at least of any practical importance.

Our study has some limitations. The simulation model imposes the assumption of linearity 

and additivity in the predictor outcome associations without formal testing; it is entirely 

possible that more complex associations underlie this data. However, without a loss in 

generality, the hypothesis that we have explored depends more on the perceived imbalance 

between patient characteristics and this would be the same irrespective of the underlying 
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simulation model. These findings are conditional upon randomisation being conducted 

correctly and considered differences that arise between treatment arms through random 

chance only. Although the assumption that randomisation has been undertaken in good faith 

seems the most plausible and reasonable default position to take, indeed anything else would 

be rather artificial (34).

We conclude that covariate adjustment through binary logistic regression is as important for 

small trials as it is for large trials. The impact of chance imbalance causes little practical 

difference in the proportion of discordance when comparing small and large trials. The size 

of the trial alone should hence not be a justification for avoiding implementing covariate 

adjustment.
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What is New?

• Empirical evidence to support the hypothesis that covariate adjustment leads 

to similar gains in statistical power irrespective of the size of the trial.

• Contrary to what may be anticipated by many trialists the relative impact of 

the larger expected imbalance in small trials compared to large trials does not 

lead to a differential change in the effect of covariate adjustment. The 

proportions of discordance in statistical significance between adjusted and 

unadjusted analyses were comparable in both small and large trials.

• Our findings support the use of covariate adjustment in randomised trials 

using multivariable regression analyses in both small and larger trials.
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Table 1

Summary of baseline characteristics and outcome by treatment arm for the GUSTO-I (N=30,510) and the IST 

trials (N=18,372).

Trial/Characteristics Treatment (n) Control (n) P-value

GUSTO-I tPA (10,348) Control (20,162)

Outcome

30-day mortality 653 (6.31) 1475 (7.32) 0.0010

Baseline measurements*

Age (years) 61.57 (52.33–70) 61.58 (52.02–69.78) 0.2434

Killip class (I to IV) 0.4692

I 8798 (85.02) 17209 (85.35) -

II 1328 (12.83) 2529 (12.54) -

III 142 (1.37) 275 (1.36) -

IV 80 (0.77) 149 (0.74) -

SBP (mmHg) 129 (112–144) 129 (112–144) 0.4239

Pulse 73 (62 to 86) 73 (62 to 86) 0.6595

Infarct location (anterior vs. inferior/other) 4022 (38.87) 7844 (38.91) 0.9493

Previous MI 1738 (16.80) 3320 (16.47) 0.4649

IST Aspirin (9183) Control (9189)

Outcome

6m death or disability 5693 (49.47) 5815 (50.53) 0.0713

Baseline measurements*

Age (years) 73 (65–80) 73 (65–80) 0.8122

Drowsy/coma vs. alert 2121 (23.10) 2134 (23.22) 0.8391

Infarct visible on CT 3128 (34.06) 3203 (34.86) 0.2575

Any arm or leg deficit 8053 (87.69) 8105 (88.20) 0.2897

Prior Atrial Fibrillation 1628 (17.73) 1566 (17.04) 0.2197

Note: Median and IQR presented for continuous measures, frequency and percentage for categorical variables.

*
P-values for imbalance are presented strictly for illustrative purposes; all are from a likelihood ratio test
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