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Abstract

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population 

proportion in an unequal probability sampling setting. This new method allows the probabilities of 

inclusion to be directly incorporated into the estimation of a population proportion, using a probit 

regression of the binary outcome on the penalized spline of the inclusion probabilities. The 

posterior predictive distribution of the population proportion is obtained using Gibbs sampling. 

The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and 

parametric model-based prediction estimators are demonstrated by simulation studies and a real 

example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 

95% credible interval provides better confidence coverage with shorter average width than the HK 

and GR estimators, especially when the population proportion is close to zero or one or when the 

sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are 

robust to model misspecification and influential observations in the sample.
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1. Introduction

Unequal probability sampling designs are commonly employed in data collection by science 

and government. Perhaps the simplest unequal probability design is stratified sampling, 

which samples units from different strata with different inclusion probabilities. Another 

important form of unequal probability sampling is probability-proportional-to-size (pps) 

sampling, in which the inclusion probability is proportional to the value of a size variable 

measured for all population units.
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An unequal probability sampling design such as pps sampling is often used for efficient 

estimation of population means of continuous variables, for which the variance increases 

with size of unit. However, inferences about discrete variables are often also of interest in a 

multipurpose survey (e.g., Lehtonen and Veijanen 1998, Lehtonen, Särndal and Veijanen 

2005). In this paper, we focus on methods of inference for finite population proportions from 

unequal probability sampling designs, based on an auxiliary variable measured for all the 

units in the population. We use pps sampling as a specific design to illustrate and assess our 

methods.

The inclusion probabilities play important and somewhat different roles in design-based and 

model-based inference from unequal probability survey samples (Smith 1976, 1994; Kish 

1995; Little 2004). In design-based inference, survey variables are fixed, and inference is 

based on the distribution of the sample inclusion indicators; the standard design-based 

approaches to estimation such as the Horvitz-Thompson (HT) estimator (1952) and its 

extensions weight sampled units by the inverse of their inclusion probabilities. These 

estimators are design consistent (Isaki and Fuller 1982) and provide reliable inferences in 

large samples without the need for modeling assumptions. However, these estimators are 

potentially very inefficient, as illustrated in Basu's (1971) famous elephant example. Also, 

variance estimation is cumbersome because it requires second-order inclusion probabilities. 

Corresponding confidence intervals are based on asymptotic theory, and may deviate from 

nominal levels for moderate or small sample sizes.

Model-based inference predicts values of survey variables in the non-sampled units by 

including the inclusion probabilities as covariates in the prediction model (Little 2004). 

Model-based prediction estimators are consistent and efficient under the assumed model, but 

are subject to bias when the underlying model is misspecified. This limitation motivates the 

development of flexible statistical models that are more robust to model misspecification. 

For continuous survey data, Zheng and Little (2003) estimated the finite population total 

using a nonparametric regression on a penalized spline (p-spline) of the inclusion 

probabilities. We propose here Bayesian P-Spline Predictive (BPSP) estimators that are 

suitable for a binary, as opposed to continuous, outcome. We adopt a Bayesian approach to 

inference for this model, since Bayesian methods often yield better inference for small 

sample problems, and are conveniently implemented for our proposed model via the Gibbs' 

sampler. In this approach, auxiliary variables other than the inclusion probability can also be 

included in the model, but the inclusion probability is singled out since modeling of this 

variable is prone to model misspecification.

We compare the performance of BPSP estimators with Hájek (HK, Horvitz-Thompson-type) 

estimators and with Generalized Regression (GR) estimators for a binary outcome proposed 

by Lehtonen and Veijanen (1998). The GR approach is a popular model-assisted 

modification of the design-based estimators that combines predictions from a model with 

design-weighted model residuals (Montanari 1998), to yield estimates that are 

approximately design unbiased.

Zheng and Little (2003; 2005) compared HT, p-spline prediction, and GR estimates of the 

total of a continuous survey variable by simulation. They found that p-spline model-based 
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estimators had better root mean squared error than the other methods, and with jackknife 

standard errors providing superior confidence coverage to HT or GR inferences. We conduct 

similar comparisons for inference about a population proportion for a binary outcome, and 

show similar advantages for our BPSP estimator over the HK and GR alternatives.

2. Design-based estimator

Suppose that we have a finite population consisting of N identifiable units. Let Y be the 

binary survey variable of interest and  be the proportion of the population 

for which Y = 1. Let πi denote the probability of inclusion for unit i, which is assumed to be 

known for all units in the finite population before a sample is drawn. An unequal probability 

random sample s with elements y1, …yn is then drawn from the finite population according 

to the inclusion probabilities π1, …πN. The design-based HK estimator in the discussion of 

Basu (1971) is defined as

(1)

The variance for p̂HK can be estimated via linearization of the Yates-Grundy estimator 

(1953) of totals,

(2)

The Yates-Grundy variance estimator requires pairwise inclusion probabilities. When the 

pairwise inclusion probabilities are not available, as in our simulations, the approximate 

formula proposed by Hartley and Rao (1962),

has frequently been used. An approximate 1 – α level confidence interval for the population 

proportion p̂HK is then obtained based on the normal approximation.

3. Bayesian P-Spline Predictive (BPSP) estimator

Royall (1970) argued for the use of models for finite-population descriptive inferences by 

predicting the unobserved values based on models, since model-based inferences should be 
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more efficient than design-based inferences. To model the relationship between the binary 

outcome Y and the continuous inclusion probability π we need to fit a binary regression of 

Y on π. Parametric binary regressions, such as the linear or quadratic logistic or probit 

model, may not be adequate in fitting the data. One solution for this problem of inflexibility 

is to fit a binary regression on a spline of π by adding some knots. However, too many knots 

may result in the roughness of model fit. One way to overcome this problem is to retain all 

of the knots but to constrain their influence, by fitting a binary p-spline regression model.

Common methods for modeling a binary outcome are logistic and probit regressions, and 

they generally give similar results. We choose to adopt probit models in our study for 

computational convenience. The probit regression model for binary outcomes has an 

underlying truncated normal regression structure on latent continuous data. If the latent 

continuous data are known, the parameters in binary p-spline regression models can be 

estimated using standard approaches for normal p-spline regression models. In a Bayesian 

context, the posterior distribution of parameters in the probit p-spline model can be 

computed using Gibbs sampling (Albert and Chib 1993; Ruppert, Wand and Carroll 2003, 

chapter 16). In contrast, the logistic p-spline regression model requires a more complicated 

computation procedure such as the Metropolis-Hastings algorithm. The computational 

advantage makes the probit link function more desirable than the logit link function in 

Bayesian binary p-spline regression models.

There are various types of p-splines. When applying p-splines, we need to make choices on 

the degree and knot locations, and the basis functions used to present the model. We choose 

to use the truncated polynomial p-splines because they are simple and intuitive. More 

numerically stable estimators can be obtained using B-splines via orthogonalizing the 

truncated power bases (Eilers and Marx 1996). The probit truncated polynomial p-spline 

regression model has a generalized linear mixed model representation,

(3)

where Φ−1 (·) denote the inverse CDF of a standard normal distribution, and the constants k1 

< … < km are m selected fixed knots. A function such as  is called a truncated 

polynomial spline basis function with power p, where  is equal to {u × I(u ≥ 0)}p for any 

real number u. Since the truncated polynomial spline basis function has p – 1 continuous 

derivatives, higher values of p lead to smoother spline functions. By specifying a normal 

distribution for b, the influence of the m knots is constrained in Model (3), which is 

equivalent to smooth the splines via the penalized likelihood.

The parameters in Model (3) can be estimated using generalized linear mixed model 

methods. An alternative Bayesian approach that simplifies computation is to assume weak 

prior and hyperprior distributions and use Gibbs sampling to obtain draws from the posterior 
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distributions of the parameters as follow: the probit regression model for binary responses 

has an underlying normal regression structure on latent continuous data; if the latent data are 

known, the posterior distribution of the parameters can be computed using standard results 

for normal regression models; and given the posterior distribution of the parameters, the 

latent continuous data can be simulated from a suitable truncated normal distribution. 

(Ruppert et al. 2003, page 290) The detailed algorithm of Gibbs sampling is in the 

Appendix. In addition, the Bayesian inference for p-spline regression can also been 

implemented using WinBUGS, the standard Bayesian analysis software (Crainiceanu, 

Ruppert and Wand 2005).

The posterior distribution of the population proportion is simulated by generating a large 

number D of draws and using the predictive estimator form , 

where  is a draw from the posterior predictive distribution of the jth non-sampled unit of 

the binary outcome. The average of these draws simulates the Bayesian P-Spline Predictive 

(BPSP) estimator of the finite population proportion, and is denoted as pB̂PSP, where

(4)

The Bayesian analog of a 100 × (1 – α)% confidence interval for the population proportion 

is a 100 × (1 – α)% credible interval, which can be formed in a number of different ways. 

We split the tail area α equally between the upper and lower endpoints in the simulations.

Firth and Bennett (1998) showed that any parametric logistic regression model containing an 

intercept term and the inverse of inclusion probabilities as a covariate, fitted by ordinary, 

unweighted maximum likelihood, was “internally bias calibrated” (IBC) for population 

proportions, and thus yields design consistency. This property is also true for logistic 

truncated polynomial p-spline regression models on the inverse of inclusion probabilities, 

fitted via penalized likelihood. With the probit link function used instead of the logit link 

function and fitted via Markov chain Monte Carlo algorithm instead of maximum penalized 

likelihood, the BPSP estimator may no longer have the IBC property. However, the 

similarity between the probit model and the logistic model implies that the predictive 

estimator based on a probit p-spline regression model is approximately design-consistent. 

We believe that obtaining efficient estimates with close to nominal confidence coverage in 

finite samples is more important than exact design consistency.

4. Generalized Regression (GR) estimator

For the estimation of class frequencies of a discrete response variable, Lehtonen and 

Veijanen (1998) proposed a GR estimator t̂GR of the total, which combines the predicted 

values ŷi = P̂r(Yi = 1| πi) based on a suitable model and the HT estimator for the residuals ri 

= yi – ŷi of the sampled units,
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(5)

The GR estimator in Equation (5) is then used in constructing an estimator for population 

proportions by dividing by the known population size N (Duchesne 2003),

(6)

We also consider here another version of the GR estimator for the estimation of finite 

population proportions, in which the denominator of the bias calibration term for the 

residuals ri is the estimated population size Σi∈s1/πi,

(7)

For the variance estimate of (6), we use the variance estimator of the estimated total of a 

discrete response variable, given by Lehtonen and Veijanen (1998), divided by N2. For the 

variance estimate of (7), we apply the Taylor linearization technique (Särndal, Swensson and 

Wretman 1992, page 182). These two variance estimators are shown in equations (8) and 

(9), respectively.

(8)

(9)

where ek = rk – (Σi∈sri/πi)(Σi∈s1/πi)−1. These variance estimators also require pairwise 

inclusion probabilities, which can be approximated by the method of Hartley and Rao 

(1962).

However, the Hartley and Rao approximation may lead to bias in the variance estimator. 

Thus, we also consider the jackknife method for variance estimation (Shao and Wu 1989). 

The sample is stratified into n/G strata each of size G with similar values of inclusion 

probabilities, and the G subgroups are then constructed by selecting one element at a time 
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from each stratum without replacement (Zheng and Little 2005). Let p̂(g) same GR 

estimators in (6) and (7) calculated from the reduced sample without the elements in the gth 

subgroup, and let p̄ average of the G estimators based on the G reduced samples. The 

jackknife variance estimator of p̂GR is

(10)

A design-weighted logistic regression model on other covariates was used as the assisting 

model to predict ŷi in the GR estimators for binary outcomes (Lehtonen and Veijanen 1998; 

Lehtonen et al. 2005). Since our interest here is in comparisons of GR estimators with the 

BPSP estimator, we apply the estimators (6) and (7) with linear probit regression models and 

probit p-spline models, as described in detail in Section 5. For the GR estimator using a 

linear probit model as the assisting model, we use the inclusion probability as a covariate as 

well as a weight in our simulations.

5. Simulation study

5.1 Design of the simulation study

Simulation studies are conducted to study the performance of the BPSP estimator compared 

with the HK estimator, the GR estimators, and the linear model-based predictive estimators 

for a variety of populations in pps sampling. We present the simulation results for the 

following six estimators:

a. HK, the Hájek estimator defined by equation (1).

b.
LR, predictive estimator of the form  with 

prediction  obtained with the maximum likelihood predictions from the linear 

logistic regression model containing a constant term and the reciprocal inclusion 

probability as the covariate. LR has the IBC property, and hence is design-

consistent. LR is exactly the same as its GR estimator in equation (6).

c.
PR, predictive estimator of the form  with 

prediction  from the Bayesian linear probit model containing an intercept 

term and the inclusion probability as the covariate.

d. PR_GR, the GR estimator in equation (7), where ŷi is the prediction for unit i 
with unknown parameters replaced by weighted maximum likelihood estimates 

from the probit model with a constant term and the inclusion probability as the 

covariate.

e. BPSP, the BPSP estimator defined by equation (4) with p = 1 and inverse-gamma 

prior distribution for τ2 and using 15 knots.
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f. BPSP_GR, the GR estimator in equation (7), where ŷi is the posterior mean of 

Pr (Yi = 1|π from the BPSP model.

We only report the simulation results based on the linear splines for the BPSP estimator, 

since simulations not shown here suggest that linear splines perform as well as quadratic 

splines or cubic splines in all the simulation scenarios. We choose two fixed numbers of 

knots (15 or 30), and place knots at evenly spaced sample percentiles. The choices of knots 

work well and a number of 15 knots is good enough to catch the curvatures in our 

simulations. In addition, the GR estimators in (6) perform similarly to the estimators in (7); 

some differences between these estimators emerge in the real application in Section 6, 

leading us to prefer (7) over (6).

We simulated two artificial populations of size 2,000, using two different distributions, with 

sampling rates of 5% and 10%, where the size variable takes the consecutive integer values 

71, 72, …, 2,070. The inclusion probabilities in the population were then calculated as 

proportional to the size variable, with the maximum value about 30 times the minimum 

values.

Continuous data Z were first generated from normal distributions with mean structure f (π) 

and constant error variance 0.04. Two different mean structures f (π) were simulated: a 

linearly increasing function (LINUP) f (πi)= k1πi and an exponential function (EXP) f (πi) 

= exp(−4.64 + k2πi). To make the range of Z similar across different mean structures, k1 

takes values of 3 and 6, and k2 takes values of 26 and 52, when the sampling rate is 10% and 

5%, respectively. Figure 1 plots the two populations. We then generated the binary outcome 

variable Y1, where Y1 is equal to one if Z is less than or equal to its superpopulation 10th 

percentile, otherwise Y1 is equal to zero. Similarly, we generated the binary outcomes Y2 

and Y3 by using the superpopulation 50th and 90th percentiles of Z as cut-off values. The 

target of inference here is the population proportion with Y equal to one.

In each simulation replicate, a finite population was generated before a sample was drawn, 

and the true finite population proportion with Y equal to one was calculated and denoted as 

p. A pps sample was then drawn systematically from a randomly ordered list of the finite 

population. For each population and sample size combination, 1,000 replicates were 

obtained and the six estimators were compared in terms of empirical bias, root mean squared 

error (RMSE), and the non-coverage rate of the 95% confidence /credible interval. 

Simulation results are presented in Tables 1 through 3. Let p̂i be an estimate of pi based on 

the ith pps sample, the empirical bias and RMSE are defined as follow,
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5.2 Simulation results

Figure 2 shows the posterior means of Pr (Yi = 1| πi) and 95% credible intervals based on 

the Bayesian probit linear p-spline model for a random pps sample from the EXP case. The 

upper left plot is the scatter plot of the continuous variable Z in a pps sample, with three 

horizontal parallel lines superimposed, representing the superpopulation 10th, 50th, and 90th 

percentiles, respectively. In the upper right plot, the binary variable Y, defined as 1 if Z is 

less than or equal to the superpopulation 10th percentile, are plotted with black circles, and 

the superpopulation Pr (Yi = 1|πi) are plotted with a solid black curve. The solid grey curve 

and two dashed grey curves are the posterior means of Pr (Yi = 1|πi) and 95% credible 

intervals based on the Bayesian probit linear p-spline regression model. The other two plots 

are similar to the upper right plot, but with superpopulation 50th and 90th percentiles as cut-

off values in defining Y. These plots show that the true probabilities of Y = 1 fall within the 

95% credible intervals, and are close to the posterior means of Pr (Yi = 1|πi). We conclude 

that the Bayesian probit p-spline regression model fits well for the binary outcomes in the 

nonlinear case.

Table 1 shows the empirical bias (×103) for the six estimators in the two populations 

generated via LINUP and EXP. Overall the design-based estimators (a, d, and f) are less 

biased than the model-based estimators (b, c, and e). In the LINUP case, the linear probit 

regression model is correctly specified, so that the empirical bias of the PR estimators are 

similar to the empirical bias of the BPSP estimator; while in the EXP case, a nonlinear 

probit regression is needed to fit the data, and thus the PR estimator is more biased than the 

BPSP estimator when the true population proportions are 0.1 and 0.5. However, the LR 

estimator has similar to the BPSP estimator empirical bias because of the IBC property. 

Compared to the model-based PR and BPSP estimators, the PR_GR and BPSP_GR 

estimator reduce the bias by adding the bias calibration term. Moreover, no matter which 

assisting models were used, both GR estimators achieve similar empirical bias.

Table 2 shows the empirical root mean squared error (×103) for the six estimators. The BPSP 

estimator has much smaller empirical root mean squared error than the HK estimator, except 

when p is 0.1 in the EXP case. Overall the PR estimator performs similarly to the BPSP 

estimator. To protect again model misspecification, the GR estimators lose some efficiency 

compared to their corresponding model-based predictive estimators. The PR_GR estimator 

has similar to the BPSP_GR estimator RMSE, but both of the two GR estimators have 

smaller RMSE compared to the HK estimator by using assisting models.

Table 3 shows the noncoverage probability (×102) of 95% confidence/credible intervals, the 

probability that the true finite population proportion is outside the 95% CI of the estimators. 

To calculate the variances of estimators, we use the Yates-Grundy variance estimator as 

defined in equation (2) for the HK estimator; use jackknife resampling method defined by 

equation (10) for the LR estimator; and use both the linearization (V1) method defined by 

equation (9) and the jackknife resampling (V2) method for the PR_GR and BPSP_GR 

estimators. Overall, the confidence coverage of credible interval for the BPSP estimator is 

closer to the nominal level than the other five estimators, especially when the population 

proportion p is close to zero or one or when few observations are selected into sample in the 

tails. Specifically, the BPSP estimator achieves significant improvement in coverage when p 
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is close to zero in both the LINUP and EXP cases, since little data are included in the sample 

from the lower tail of the two populations. Note that the improved coverage of the BPSP 

estimator is achieved with intervals that are narrower on average than those of the HK, LR, 

PR_GR, and BPSP_GR estimators. Similar to the empirical bias and RMSE, the BPSP_GR 

does not improve the coverage in comparison to the PR_GR estimator by using a flexible 

assisting model.

The choice of prior and hyperprior distributions in mixed models can have a big effect on 

inferences. We used a prior distribution N (0,106) for the fixed effects parameters, βi. In our 

simulations, we report results based on a proper inverse-gamma prior distribution for τ2, 

namely τ2 ∝ IG (0.1,0.1). To assess sensitivity to the choice of prior distributions, we also 

computed results using τ2 ∝ IG(0.01,0.01) and τ2 ∝ IG(0.001,0.001), as well as an improper 

uniform prior distribution on τ (Gelman 2006). These different priors had little impact on 

posterior inference of the proportion of interest.

6. Example of tax auditing

We now compare the BPSP estimator with alternative methods on a real population 

involving income tax auditing data (Compumine 2007). The data set consists of 3,119 

Swedish income tax returns for persons who during the year sold mutual funds managed in a 

foreign country. The outcome of interest Y is whether the income tax return is incorrect 

(coded as 1 for incorrect, and 0 for correct), and it is measured for all observations in this 

data set. We treated the 3,119 income tax returns as a finite population here, so that the true 

population proportion of incorrect income tax returns is 0.517. Since the amount of the 

realized positive profit is an important feature for determining the amount the tax payer has 

hidden from taxation for his return of income from the sale of a foreign fund, it was chosen 

as the size variable used in drawing pps sampling. When the primary measure of interest is 

the total amount the tax payer has hidden from taxation, it is reasonable to assign a value of 

1 Swedish Krona to negative profits, the minimum amount of the positive profits, where 

negative values are not allowed in the size variable.

One thousand repeated systematic pps samples of size 300 and 600 were drawn without 

replacement from randomly ordered population lists. The returns with largest profits were 

included with certainty into the samples of size 300 and 600: there were 78 and 241 such 

returns respectively. Figure 3 shows that the probability of inclusion has a right-skewed 

distribution for the population even after excluding the observations with inclusion 

probability of 1.

We applied the same six estimators as in the simulation study with 30 knots on the pps 

samples, and compared their performances in terms of empirical bias, RMSE, and average 

width and noncoverage rate of the 95% confidence/credible interval. For the BPSP estimator, 

a fixed number of 30 knots are placed at evenly spaced sample percentiles of the inclusion 

probabilities. For the GR estimators, neither the linearization nor the jackknife variance 

estimator has predominantly better performance than the other, we present the inference 

based on the linearization variance estimator for simple calculation. We report the GR 

estimators based on both equations (6) and (7). The results are displayed in Table 4.
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Table 4 shows that the BPSP estimator has slightly increased bias but smaller RMSE, shorter 

average width and closer to the nominal level credible interval than the design-based 

estimators (a), (d), and (f). Results not shown here indicate that the BPSP estimator with a 

uniform prior distribution has slightly better performance than that with inverse-gamma 

prior distribution with respect to empirical bias, RMSE, and coverage rate, because there are 

more fluctuations in the data and the uniform prior allows the fitted function to have more 

flexibility. The BPSP_GR estimator is less biased, but achieves less efficiency and worse 

coverage rate than the BPSP estimator. The predictive estimator using the probit linear 

regression model as prediction model performs poorly here since the model is misspecified, 

but its GR estimator does reduce bias and RMSE and improve coverage rate. The BPSP_GR 

estimator based on equation (6) performs very poorly in terms of RMSE compared to the 

estimator in equation (7), because a situation similar to that in Basu's (1971) circus elephant 

example occurs, where one or more observations having very low inclusion probabilities are 

selected into the sample and hence receive large weights. However, the PR_GR estimator in 

equation (6) performs as well as that in equation (7) with predictions obtained from the 

weighted maximum likelihood estimates, where inclusion probability is used as a covariate 

as well as the sample weights. Overall, the GR estimator in equation (7) is more desirable 

than that in equation (6). As the sample size increases from 300 to 600, the noncoverage 

probability of the 95% credible interval of the BPSP estimator approaches the nominal level 

of 5% quickly from 14% to 5%, but the coverages are consistently below the nominal level 

for the other estimators.

Compared to the linear model-based predictive estimators, the BPSP estimator is robust not 

only to model misspecification, but also to the influential observations in the sample. To 

demonstrate the robustness to the influential observations, we compare the changes in the 

model fitting using probit p-spline models, linear probit model, and quadratic probit model 

based on the pps sample only in Figure 4, and based on the pps sample as well as the 

observations with inclusion probabilities of 1 in Figure 5. In each figure, the population is 

stratified by the 100 quantiles of the probabilities of inclusion, and the true probabilities of Y 
= 1 are calculated and plotted with a black dot for each stratum. The grey curves are the 

posterior means of Pr (Yi = 1|πi) from 10 random pps samples using 3,000-iterate Gibbs 

sampler and linear spline in the left plot, using linear probit regression in the middle plot, 

and using quadratic probit regression in the right plot. Figure 4 shows that the probity p-

spline regression model is more flexible in catching the pattern among the observations than 

the parametric models. From Figure 4 to Figure 5, the posterior means of Pr (Yi = |πi) do not 

change except for those with very large inclusion probabilities using the p-spline model. 

However, the posterior means curves change dramatically using the quadratic probit 

regression. These comparisons indicate that probit p-spline regression model is less likely 

affected by influential observations, and hence is a good choice of prediction model in the 

model-based inference.

7. Discussion

Bayesian inferences based on the p-spline model outperform the HK estimator, the GR 

estimators, and linear model-based prediction estimators in our simulations. The BPSP 

estimators are more efficient than the HK and GR estimators, and despite slightly higher 
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empirical bias, their 95% credible intervals provide better confidence coverage and shorter 

average interval width, especially when the population proportion is closer to zero or one 

and few data are selected into the sample in the tails. This suggests the importance of current 

research in estimating finite population prevalence of rare events.

The BPSP estimator is a natural extension of the regular linear regression model-based 

estimators of finite population proportions. Compared to linear model-based predicttive 

estimators, the BPSP estimator achieves robustness to model misspecification and influential 

observations in the sample by using a flexible p-spline model, without much loss of 

efficiency for the sample sizes considered. Therefore, the BPSP estimator is easy to 

understand while requires complex computation. However, with the availability of 

WinBUGS, the Bayesian statistical software, the BPSP estimator can be easily implemented 

by survey practitioners.

The BPSP estimators are not sensitive to two choices of prior distributions of τ2 considered 

here, though it appears from the tax auditing example that the uniform prior yields slightly 

smaller bias and RMSE, shorter 95% credible intervals, and better coverage when a 

nonlinear prediction model is needed. The tax auditing example also shows that in the GR 

estimator, an estimated population size using the sum of inverse inclusion probabilities is 

more desirable than the true population size when one or more observations with very low 

inclusion probability are included in the sample, since the GR estimator with denominator N 
has high variance and low efficiency in this case.

The design-based estimators and their 95% confidence intervals can provide valid inferences 

for population proportions when the sample is large. However, these asymptotic properties 

do not appear to hold when the sample size is moderate or small. The BPSP approach can 

provide more valid inferences for small samples, especially when the true population 

proportion to be estimated is close to 0 or 1, although confidence coverage appears to be less 

than nominal when the sample size gets small, and lack of parsimony of the model is an 

issue. When estimating proportions away from tails, the BPSP estimator leads to slightly 

smaller RMSE and closer to the nominal level confidence coverage than the HK and GR 

estimators, but the improvement is not so significant as in the tails. In this scenario, to avoid 

the complex computation of the BPSP estimator, the PR_GR estimator based on equation (7) 

is an alternative to the survey practitioners.

The choice of variance estimator is problematic for some unequal probability designs for the 

design-based estimators, but the Bayesian p-spline prediction approach provides a 

simulation approximation of the full posterior distribution of the population proportion. 

Extra work is not needed to estimate the variance or 95% credible interval for the BPSP 

estimator, as it can be obtained simultaneously with the point estimators. In Zheng and Little 

(2005), three variance estimators of the p-spline model-based estimator for finite population 

total in a pps sample were compared, including the model-based empirical Bayes variance 

estimator, the jackknife variance estimate, and the balanced repeated replication (BRR) 

variance estimate. The simulation studies showed that the jackknife method worked well, 

whereas the BRR method tended to yield conservative standard errors and the model-based 

empirical Bayes estimator was vulnerable to misspecification of the variance structure. In 
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the present work, the 1 – α level credible interval for the BPSP estimator of population 

proportion is constructed by splitting α equally between the upper and lower endpoints of 

the posterior distribution of p. This pure Bayesian approach based on draws from the 

posterior distributions seems to work well in our setting and avoids the heavy computation 

associated with the jackknife and BRR method.

The BPSP estimator we propose here can be extended to include additional auxiliary 

covariates by adding linear terms for these variables. For domain estimation, an interaction 

term between the spline of inclusion probabilities and the domain indicator should also be 

modeled. Both the additive effects of auxiliary variables and the interaction between the 

domain indicator and inclusion probabilities can be represented in a mixed model (Ruppert 

et al. 2003, page 231) and estimated using Gibbs sampling or WinBUGS (Crainiceanu et al. 
2005). The BPSP estimator for finite population proportions can also be extended to a more 

general case of a polychotomous response. The Gibbs sampling approach for the binary case 

can be generalized to the case of ordered categories, and can be applied to the unordered 

categories with a latent multinomial distribution (Albert and Chib 1993). Another extension 

for the BPSP estimator is in the small area estimation, by combing small area random effects 

with the smooth spline on the inclusion probabilities (Opsomer, Claeskens, Ranalli, 

Kauermann and Breidt 2008). This extension will be the focus of future research.

Finally, one reviewer questioned whether the proposed approach can be applied in a 

multipurpose survey with many outcomes, since the modeling procedure does not provide a 

single set of weights and needs to be repeated for all variables of interest. It is true that our 

methods are more computationally intensive than existing approaches, but the BPSP method 

can be easily implemented with a Gibbs sampling algorithm or using WinBUGS, so 

computing is not a major obstacle. We point out that the simulations in the paper involved 

repeating the iterative Gibbs analysis 6,000 times, so an equivalent level of computation on a 

single survey of comparable size would allow the implementation of the BPSP method for 

6,000 outcomes! These were done on a garden-variety laptop PC. While we do not advocate 

automatic use of any analytical method, design or model-based, our point is that 

computational complexity is no longer a major obstacle to applying these methods. We 

suggest that the statistical properties of a method are more important than computing time, 

given modern day computing resources.

Algorithm of Gibbs sampling

Model (3) can also be written in the matrix form, Φ−1(E(yi | β,b,X,Z)) = (Xβ+ Zb)i, i = 1,

…,n β = (β0, β1, …, βp)T, b = (b1, …, bm) ∼ Nm(0,τ2Im)
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The algorithm of Gibbs sampling for estimating the parameters in Model (3) is as follows:

a. The probit regression model for the binary outcome y = [y1, …, yn]T corresponds 

to a normal regression model for a latent continuous data , 

which has a truncated multivariate normal distribution with mean (Xβ + Zb) and 

identity covariance matrix (Albert and Chib 1993), and yi is the indicator that 

. With some initial values of (β, b), values of the latent continuous data 

can be simulated.

b. Specifying a proper flat normal prior distribution N (0,106) on β and an inverse 

gamma distribution IG (0.1,0.1) on τ2, the posterior distribution of (β, b, τ2) 

given the simulated latent continuous data y* is

(11)

where C = [X, Z] and D is a diagonal matrix with p + 1 values of 10-6 followed 

by m ones on the diagonal. Gelman (2006) recommended a uniform prior 

distribution on τ, which results in the posterior distribution for τ2 as

(12)

c. At iteration t, draws of (β(t), b(t),τ2(t)) from the posterior distribution in equation 

(11) or (12) are used to generate new latent data ŷ*(t) conditional on observed 

binary variable y for the sample, and to obtain the posterior predicted values ŷ(t) 

for non-sample units. We then can obtain draws from the posterior distribution of 

the finite population proportion at iteration t as 
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Figure 1. 
Two simulated artificial populations (N = 2,000)
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Figure 2. 
A random pps sample from the EXP case (n = 200, N = 2,000): (a) scatter plot of Z; the 

three grey lines are the superpopulation 10th, 50th, and 90th percentiles, respectively. (b) 

black circles are observed units of binary survey variable Y in the sample, defined as Y = I 
(Z ≤ 10th percentile); the grey solid and dashed curves are posterior means of Pr (Yi = 1|πi) 

and 95% credible intervals, respectively, simulated based on a probit p-spline model on π; 

and the black curve is the superpopulation Pr(Yi = 1|πi). (c) similar to (b), but with Y = I (Z 
≤ 50th percentile). (d) similar to (b), but with Y = I (Z ≤ 90th percentile)
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Figure 3. 
Box plots of the probabilities of inclusion for two sample sizes in the tax auditing example
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Figure 4. 
Predictions based on pps samples only in the tax auditing example, X-axis: inclusion 

probabilities π, Y-axis: P(Y = 1|π); black dots are the true P(Y = 1|π) within each percentile 

of π; grey curves are ten realizations of the posterior means of P(Y = 1|π). The prediction 

models are (a) probit linear p-spline regression, (b) linear probit regression, (c) quadratic 

probit regression
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Figure 5. 
Predictions based on the combined data of pps samples and the observations sampled with 

certainty in the tax auditing example, X-axis: inclusion probabilities π, Y-axis: P(Y = 1|π); 

black dots are the true P(Y = 1|π) within each percentile of π; grey curves are ten 

realizations of the posterior mean of P(Y = 1|π). The prediction models are (a) probit linear 

p-spline regression, (b) linear probit regression, (c) quadratic probit regression
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