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Abstract

Biomimetic simulation permits neuroscientists to better understand the complex neuronal 

dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, 

which can read and write signals from the brain, will permit applications for amelioration of 

motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprostheses require real-

time adaptation to changes in the external environment, thus constituting an example of a dynamic 

data-driven application system. As model fidelity increases, so does the number of parameters and 

the complexity of finding appropriate parameter configurations. Instead of adapting synaptic 

weights via machine learning, we employed major biological learning methods: spike-timing 

dependent plasticity and reinforcement learning. We optimized the learning metaparameters using 

evolutionary algorithms, which were implemented in parallel and which used an island model 

approach to obtain sufficient speed. We employed these methods to train a cortical spiking model 

to utilize macaque brain activity, indicating a selected target, to drive a virtual musculoskeletal arm 

with realistic anatomical and biomechanical properties to reach to that target. The optimized 

system was able to reproduce macaque data from a comparable experimental motor task. These 

techniques can be used to efficiently tune the parameters of multiscale systems, linking realistic 

neuronal dynamics to behavior, and thus providing a useful tool for neuroscience and 

neuroprosthetics.

Introduction

Combining brain models and neuroprosthetics

The field of computational neuroscience has advanced significantly beyond artificial neural 

networks by using explicit experimental data to build biomimetic models of brain dynamics 

that can then be used to perform tasks [1–3]. The brain functions at many different but 

interdependent spatial and temporal scales, ranging from molecular interactions at the single 

neuron level, to small circuits of thousands of neurons, to information exchange between 

multiple areas involving millions of neurons. Biologically realistic models permit us to 

understand how changes at the molecular and cellular levels effect alterations in the 

dynamics of local networks of neurons and interconnected brain areas. At the highest levels, 

they allow us to connect neural activity to theories of behavior, memory, and cognition. The 

recent introduction of large neuroscience projects in the United States and the European 

Union—Brain Research through Advancing Innovative Neurotechnologies (BRAIN) [4] and 
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the Human Brain Project (HBP) [1], respectively—will provide an opportunity to rapidly 

gather new and more accurate data to incorporate into the multiscale models.

On the other hand, neuroprostheses or brain-machine interfaces belong to an emerging field 

that aims at decoding electrical signals recorded from the brain. These techniques can, for 

example, be used to enable people with paralysis to control a robotic arm. Closed-loop 

neuroprosthetics move a step further, to encode neural signals such that the prosthetic arm 

transmits information back into the brain via neurostimulation, allowing users to feel what 

they are touching. This technology, which would have seemed like science fiction not many 

years ago, is already being tested in humans and has the potential to improve the lives of 

millions of people with paralysis [5]. Additional ongoing research is examining applications 

to other brain disorders, including precisely stimulating brain circuits to bring about memory 

restoration in patients with amnesia [6].

Embedding biomimetic brain models in neuroprosthetic systems has the potential to 

significantly improve their performance [7–9]. In our paradigm, biological brain circuits 

interact directly with biomimetic brain simulations, thereby employing biological 

mechanisms of co-adaptation and learning to achieve a functional task in a biological 

manner. Importantly, both networks employ neuronal electrical impulses or spikes to process 

information. This enables activity from the real brain to be seamlessly decoded by the 

model, and uses the simulated neural patterns to directly stimulate the brain. Potential 

applications of this approach are numerous, one of the most promising being the 

development of biomimetic brain-machine interfaces for people with paralysis. The 

biomimetic model can employ action selection signals from the patient’s brain to generate 

naturalistic motor signals that enable fine control of a prosthetic limb [7, 10, 11].

Similarly, the biomimetic model can be used to replace and/or rehabilitate a damaged brain 

region [12–15]. To achieve this, the biomimetic model can be connected to the remaining 

brain regions and tuned to reproduce healthy neural activity and stimulate the damaged 

region, restoring normal brain function.

Neuroprostheses based on biomimetic brain models are a clear example of a dynamic data-

driven application system (DDDAS). They require simulation of a multiscale neural system 

in real time, while continuously learning and adapting the model parameters, based both on 

the neural activity from the real brain and on sensory feedback from the environment. We 

demonstrate here that combining the advantages of online biological learning methods 

[spike-timing dependent plasticity (STDP) and reinforcement learning] with those of an 

offline batch method (evolutionary algorithm optimization) can be an effective approach to 

building biomimetic neuroprostheses.

Biological learning and evolutionary optimization

The nervous system makes use of sensory information to rapidly produce behaviorally 

desirable movements, important for avoiding predators, finding shelter, and acquiring food. 

Primates use environmental sensory information to control arm movements to reach towards 

desirable targets.
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Reinforcement learning via dopamine-modulated synaptic plasticity is one type of learning 

that is important in producing movements towards goals [16, 17]. Various studies of 

reinforcement learning-based motor learning have shown that the process begins with 

random exploratory movements that may be rewarded or punished via the dopamine 

neuromodulatory error signal [18]. A Hebbian or spike-timing dependent associated 

eligibility trace provides credit assignment [17, 19], determining which synaptic connections 

were responsible for the actions and should be strengthened or weakened. In primates, 

frontal areas, including primary motor cortex (M1), are innervated by dopaminergic 

projections from the ventral tegmental area (VTA). These projections have been shown to 

contribute to M1 plasticity [20], and to be necessary for motor skill learning but not for 

subsequent execution of the learned task [21].

These biological learning methods can be used in biomimetic neuroprosthetic systems to 

learn associations between real brain activity, a multiscale brain model, and environmental 

effectors, such as a prosthetic limb. The brain model synaptic connections could be adapted 

to map brain activity encoding the patient’s intentions to motor commands that drive the 

prosthetic limb. Reward signals recorded from the real brain could even provide the 

dopamine modulatory signals used to train the brain model via reinforcement learning [22, 

23]. However, the reinforcement learning method itself also requires finding an optimal set 

of metaparameters that will maximize its efficiency. Examples of these metaparameters 

include the learning rate, the time window of eligibility traces, or the amplitude of the 

exploratory movements. Finding optimal solutions in such a complex multiscale system can 

be extremely time-consuming and inefficient if done manually.

One popular approach to optimizing complex multidimensional systems is the use of 

evolutionary algorithms, which use mechanisms inspired by biological evolution. Within the 

field of computational neuroscience, evolutionary algorithms have been predominantly 

applied to the tuning of single-cell models or small groups of neurons [24, 25]. Here, we use 

them for automated tuning of biological reinforcement learning metaparameters in large-

scale spiking networks with behavioral outputs. A fitness function is used to measure the 

system’s performance associated with each set of metaparameters. This constitutes an 

example of using evolutionary optimization for indirect encoding, as opposed to direct 

encoding, since we are tuning metaparameters instead of directly tuning the network 

synaptic weights. Indirect encoding methods have the advantage of reducing the size of the 

search space, here from thousands of synaptic weights to a small set of metaparameters. In 

the present context, the use of indirect encoding was also motivated by our desire to use a 

biologically realistic learning rule.

Parallelization is usually required to make evolutionary algorithms a practicable solution to 

complex optimization problems. The advancement and proliferation of parallel computing 

architectures, such as high-performance computing (HPC) clusters and graphics processing 

units (GPUs), has provided a substrate for the implementation of parallelized evolutionary 

algorithms. Here, we parallelize an evolutionary algorithm to run in a large HPC cluster, 

significantly increasing the speed of the automated parameter tuning framework. We further 

reduce execution time by employing an island model implementation, a parallel computing 

technique that maximizes the efficiency of the HPC [26].

Dura-Bernal et al. Page 3

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A similar version of this evolutionary optimization method was employed in our previous 

work [10], although a detailed description was not included. Here, we have improved the 

algorithm implementation by making use of an island model, and have applied it to a 

significantly more complex problem. Compared to [10], the current network contains 10 

times more neurons, adds a spinal cord and modulatory input from real multielectrode 

recordings, and can learn to reach two targets instead of one.

In related work, a parallel evolutionary algorithm for spiking neural networks was 

implemented to execute on GPUs for two different scenarios: indirect encoding for a visual 

system model [27], and direct encoding for a sensorimotor system model [28]. Our 

methodology differs in that it is implemented on large HPCs instead of GPUs, employs 

island model techniques to increase efficiency, and uses indirect encoding for a brain model 

with reinforcement learning in the context of a neuroprosthetic system.

Motor system neuroprosthesis

We evaluated the evolutionary optimization method using a biomimetic model of the motor 

system with over 8,000 spiking neurons and 500,000 synaptic connections (see Figure 1). 

The main component was a biologically realistic model of primary motor cortex (M1) 

microcircuits based on brain activity mapping [29–31]. This was connected to a spiking 

model of the spinal cord and a realistic virtual musculoskeletal arm. The arm model included 

anatomical and mechanical properties of bone, joint, muscle and tendon, as well as inertial 

dynamics of arm motion. Building on previous work [32, 33], we used reinforcement 

learning with STDP to adapt the motor system synaptic weights to drive the virtual arm to 

reach a target. Previously, we have shown that the virtual arm trajectories can be reproduced 

in real time by a robotic arm [10]. We therefore added the missing piece to obtain a 

neuroprosthetic system: we modulated the M1 network with activity recorded from macaque 

monkey premotor cortex [11]. These inputs acted as an action selection signal that dictated 

which target the virtual/robot arm had to reach. We have previously shown spiking activity 

from multielectrode recordings can be fed in real time to spiking network simulations [34]. 

In the future, the system could be extended to form a closed-loop neuroprostheses by 

neurostimulating the macaque monkey brain based on activity from the biomimetic network 

model.

Reinforcement learning was now responsible not only for learning appropriate motor and 

proprioceptive mappings between the M1, spinal cord and arm models, but also to associate 

premotor cortex spiking patterns to distinct reaching actions. This posed a significant 

challenge due to the complex multiscale dynamics, ranging from single neurons firing, to 

microcircuit oscillations, to musculoskeletal arm forces. The parallel evolutionary 

optimization method proposed managed to find reinforcement learning metaparameters that 

resulted in successful training of the system. The trained M1 network drove the arm to the 

target indicated by the recorded premotor cortex input. Arm trajectories and model neural 

activity were consistent with data from a similar experimental motor task [22].

The biological detail of our model is higher than that of previously published neural models 

that reproduce a similar reaching task: we implement a spiking neuron model with different 

synaptic receptors and many biological features, versus, for example, rate models [28]; we 
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have cortical-based recurrent circuits with different cell types, versus more artificial task-

oriented circuitries [7, 35, 36]; and we model anatomical and biophysical musculoskeletal 

arm properties, as opposed to simpler kinematic arm models [28, 35, 36]. Nonetheless, these 

models include regions that we do not explicitly implement, such as a population to encode 

reward information [35], posterior parietal cortex for sensory integration [28], or a 

cerebellum [36, 37].

The rationale for employing biologically detailed models is that it facilitates direct 

bidirectional interaction with the brain biological networks, including making use of 

synaptic plasticity at the single cell level to learn a specific behavior. We argue that for the 

model to respond in a biophysiologically realistic manner to ongoing dynamic inputs from 

the real brain, it needs to reproduce as closely as possible the structure and function of 

cortical cells and microcircuits.

This work demonstrates how to use parallel evolutionary algorithms to automate parameter 

tuning of reinforcement learning in multiscale brain models. This approach enabled 

translation of brain neural activity into realistic cortical spiking firing patterns that provided 

different motor commands to an external environment effector, thereby providing a useful 

tool to understand the sensorimotor cortex and develop neuroprosthetic systems.

In the remainder of this paper, we first describe the motor system model in more detail, as 

well as the biological learning methods and the evolutionary optimization approach. We then 

show the results of the optimization process, including the evolution of fitness over 

generations, as well as several performance measures of the optimized models. We end by 

discussing some implications of our work.

Methods

Motor system model

We implemented a model of the motor system with the following components: dorsal 

premotor cortex (PMd), primary motor cortex (M1), spinal cord, and musculoskeletal arm 

(Figure 1). PMd modulated M1 to select the target to reach, M1 excited the descending 

spinal cord neurons that drove the arm muscles, and received arm proprioceptive feedback 

(information about the arm position) via the ascending spinal cord neurons. Here, we 

describe each of the components in more detail.

The large-scale model of M1 consisted of 6,208 spiking Izhikevich model neurons [38] of 

four types: regular-firing and bursting pyramidal neurons, and fast-spiking and low-

threshold-spiking interneurons. These were distributed across cortical layers 2/3, 5A, 5B, 

and 6, with cell properties, proportions, locations, connectivity, weights and delays drawn 

primarily from mammalian experimental data [30, 31], and described in detail in previous 

work [29]. The network included 486,491 connections, with synapses modeling properties of 

four different receptors: AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), 

NMDA (N-Methyl-D- aspartic acid), GABAA (type A gamma-aminobutyric acid), and 

GABAB (type B gamma-aminobutyric acid). The model exhibits realistic physiological 

properties, including the distribution of firing rates and local field potential spectra.
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PMd was modeled using a single population of 736 spike generators that reproduced activity 

recorded from the associated brain area of a macaque monkey during a reaching task. These 

were connected to M1 layer 5A cells via conductance-based synapses to provide the 

modulatory input used for target selection.

A simple model of spinal cord circuits was implemented using 1,536 regular spiking 

neurons, distributed into two descending populations and one ascending population. 

Corticospinal neurons in layer 5B were connected to excitatory and inhibitory descending 

spinal cord populations segregated into four muscle group subpopulations: flexor and 

extensor muscles of the shoulder and elbow. Regular-firing excitatory subpopulations 

modeled lower motoneurons by providing excitation to the corresponding muscles. Low-

threshold spiking inhibitory subpopulations innervated the antagonist muscle motoneurons, 

modeling reciprocal inhibition and preventing antagonist muscles from contracting 

simultaneously. Proprioceptive feedback from the arm was encoded in an ascending spinal 

cord population, which then projected to M1 layer 2/3.

The virtual arm is a biomechanical model of human arm musculoskeletal system, 

constrained to two degrees of freedom in the horizontal plane. It includes 8 bones, 7 joints, 

and 14 muscle branches divided into four muscle groups: flexors and extensors of shoulder 

and elbow. Arm dynamics were calculated using an extended Hill-type muscle model [39], 

comprising two ordinary differential equations, which accounts for the force-length-velocity 

properties of muscle fibers and the elastic properties of tendons. The model takes as input an 

external muscle excitation signal, and calculates at each time step the overall muscle-tendon 

forces acting on bones. These forces then allow the arm model to obtain the position, 

velocity, and acceleration of each of the joints via a recursive Newton-Euler algorithm [40]. 

The model joint kinematics and dynamics were based on anatomical studies and match 

experimental measurements of an average-sized human adult male. A robotic arm can be 

made to follow the spiking network-driven virtual arm trajectories in real time. Although the 

robot arm was successfully tested with the current setup, the experiments in this study do not 

include the robot arm in the loop. More details on the virtual and robot arm implementations 

and their interface to the neuronal network can be found in our previous work [10].

Biological reinforcement learning

We modeled the brain’s dopamine-based reward circuits by providing a global reinforcement 

learning signal to modulate plasticity in the cortical neuronal network [41]. This signal was 

based on the state of the environment, which consisted of the virtual musculoskeletal arm 

and a fixed target in the 2D plane. The system can also be interpreted as an actor-critic 

reinforcement learning framework, where the neuronal network constitutes the actor, which 

maps sensory feedback to motor commands that alter the environment (control policy); and 

the reward system constitutes the critic (value function), which shapes the actor via plasticity 

to maximize its future rewards [35]. The aim was to learn a mapping between the M1 and 

spinal cord circuits that allowed driving the arm to a target, as well as a mapping between 

PMd and M1 that mediated target selection.

The reinforcement learning signal was calculated at short intervals (range 50 to 100 ms, 

optimized via the evolutionary algorithm) based on the distance between the virtual hand 
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and the target. If the hand was getting closer to the target, then synapses involved in 

generating that movement were rewarded; if the hand was getting farther, those synapses 

were punished. To decide which synapses were responsible for the previous movement 

(credit-assignment problem), we employed spike timing-dependent plasticity and eligibility 

traces [19]. Eligibility traces are short-term memory mechanisms that record a temporal 

event, marking the synapse as eligible for undergoing learning changes. Synapses were 

tagged when a postsynaptic spike followed a presynaptic spike within the STDP time 

window. If a global modulatory signal was received within the eligibility time window, a 

trace was imprinted on tagged synapses, leading to an increase/long-term potentiation (for 

reward), or decrease/long-term depression (for punishment) of the weight [17]. Plasticity 

was present in the 158,114 excitatory synapses interconnecting M1 and spinal cord, PMd 

and M1, and M1 layers 2, 5A, and 5B.

We chose to reproduce the classical center-out reaching task, where subjects start with their 

hand at a center position, and need to reach to one of two targets placed 15 cm to the right or 

left [42–44]. During the training phase, exploratory movements of the arm were generated 

by randomly stimulating spinal cord subpopulations corresponding to different muscles. 

Exploratory behaviors facilitate learning linking a larger space of motor commands to its 

outcomes and associated rewards.

After training, input from PMd should modulate M1 activity and select which target the 

virtual arm will reach. To achieve this, activity from 96 PMd biological neurons of a 

macaque monkey was recorded during a center-out reaching task to left and right targets. 

PMd spike patterns were replicated using a model population of spike generators that 

provided input to the M1 L5A excitatory population. During training, the target to reach, 

rewarded via reinforcement learning, and the PMd input pattern were alternated every trial, 

in order to associate each PMd pattern to its corresponding target.

The testing or evaluation phase consisted of two 1-second trials with PMd input patterns 

corresponding to the left and right targets. This means the trained network needs to be able 

to generate two distinct spiking patterns, which move the virtual arm in opposite directions, 

depending on the input spiking pattern received from PMd. During testing, arm movements 

were enabled only after the network had reached a steady state (after 250 ms), to avoid the 

bursts of activity during the initial transitory period. The system’s performance was 

quantified by calculating the time-averaged pointwise distance between the arm’s endpoint 

trajectory and the target.

Parallel evolutionary optimization

The efficiency of the biological reinforcement learning method used to train the motor 

system is significantly affected by the choice of its metaparameters. Therefore, to maximize 

the system performance, we must optimize the learning metaparameters within the permitted 

biologically realistic range. Manually tuning these metaparameters can be a time-consuming 

and inefficient approach. Evolutionary algorithms provide an automated method to search 

for the set of parameters that maximize the system’s performance, quantified using a fitness 

function. Following the principles of biological evolution, a population of individuals, each 

representing a set of genes or parameters, evolves over generations until one of them reaches 
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a desired fitness level. At every generation, individuals are evaluated and selected for 

reproduction, produce new offspring by crossing their genes and applying random 

mutations, and are replaced by the fitter offspring.

We employed evolutionary optimization to find reinforcement learning-related 

metaparameters that maximized the motor system performance. Importantly, we did not 

directly optimize the network synaptic weights (known as direct encoding), and instead we 

evolved the learning metaparameters of the model (indirect encoding). We optimized a total 

of 10 metaparameters within a range of values, such as the reinforcement learning interval or 

the amplitude of exploratory movements The range of values allowed for each 

metaparameter was based either on realistic biological constraints (e.g., the duration of the 

STDP or eligibility window), or on empirical observations derived from previous 

exploratory simulations (e.g., training duration or motor command threshold). See Table 1 

for a list of metaparameters and their allowed range of values.

To evaluate each individual, that is, each set of metaparameters, we required a fitness 

function that quantified how well reinforcement learning worked using these 

metaparameters. Therefore, each evaluation consisted of training the network via 

reinforcement learning, and testing the reaching performance to the right and left targets 

using the different target selection PMd input patterns. The trained network had to generate 

spiking patterns that resulted in the virtual arm reaching towards the target indicated by the 

PMd input. The fitness function was calculated as follows:

where dleft and dright represent the trajectory error, that is, the time-averaged distance 

between the arm’s endpoint and the left and right targets, respectively; davg represents the 

average trajectory error for both targets, and includes a term that penalizes differences 

between the two trajectory errors to reduce biases towards one of the targets; dmin represents 

the trajectory error for a best case scenario, reaching in straight line from the center to the 

target, starting after 250 ms and assuming a maximum speed of 1.0 ms−1 and an acceleration 

of 5.0 ms−2; and dmax represents the trajectory error for a worst-case scenario, reaching to 

the opposite (wrong) target under the same conditions. Ergo, a fitness of 1 indicates a fast, 

straight line reach towards the correct targets, whereas a fitness of 0 indicates a fast straight 

line each towards the opposite targets. The evolutionary algorithm attempted to maximize 

the fitness of individuals, which resulted in minimizing the arm trajectory errors to both 

targets.

Each phase of the evolutionary algorithm has several parameters that affect, for example, 

how many individuals are selected for reproduction, the rate of mutation, or how individuals 

are replaced after each generation. We implemented a canonical evolution strategy technique 

[45] with a population of 60 individuals, default selection (i.e., all individuals are selected), 

“plus” replacement, and an internal adaptive mutation using strategy parameters. The “plus” 

replacement method means that only the fittest individuals will survive after each 
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generation. In other words, out of 120 individuals (parents and offspring), only the 60 

individuals with the highest fitness values will remain. Adaptive mutation means that a set of 

strategy parameters are used to determine the mutation rate of each gene or metaparameter i. 
The mutation rate is updated as follows:

where pi represents the ith parameter, N(0; σ) represents the standard normal distribution of 

mean 0 and standard deviation σ, and σi is the standard deviation associated with the ith 

parameter. The strategy parameters are evolved along with the individuals using the 

following update equations:

where the minimum allowed strategy parameter ε is 10−5; the learning parameters τ = 1/

(2·n1/2)1/2 and τ′ = 1/(2·n)1/2; and n is the number of parameters [45].

The parallel implementation of the evolutionary algorithm is illustrated in Figure 2. 

Obtaining an individual with a high fitness (optimized set of metaparameters) requires 

running the algorithm for many generations. However, each individual evaluation can take 

more than 1 hour if run serially (since the model must be trained and tested), making it an 

unfeasible option. Parallel computing techniques, such as GPUs, have been previously used 

to reduce execution time in similar problems [27]. Here, we employed an HPC cluster to 

execute the fitness evaluations in parallel, drastically reducing computation time. To 

implement the evolutionary algorithm we employed the open source Python library Inspyred 

(https://pypi.python.org/pypi/inspyred), and adapted it to exploit the parallel computation 

capabilities of the HPC. A custom Inspyred Evaluator function was defined to submit each 

function evaluation as a job to the HPC queue. Each fitness evaluation consisted of running a 

motor system simulation to train and test reaching to the two targets. The network model 

was parallelized [46] to run on 16 cores, and one additional core was used for the virtual 

musculoskeletal arm. The job scheduling system, Portable Batch System (PBS), together 

with the resource manager, Simple Linux** Utility for Resource Management (SLURM), 

were then responsible for distributing the jobs across all computing nodes and returning the 

results to the master node. The Inspyred Evaluator function waited for all jobs to finish 

before submitting the fitness evaluations for the next generation.

Evolutionary algorithm parallelization typically results in a bottleneck effect, as moving 

onto the next generation requires waiting for the slowest individual to finish its fitness 

evaluation (synchronous master-slave mode). Given that one of the metaparameters evolved 

is the training time, the delay between the fastest and slowest fitness evaluation in 

**Trademark, service mark, or registered trademark of Linus Torvalds or Intel Corporation in the United States, other countries, or 
both.
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populations of 60 individuals can be significant. A useful parallel computing technique to 

solve this problem is the use of island models. Under this paradigm, the population is 

divided into several subpopulations (islands), and each one evolves independently. This 

increases the overall diversity and allows efficient parallelization, given that each island can 

evolve asynchronously, waiting only for the slowest individual within its population. To add 

cooperation between islands, and thus regain the benefits a larger population size, migration 

between islands occurs periodically. Migration entails moving a set of randomly selected 

individuals to a temporary migration pool, and replacing them with different individuals 

from that pool [47].

Two parameters have a strong effect on the performance of island models: the migration 

interval (or number of generations between migrations) and the migration size (or the 

number of individuals migrated each time). Research has shown that island models with an 

appropriate balance between these parameters are not only more computationally efficient, 

but can improve the quality of solutions obtained [26]. This results from achieving higher 

diversity and exchanging enough information to combine the partial results from each island. 

A study suggests that best performance is achieved with moderate migration intervals (5 to 

10 generations) and small migration sizes (5% to 10% of population size) [48]. Here, we 

chose to divide our single 60-individual population into 6 islands with 10 individuals each, 

with a migration interval of 5 generations and a migration size of 10%. The island model 

was implemented using Python’s multiprocessing library, where each island was run as 

separate job. Migration between islands was implemented via a custom Inspyred Migrator 

class, which employed a communication queue, shared by all jobs/islands, to exchange 

random individuals periodically.

The spiking network simulations were run in parallel using NEURON 7.4 [49] and Python 

2.7, on the San Diego Supercomputer Center (SDSC) Comet HPC system with 2.5 GHz 

Intel Xeon** E5-2680v3 processors. The code for the biomimetic neuroprosthetic system, 

including that used for the evolutionary optimization process, is open source and available 

via ModelDB (https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=194897).

Results

Fitness evolution

The evolutionary optimization algorithm increased the mean and best fitness values of the 

population over generations (Figure 3, black lines at bottom). Fitness values during the first 

generations exhibited a large variance (inappreciable/imperceptible in figure), which was 

rapidly reduced and kept approximately constant for the remaining generations. This is a 

consequence of the evolution strategy implemented, which only keeps the fittest individuals, 

and modifies them gradually in small search steps that result in small fitness changes. The 

best fitness value was 0.619, which was obtained by an individual of island 2 after 942 

generations. To provide further intuition of the meaning of fitness values, consider that for 

reaching trajectories measured experimentally (see following section for details), the fitness 

value would be 0.6845. Also, if the arm remained at the center, the fitness value would be 

0.508.
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Both mean and best fitness values of the 6 island subpopulations (with 10 individuals each) 

also increased progressively over generations (Figure 3, blue lines). This monotonic increase 

was ensured by the “plus” replacement method, which only allows the fittest individuals to 

survive. Islands evolved asynchronously, therefore producing different numbers of 

generations within the same execution time. Although islands evolved independently, 

random migration occurred every 5 generations and increased the diversity of the islands by 

introducing an external individual. Therefore, although the highest fitness values were 

predominantly obtained by island 2; other islands could have had an effect via migration.

Parallelization of the evolutionary optimization process happened at three levels. First, each 

fitness evaluation consisting of a NEURON simulation to train and test the system was 

parallelized to use 16 cores. Second, the 10 fitness evaluations required by each island every 

new generation were also executed in parallel. Finally, the 6 islands were also executed as 

parallel processes. Every level of parallelization provided a speedup compared to the 

corresponding serial or sequential equivalent version (Table 2).

The speedup achieved by parallelizing each simulation on 16 cores was sublinear (11:3×), 

due to some fixed computational overhead to run and interface with the virtual arm, 

distribute cells across nodes and gather the spikes back. Parallelizing the execution of the 10 

individuals per island also resulted in a sublinear speedup (5:8×), since advancing to the next 

generation required evaluating all individuals, which implies waiting for the slowest one. 

Finally, the speedup gained by parallelizing islands was linear (6:0×), since islands evolved 

independently—they can advance to the next generation once its 10 individuals have been 

evaluated, without depending on the stage of the remaining islands. In contrast, the single 

population approach (no islands) required the full population of 60 individuals to be 

evaluated each generation, leading to a strongly sublinear speedup—60 times more cores 

only achieved a speedup of 20:0×. The island model technique increased the speedup by a 

factor of 1.74. Overall, the island model technique together with parallelization of the model 

and the optimization process yielded a speedup of 393:2× over the single-core sequential 

approach (see Table 2).

Optimized model performance

The list of metaparameters optimized, the range of values explored for each, and the optimal 

set of values corresponding to the individual with the highest fitness, are shown in Table 1. 

To provide a better understanding of the effect of each metaparameter, Table 1 also includes 

the fitness of the system when the minimum or maximum value of each metaparameter was 

used (keeping the optimized values for the remaining metaparameters). Exploratory 
movements rate and training phase duration were the metaparameters with the highest 

sensitivity, whereas the system exhibited highest robustness to variations of eligibility trace 
window duration and STDP window duration. The optimized value of some metaparameters 

coincided with its lower bound value (RL learning rate, exploratory movements rate and 

PMd to M1 probability). This could indicate that fitness can be improved by increasing the 

range of values allowed for that metaparameter. However, it could also simply be a 

consequence of the stochastic nature of the evolutionary algorithm. Interestingly, fitness 

values improved slightly when using the minimum and maximum values of the eligibility 
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trace window duration. This suggests that performing a standard parameter grid search after 

the evolutionary algorithm could be an effective method to further optimize the system’s 

performance.

The optimized set of metaparameter values enabled the motor system model to learn the 2-

target reaching task employing a biological reinforcement learning method. Premotor cortex 

(PMd) spiking activity, recorded from a macaque monkey during a reaching task, was used 

as a target selection input to the primary motor cortex (M1) model. After training, M1 

populations produced different patterns of activity in response to the different PMd recorded 

spiking patterns for each target (Figure 4).

We compared model results to macaque monkey experimental data, including arm 

trajectories and multielectrode array extracellular recordings of 110 neurons from M1 L5. 

The data corresponds to 10 trials of a center-out reaching task to right and left targets placed 

4 cm away from the center. Arm trajectory errors were normalized by target distance to 

enable comparison between our motor system model and the experimental task. More details 

on the recording procedures and experimental task can be found in [22].

The average firing rate during reaching of layer 5 excitatory neurons for the 10 fittest models 

(14:0 Hz ± 4:5 Hz) was similar to that measured experimentally (19:3 Hz ± 1:4 Hz). The 

distribution of firing rates across cells also exhibited similar statistics for the top 10 models 

(median = 20:5 Hz ± 6:0 Hz and interquartile range = 26:2 ± 8:9 Hz) and experiment 

(median = 16:0 ± 1:4 Hz and interquartile range = 17:3 ± 1:9 Hz).

When the model learning metaparameters corresponded to individuals with the highest 

fitness values, the arm trajectory errors were closer to those measured experimentally (Table 

3). Note that fitness takes into account the trajectory error to both targets. Table 3 also 

includes the model solutions that achieve the lowest trajectory error for a given target, but 

these show high trajectory errors to the alternative target. These results further illustrate the 

complexity of finding networks capable of generating good reaching trajectories to both 

targets.

Conclusion

Our research lays the groundwork for a new generation of neuroprosthetic systems, where 

biological brain circuits interact directly with biomimetic cortical models, and employ co-

adaptation and learning to accomplish a functional task. Such a multiscale approach, ranging 

from the cellular to the behavioral level, will furthermore provide deeper insights into brain 

dynamics and have applications for the diagnosis and restoration of brain disorders.

We have reproduced experimental data of a center-out reaching task using a biomimetic 

model of the sensorimotor system and a virtual musculoskeletal arm. To achieve this we 

have combined a biological reinforcement learning rule, used to adapt the synaptic weights 

of a cortical spiking network model during training, with an evolutionary algorithm to 

automatically tune the metaparameters of the system. By evolving a set of indirect 

parameters or metaparameters, instead of the direct network parameters (i.e., the synaptic 

weights), we were able to employ a biologically realistic sensorimotor learning approach, 
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namely, dopamine neuromodulation of STDP. Previously, we had performed manual 

metaparameter tuning of similar models [32, 33]. However, the increased complexity of the 

virtual arm, which included many realistic biomechanical properties—and the more 

challenging dynamics of the detailed cortical model, spinal cord, and premotor cortex target 

selection inputs—required more sophisticated methods. We demonstrate the potential of 

parallel evolutionary algorithms in providing a solution to the problem of automated 

parameter optimization in biomimetic multiscale neural systems. The solutions found by our 

fitting algorithm yielded virtual arm trajectories and firing rates comparable to those 

measured experimentally.

The parallel implementation of the evolutionary algorithm over a large HPC cluster was 

achieved by combining the flexibility of a Python-based optimization package (Inspyred), 

with the HPC job scheduling software. Multiple fitness functions (up to 60) were evaluated 

concurrently, where each function consisted of running a NEURON simulation, which in 

turn executed, and interacted with, an instance of the musculoskeletal arm model, developed 

in C++. This demonstrates the modularity and adaptability of the parallel optimization 

framework, and suggests it could be useful for a diverse range of models, including those 

developed in different languages. Furthermore, our evolutionary algorithm implementation 

made use of an island model technique, whereby the population is subdivided into smaller 

groups that evolve independently and periodically exchange information via migration. This 

method significantly reduced the execution time and increased the HPC CPU usage, by 

eliminating the bottleneck caused by the slowest individuals in large populations.

Parallel evolutionary algorithms constitute an effective tool for automated parameter 

optimization in complex multiscale systems, such as those linking neural and behavioral 

models. These kinds of tools are likely to become indispensable in the development of 

hybrid co-adapting systems where in silico biomimetic brain models interact with real brains 

and prosthetic devices [13]. We previously showed that spikes from multielectrode 

recordings in macaque monkeys can be fed in real-time into a biomimetic model [34]. In this 

work, we extend this to show how spiking data recorded from macaque premotor cortex can 

be used to modulate a primary motor cortex (M1) model to select a desired target for 

reaching. This approach may enable the development of more advanced control of robotic 

limbs [10, 50], and have clinical applications by employing electrical or optogenetic 

stimulation neural control methods [12, 14, 51] to restore normal function in damaged brains 

[52, 53].
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Figure 1. 
Overview of neuroprosthetic motor system model. Recordings from premotor cortex 

modulated the primary motor cortex (M1) to select the target to reach. M1 excited the 

descending spinal cord neurons that drove the arm muscles, and received arm proprioceptive 

feedback via the ascending spinal cord neurons. The virtual arm trajectory can be 

reproduced by a robotic arm in real time. To close the loop, neurostimulation could be fed 

back into the brain based on the motor cortex model activity. L2/3, L5A, L5B, and L6 refer 

to cortical layers.
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Figure 2. 
Parallel implementation of the island model evolutionary algorithm. A set of 6 islands is 

instantiated via multiprocessing parallel jobs, each with a population of 10 individuals that 

evolve independently. Information between islands is exchanged via migration of individuals 

implemented using a shared queue. Individuals are selected and mutated using internal 

adaptive strategy parameters to create new offspring. New individuals are evaluated to obtain 

their fitness values. Evaluation of fitness functions occurs in parallel in the HPC using PBS/

SLURM, with each evaluation consisting of training the motor system model via 

reinforcement learning (RL), and testing its reaching performance to each of the targets. In 

every generation, the population is replaced by the fittest individuals out of all the parents 

and offspring.
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Figure 3. 
Evolution of the average (solid lines, with shaded areas showing standard deviation) and best 

(dashed lines) fitness values over 1,000 generations, for each island (blue) and the entire 

population (black, at bottom). The width of shaded areas corresponds to the standard 

deviation of the fitness of individuals in each island. Each individual consists of a different 

set of metaparameters, which are evaluated using a fitness function that reflects the degree of 

accuracy of the resulting arm trajectory.
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Figure 4. 
Time-resolved average firing rates of the premotor and motor cortical populations during 

reaching to two targets. Premotor spiking activity was recorded from a macaque monkey, 

and is used as a target selection input to the primary motor cortex (M1) model. M1 

population firing patterns are modulated by the PMd input and result in different reaching 

movement (see Table 3). The initial 200 ms of transient activity did not directly affect arm 

movements and are omitted.
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Table 1

List of metaparameters optimized using the parallel evolutionary algorithm, including range and optimized 

value to obtain fitness of 0.619.

Description Minimum (fitness using minimum) Max (fitness using maximum) Optimized value

STDP window duration (ms) 10 (0.557) 50 (0.581) 48.5

Eligibility trace window duration (ms) 50 (0.636) 150 (0.631) 117.8

Training phase duration (s) 30 (0.565) 180 (0.192) 85

RL learning rate 0.01 (0.619) 0.1 (0.444) 0.01

RL interval (ms) 50 (0.466) 100 (0.560) 76.8

Background rate (Hz) 50 (0.516) 150 (0.355) 134.5

Exploratory movements rate (Hz) 5 (0.619) 250 (0.426) 5

Motor command threshold (spikes) 500 (0.566) 2000 (0.531) 528.8

PMd to M1 probability of connection factor 1 (0.619) 8 (0.515) 1.0

Initial PMd to M1 weights 0.5 (0.508) 4 (0.433) 2.4
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Table 2

Speedup achieved by parallelization of the model and evolutionary optimization process for a population of 60 

individuals (6 islands).

Description Cores required 
(network + arm)

Time/generation (minutes) Speedup

Purely sequential 1 + 1 2,945.2 1

Parallel simulation (sequential individuals + islands) 16 + 1 260.6 11.3

Parallel simulation + individuals (sequential islands) 160 + 10 44.9 11.3 × 5.8 = 65.6

Parallel simulation + individuals + islands 960 + 60 7.5 11.3 × 5.8 × 6.0 = 393.2

Parallel simulation + individuals (single population, no 
islands)

960 + 60 13.0 11.3 × 20.0 = 226.6
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