
Evolutionary algorithm optimization of biological learning
parameters in a biomimetic neuroprosthesis

S. Dura-Bernal, S. A. Neymotin, C. C. Kerr, S. Sivagnanam, A. Majumdar, J. T. Francis, and
W. W. Lytton

Abstract

Biomimetic simulation permits neuroscientists to better understand the complex neuronal

dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis,

which can read and write signals from the brain, will permit applications for amelioration of

motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprostheses require real-

time adaptation to changes in the external environment, thus constituting an example of a dynamic

data-driven application system. As model fidelity increases, so does the number of parameters and

the complexity of finding appropriate parameter configurations. Instead of adapting synaptic

weights via machine learning, we employed major biological learning methods: spike-timing

dependent plasticity and reinforcement learning. We optimized the learning metaparameters using

evolutionary algorithms, which were implemented in parallel and which used an island model

approach to obtain sufficient speed. We employed these methods to train a cortical spiking model

to utilize macaque brain activity, indicating a selected target, to drive a virtual musculoskeletal arm

with realistic anatomical and biomechanical properties to reach to that target. The optimized

system was able to reproduce macaque data from a comparable experimental motor task. These

techniques can be used to efficiently tune the parameters of multiscale systems, linking realistic

neuronal dynamics to behavior, and thus providing a useful tool for neuroscience and

neuroprosthetics.

Introduction

Combining brain models and neuroprosthetics

The field of computational neuroscience has advanced significantly beyond artificial neural

networks by using explicit experimental data to build biomimetic models of brain dynamics

that can then be used to perform tasks [1–3]. The brain functions at many different but

interdependent spatial and temporal scales, ranging from molecular interactions at the single

neuron level, to small circuits of thousands of neurons, to information exchange between

multiple areas involving millions of neurons. Biologically realistic models permit us to

understand how changes at the molecular and cellular levels effect alterations in the

dynamics of local networks of neurons and interconnected brain areas. At the highest levels,

they allow us to connect neural activity to theories of behavior, memory, and cognition. The

recent introduction of large neuroscience projects in the United States and the European

Union—Brain Research through Advancing Innovative Neurotechnologies (BRAIN) [4] and

HHS Public Access
Author manuscript
IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

Published in final edited form as:
IBM J Res Dev. 2017 ; 61(2-3): 6.1–6.14. doi:10.1147/JRD.2017.2656758.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the Human Brain Project (HBP) [1], respectively—will provide an opportunity to rapidly

gather new and more accurate data to incorporate into the multiscale models.

On the other hand, neuroprostheses or brain-machine interfaces belong to an emerging field

that aims at decoding electrical signals recorded from the brain. These techniques can, for

example, be used to enable people with paralysis to control a robotic arm. Closed-loop

neuroprosthetics move a step further, to encode neural signals such that the prosthetic arm

transmits information back into the brain via neurostimulation, allowing users to feel what

they are touching. This technology, which would have seemed like science fiction not many

years ago, is already being tested in humans and has the potential to improve the lives of

millions of people with paralysis [5]. Additional ongoing research is examining applications

to other brain disorders, including precisely stimulating brain circuits to bring about memory

restoration in patients with amnesia [6].

Embedding biomimetic brain models in neuroprosthetic systems has the potential to

significantly improve their performance [7–9]. In our paradigm, biological brain circuits

interact directly with biomimetic brain simulations, thereby employing biological

mechanisms of co-adaptation and learning to achieve a functional task in a biological

manner. Importantly, both networks employ neuronal electrical impulses or spikes to process

information. This enables activity from the real brain to be seamlessly decoded by the

model, and uses the simulated neural patterns to directly stimulate the brain. Potential

applications of this approach are numerous, one of the most promising being the

development of biomimetic brain-machine interfaces for people with paralysis. The

biomimetic model can employ action selection signals from the patient’s brain to generate

naturalistic motor signals that enable fine control of a prosthetic limb [7, 10, 11].

Similarly, the biomimetic model can be used to replace and/or rehabilitate a damaged brain

region [12–15]. To achieve this, the biomimetic model can be connected to the remaining

brain regions and tuned to reproduce healthy neural activity and stimulate the damaged

region, restoring normal brain function.

Neuroprostheses based on biomimetic brain models are a clear example of a dynamic data-

driven application system (DDDAS). They require simulation of a multiscale neural system

in real time, while continuously learning and adapting the model parameters, based both on

the neural activity from the real brain and on sensory feedback from the environment. We

demonstrate here that combining the advantages of online biological learning methods

[spike-timing dependent plasticity (STDP) and reinforcement learning] with those of an

offline batch method (evolutionary algorithm optimization) can be an effective approach to

building biomimetic neuroprostheses.

Biological learning and evolutionary optimization

The nervous system makes use of sensory information to rapidly produce behaviorally

desirable movements, important for avoiding predators, finding shelter, and acquiring food.

Primates use environmental sensory information to control arm movements to reach towards

desirable targets.

Dura-Bernal et al. Page 2

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reinforcement learning via dopamine-modulated synaptic plasticity is one type of learning

that is important in producing movements towards goals [16, 17]. Various studies of

reinforcement learning-based motor learning have shown that the process begins with

random exploratory movements that may be rewarded or punished via the dopamine

neuromodulatory error signal [18]. A Hebbian or spike-timing dependent associated

eligibility trace provides credit assignment [17, 19], determining which synaptic connections

were responsible for the actions and should be strengthened or weakened. In primates,

frontal areas, including primary motor cortex (M1), are innervated by dopaminergic

projections from the ventral tegmental area (VTA). These projections have been shown to

contribute to M1 plasticity [20], and to be necessary for motor skill learning but not for

subsequent execution of the learned task [21].

These biological learning methods can be used in biomimetic neuroprosthetic systems to

learn associations between real brain activity, a multiscale brain model, and environmental

effectors, such as a prosthetic limb. The brain model synaptic connections could be adapted

to map brain activity encoding the patient’s intentions to motor commands that drive the

prosthetic limb. Reward signals recorded from the real brain could even provide the

dopamine modulatory signals used to train the brain model via reinforcement learning [22,

23]. However, the reinforcement learning method itself also requires finding an optimal set

of metaparameters that will maximize its efficiency. Examples of these metaparameters

include the learning rate, the time window of eligibility traces, or the amplitude of the

exploratory movements. Finding optimal solutions in such a complex multiscale system can

be extremely time-consuming and inefficient if done manually.

One popular approach to optimizing complex multidimensional systems is the use of

evolutionary algorithms, which use mechanisms inspired by biological evolution. Within the

field of computational neuroscience, evolutionary algorithms have been predominantly

applied to the tuning of single-cell models or small groups of neurons [24, 25]. Here, we use

them for automated tuning of biological reinforcement learning metaparameters in large-

scale spiking networks with behavioral outputs. A fitness function is used to measure the

system’s performance associated with each set of metaparameters. This constitutes an

example of using evolutionary optimization for indirect encoding, as opposed to direct

encoding, since we are tuning metaparameters instead of directly tuning the network

synaptic weights. Indirect encoding methods have the advantage of reducing the size of the

search space, here from thousands of synaptic weights to a small set of metaparameters. In

the present context, the use of indirect encoding was also motivated by our desire to use a

biologically realistic learning rule.

Parallelization is usually required to make evolutionary algorithms a practicable solution to

complex optimization problems. The advancement and proliferation of parallel computing

architectures, such as high-performance computing (HPC) clusters and graphics processing

units (GPUs), has provided a substrate for the implementation of parallelized evolutionary

algorithms. Here, we parallelize an evolutionary algorithm to run in a large HPC cluster,

significantly increasing the speed of the automated parameter tuning framework. We further

reduce execution time by employing an island model implementation, a parallel computing

technique that maximizes the efficiency of the HPC [26].

Dura-Bernal et al. Page 3

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A similar version of this evolutionary optimization method was employed in our previous

work [10], although a detailed description was not included. Here, we have improved the

algorithm implementation by making use of an island model, and have applied it to a

significantly more complex problem. Compared to [10], the current network contains 10

times more neurons, adds a spinal cord and modulatory input from real multielectrode

recordings, and can learn to reach two targets instead of one.

In related work, a parallel evolutionary algorithm for spiking neural networks was

implemented to execute on GPUs for two different scenarios: indirect encoding for a visual

system model [27], and direct encoding for a sensorimotor system model [28]. Our

methodology differs in that it is implemented on large HPCs instead of GPUs, employs

island model techniques to increase efficiency, and uses indirect encoding for a brain model

with reinforcement learning in the context of a neuroprosthetic system.

Motor system neuroprosthesis

We evaluated the evolutionary optimization method using a biomimetic model of the motor

system with over 8,000 spiking neurons and 500,000 synaptic connections (see Figure 1).

The main component was a biologically realistic model of primary motor cortex (M1)

microcircuits based on brain activity mapping [29–31]. This was connected to a spiking

model of the spinal cord and a realistic virtual musculoskeletal arm. The arm model included

anatomical and mechanical properties of bone, joint, muscle and tendon, as well as inertial

dynamics of arm motion. Building on previous work [32, 33], we used reinforcement

learning with STDP to adapt the motor system synaptic weights to drive the virtual arm to

reach a target. Previously, we have shown that the virtual arm trajectories can be reproduced

in real time by a robotic arm [10]. We therefore added the missing piece to obtain a

neuroprosthetic system: we modulated the M1 network with activity recorded from macaque

monkey premotor cortex [11]. These inputs acted as an action selection signal that dictated

which target the virtual/robot arm had to reach. We have previously shown spiking activity

from multielectrode recordings can be fed in real time to spiking network simulations [34].

In the future, the system could be extended to form a closed-loop neuroprostheses by

neurostimulating the macaque monkey brain based on activity from the biomimetic network

model.

Reinforcement learning was now responsible not only for learning appropriate motor and

proprioceptive mappings between the M1, spinal cord and arm models, but also to associate

premotor cortex spiking patterns to distinct reaching actions. This posed a significant

challenge due to the complex multiscale dynamics, ranging from single neurons firing, to

microcircuit oscillations, to musculoskeletal arm forces. The parallel evolutionary

optimization method proposed managed to find reinforcement learning metaparameters that

resulted in successful training of the system. The trained M1 network drove the arm to the

target indicated by the recorded premotor cortex input. Arm trajectories and model neural

activity were consistent with data from a similar experimental motor task [22].

The biological detail of our model is higher than that of previously published neural models

that reproduce a similar reaching task: we implement a spiking neuron model with different

synaptic receptors and many biological features, versus, for example, rate models [28]; we

Dura-Bernal et al. Page 4

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

have cortical-based recurrent circuits with different cell types, versus more artificial task-

oriented circuitries [7, 35, 36]; and we model anatomical and biophysical musculoskeletal

arm properties, as opposed to simpler kinematic arm models [28, 35, 36]. Nonetheless, these

models include regions that we do not explicitly implement, such as a population to encode

reward information [35], posterior parietal cortex for sensory integration [28], or a

cerebellum [36, 37].

The rationale for employing biologically detailed models is that it facilitates direct

bidirectional interaction with the brain biological networks, including making use of

synaptic plasticity at the single cell level to learn a specific behavior. We argue that for the

model to respond in a biophysiologically realistic manner to ongoing dynamic inputs from

the real brain, it needs to reproduce as closely as possible the structure and function of

cortical cells and microcircuits.

This work demonstrates how to use parallel evolutionary algorithms to automate parameter

tuning of reinforcement learning in multiscale brain models. This approach enabled

translation of brain neural activity into realistic cortical spiking firing patterns that provided

different motor commands to an external environment effector, thereby providing a useful

tool to understand the sensorimotor cortex and develop neuroprosthetic systems.

In the remainder of this paper, we first describe the motor system model in more detail, as

well as the biological learning methods and the evolutionary optimization approach. We then

show the results of the optimization process, including the evolution of fitness over

generations, as well as several performance measures of the optimized models. We end by

discussing some implications of our work.

Methods

Motor system model

We implemented a model of the motor system with the following components: dorsal

premotor cortex (PMd), primary motor cortex (M1), spinal cord, and musculoskeletal arm

(Figure 1). PMd modulated M1 to select the target to reach, M1 excited the descending

spinal cord neurons that drove the arm muscles, and received arm proprioceptive feedback

(information about the arm position) via the ascending spinal cord neurons. Here, we

describe each of the components in more detail.

The large-scale model of M1 consisted of 6,208 spiking Izhikevich model neurons [38] of

four types: regular-firing and bursting pyramidal neurons, and fast-spiking and low-

threshold-spiking interneurons. These were distributed across cortical layers 2/3, 5A, 5B,

and 6, with cell properties, proportions, locations, connectivity, weights and delays drawn

primarily from mammalian experimental data [30, 31], and described in detail in previous

work [29]. The network included 486,491 connections, with synapses modeling properties of

four different receptors: AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid),

NMDA (N-Methyl-D- aspartic acid), GABAA (type A gamma-aminobutyric acid), and

GABAB (type B gamma-aminobutyric acid). The model exhibits realistic physiological

properties, including the distribution of firing rates and local field potential spectra.

Dura-Bernal et al. Page 5

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

PMd was modeled using a single population of 736 spike generators that reproduced activity

recorded from the associated brain area of a macaque monkey during a reaching task. These

were connected to M1 layer 5A cells via conductance-based synapses to provide the

modulatory input used for target selection.

A simple model of spinal cord circuits was implemented using 1,536 regular spiking

neurons, distributed into two descending populations and one ascending population.

Corticospinal neurons in layer 5B were connected to excitatory and inhibitory descending

spinal cord populations segregated into four muscle group subpopulations: flexor and

extensor muscles of the shoulder and elbow. Regular-firing excitatory subpopulations

modeled lower motoneurons by providing excitation to the corresponding muscles. Low-

threshold spiking inhibitory subpopulations innervated the antagonist muscle motoneurons,

modeling reciprocal inhibition and preventing antagonist muscles from contracting

simultaneously. Proprioceptive feedback from the arm was encoded in an ascending spinal

cord population, which then projected to M1 layer 2/3.

The virtual arm is a biomechanical model of human arm musculoskeletal system,

constrained to two degrees of freedom in the horizontal plane. It includes 8 bones, 7 joints,

and 14 muscle branches divided into four muscle groups: flexors and extensors of shoulder

and elbow. Arm dynamics were calculated using an extended Hill-type muscle model [39],

comprising two ordinary differential equations, which accounts for the force-length-velocity

properties of muscle fibers and the elastic properties of tendons. The model takes as input an

external muscle excitation signal, and calculates at each time step the overall muscle-tendon

forces acting on bones. These forces then allow the arm model to obtain the position,

velocity, and acceleration of each of the joints via a recursive Newton-Euler algorithm [40].

The model joint kinematics and dynamics were based on anatomical studies and match

experimental measurements of an average-sized human adult male. A robotic arm can be

made to follow the spiking network-driven virtual arm trajectories in real time. Although the

robot arm was successfully tested with the current setup, the experiments in this study do not

include the robot arm in the loop. More details on the virtual and robot arm implementations

and their interface to the neuronal network can be found in our previous work [10].

Biological reinforcement learning

We modeled the brain’s dopamine-based reward circuits by providing a global reinforcement

learning signal to modulate plasticity in the cortical neuronal network [41]. This signal was

based on the state of the environment, which consisted of the virtual musculoskeletal arm

and a fixed target in the 2D plane. The system can also be interpreted as an actor-critic

reinforcement learning framework, where the neuronal network constitutes the actor, which

maps sensory feedback to motor commands that alter the environment (control policy); and

the reward system constitutes the critic (value function), which shapes the actor via plasticity

to maximize its future rewards [35]. The aim was to learn a mapping between the M1 and

spinal cord circuits that allowed driving the arm to a target, as well as a mapping between

PMd and M1 that mediated target selection.

The reinforcement learning signal was calculated at short intervals (range 50 to 100 ms,

optimized via the evolutionary algorithm) based on the distance between the virtual hand

Dura-Bernal et al. Page 6

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and the target. If the hand was getting closer to the target, then synapses involved in

generating that movement were rewarded; if the hand was getting farther, those synapses

were punished. To decide which synapses were responsible for the previous movement

(credit-assignment problem), we employed spike timing-dependent plasticity and eligibility

traces [19]. Eligibility traces are short-term memory mechanisms that record a temporal

event, marking the synapse as eligible for undergoing learning changes. Synapses were

tagged when a postsynaptic spike followed a presynaptic spike within the STDP time

window. If a global modulatory signal was received within the eligibility time window, a

trace was imprinted on tagged synapses, leading to an increase/long-term potentiation (for

reward), or decrease/long-term depression (for punishment) of the weight [17]. Plasticity

was present in the 158,114 excitatory synapses interconnecting M1 and spinal cord, PMd

and M1, and M1 layers 2, 5A, and 5B.

We chose to reproduce the classical center-out reaching task, where subjects start with their

hand at a center position, and need to reach to one of two targets placed 15 cm to the right or

left [42–44]. During the training phase, exploratory movements of the arm were generated

by randomly stimulating spinal cord subpopulations corresponding to different muscles.

Exploratory behaviors facilitate learning linking a larger space of motor commands to its

outcomes and associated rewards.

After training, input from PMd should modulate M1 activity and select which target the

virtual arm will reach. To achieve this, activity from 96 PMd biological neurons of a

macaque monkey was recorded during a center-out reaching task to left and right targets.

PMd spike patterns were replicated using a model population of spike generators that

provided input to the M1 L5A excitatory population. During training, the target to reach,

rewarded via reinforcement learning, and the PMd input pattern were alternated every trial,

in order to associate each PMd pattern to its corresponding target.

The testing or evaluation phase consisted of two 1-second trials with PMd input patterns

corresponding to the left and right targets. This means the trained network needs to be able

to generate two distinct spiking patterns, which move the virtual arm in opposite directions,

depending on the input spiking pattern received from PMd. During testing, arm movements

were enabled only after the network had reached a steady state (after 250 ms), to avoid the

bursts of activity during the initial transitory period. The system’s performance was

quantified by calculating the time-averaged pointwise distance between the arm’s endpoint

trajectory and the target.

Parallel evolutionary optimization

The efficiency of the biological reinforcement learning method used to train the motor

system is significantly affected by the choice of its metaparameters. Therefore, to maximize

the system performance, we must optimize the learning metaparameters within the permitted

biologically realistic range. Manually tuning these metaparameters can be a time-consuming

and inefficient approach. Evolutionary algorithms provide an automated method to search

for the set of parameters that maximize the system’s performance, quantified using a fitness

function. Following the principles of biological evolution, a population of individuals, each

representing a set of genes or parameters, evolves over generations until one of them reaches

Dura-Bernal et al. Page 7

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a desired fitness level. At every generation, individuals are evaluated and selected for

reproduction, produce new offspring by crossing their genes and applying random

mutations, and are replaced by the fitter offspring.

We employed evolutionary optimization to find reinforcement learning-related

metaparameters that maximized the motor system performance. Importantly, we did not

directly optimize the network synaptic weights (known as direct encoding), and instead we

evolved the learning metaparameters of the model (indirect encoding). We optimized a total

of 10 metaparameters within a range of values, such as the reinforcement learning interval or

the amplitude of exploratory movements The range of values allowed for each

metaparameter was based either on realistic biological constraints (e.g., the duration of the

STDP or eligibility window), or on empirical observations derived from previous

exploratory simulations (e.g., training duration or motor command threshold). See Table 1

for a list of metaparameters and their allowed range of values.

To evaluate each individual, that is, each set of metaparameters, we required a fitness

function that quantified how well reinforcement learning worked using these

metaparameters. Therefore, each evaluation consisted of training the network via

reinforcement learning, and testing the reaching performance to the right and left targets

using the different target selection PMd input patterns. The trained network had to generate

spiking patterns that resulted in the virtual arm reaching towards the target indicated by the

PMd input. The fitness function was calculated as follows:

where dleft and dright represent the trajectory error, that is, the time-averaged distance

between the arm’s endpoint and the left and right targets, respectively; davg represents the

average trajectory error for both targets, and includes a term that penalizes differences

between the two trajectory errors to reduce biases towards one of the targets; dmin represents

the trajectory error for a best case scenario, reaching in straight line from the center to the

target, starting after 250 ms and assuming a maximum speed of 1.0 ms−1 and an acceleration

of 5.0 ms−2; and dmax represents the trajectory error for a worst-case scenario, reaching to

the opposite (wrong) target under the same conditions. Ergo, a fitness of 1 indicates a fast,

straight line reach towards the correct targets, whereas a fitness of 0 indicates a fast straight

line each towards the opposite targets. The evolutionary algorithm attempted to maximize

the fitness of individuals, which resulted in minimizing the arm trajectory errors to both

targets.

Each phase of the evolutionary algorithm has several parameters that affect, for example,

how many individuals are selected for reproduction, the rate of mutation, or how individuals

are replaced after each generation. We implemented a canonical evolution strategy technique

[45] with a population of 60 individuals, default selection (i.e., all individuals are selected),

“plus” replacement, and an internal adaptive mutation using strategy parameters. The “plus”

replacement method means that only the fittest individuals will survive after each

Dura-Bernal et al. Page 8

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

generation. In other words, out of 120 individuals (parents and offspring), only the 60

individuals with the highest fitness values will remain. Adaptive mutation means that a set of

strategy parameters are used to determine the mutation rate of each gene or metaparameter i.
The mutation rate is updated as follows:

where pi represents the ith parameter, N(0; σ) represents the standard normal distribution of

mean 0 and standard deviation σ, and σi is the standard deviation associated with the ith

parameter. The strategy parameters are evolved along with the individuals using the

following update equations:

where the minimum allowed strategy parameter ε is 10−5; the learning parameters τ = 1/

(2·n1/2)1/2 and τ′ = 1/(2·n)1/2; and n is the number of parameters [45].

The parallel implementation of the evolutionary algorithm is illustrated in Figure 2.

Obtaining an individual with a high fitness (optimized set of metaparameters) requires

running the algorithm for many generations. However, each individual evaluation can take

more than 1 hour if run serially (since the model must be trained and tested), making it an

unfeasible option. Parallel computing techniques, such as GPUs, have been previously used

to reduce execution time in similar problems [27]. Here, we employed an HPC cluster to

execute the fitness evaluations in parallel, drastically reducing computation time. To

implement the evolutionary algorithm we employed the open source Python library Inspyred

(https://pypi.python.org/pypi/inspyred), and adapted it to exploit the parallel computation

capabilities of the HPC. A custom Inspyred Evaluator function was defined to submit each

function evaluation as a job to the HPC queue. Each fitness evaluation consisted of running a

motor system simulation to train and test reaching to the two targets. The network model

was parallelized [46] to run on 16 cores, and one additional core was used for the virtual

musculoskeletal arm. The job scheduling system, Portable Batch System (PBS), together

with the resource manager, Simple Linux** Utility for Resource Management (SLURM),

were then responsible for distributing the jobs across all computing nodes and returning the

results to the master node. The Inspyred Evaluator function waited for all jobs to finish

before submitting the fitness evaluations for the next generation.

Evolutionary algorithm parallelization typically results in a bottleneck effect, as moving

onto the next generation requires waiting for the slowest individual to finish its fitness

evaluation (synchronous master-slave mode). Given that one of the metaparameters evolved

is the training time, the delay between the fastest and slowest fitness evaluation in

**Trademark, service mark, or registered trademark of Linus Torvalds or Intel Corporation in the United States, other countries, or
both.

Dura-Bernal et al. Page 9

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pypi.python.org/pypi/inspyred

populations of 60 individuals can be significant. A useful parallel computing technique to

solve this problem is the use of island models. Under this paradigm, the population is

divided into several subpopulations (islands), and each one evolves independently. This

increases the overall diversity and allows efficient parallelization, given that each island can

evolve asynchronously, waiting only for the slowest individual within its population. To add

cooperation between islands, and thus regain the benefits a larger population size, migration

between islands occurs periodically. Migration entails moving a set of randomly selected

individuals to a temporary migration pool, and replacing them with different individuals

from that pool [47].

Two parameters have a strong effect on the performance of island models: the migration

interval (or number of generations between migrations) and the migration size (or the

number of individuals migrated each time). Research has shown that island models with an

appropriate balance between these parameters are not only more computationally efficient,

but can improve the quality of solutions obtained [26]. This results from achieving higher

diversity and exchanging enough information to combine the partial results from each island.

A study suggests that best performance is achieved with moderate migration intervals (5 to

10 generations) and small migration sizes (5% to 10% of population size) [48]. Here, we

chose to divide our single 60-individual population into 6 islands with 10 individuals each,

with a migration interval of 5 generations and a migration size of 10%. The island model

was implemented using Python’s multiprocessing library, where each island was run as

separate job. Migration between islands was implemented via a custom Inspyred Migrator

class, which employed a communication queue, shared by all jobs/islands, to exchange

random individuals periodically.

The spiking network simulations were run in parallel using NEURON 7.4 [49] and Python

2.7, on the San Diego Supercomputer Center (SDSC) Comet HPC system with 2.5 GHz

Intel Xeon** E5-2680v3 processors. The code for the biomimetic neuroprosthetic system,

including that used for the evolutionary optimization process, is open source and available

via ModelDB (https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=194897).

Results

Fitness evolution

The evolutionary optimization algorithm increased the mean and best fitness values of the

population over generations (Figure 3, black lines at bottom). Fitness values during the first

generations exhibited a large variance (inappreciable/imperceptible in figure), which was

rapidly reduced and kept approximately constant for the remaining generations. This is a

consequence of the evolution strategy implemented, which only keeps the fittest individuals,

and modifies them gradually in small search steps that result in small fitness changes. The

best fitness value was 0.619, which was obtained by an individual of island 2 after 942

generations. To provide further intuition of the meaning of fitness values, consider that for

reaching trajectories measured experimentally (see following section for details), the fitness

value would be 0.6845. Also, if the arm remained at the center, the fitness value would be

0.508.

Dura-Bernal et al. Page 10

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model

Both mean and best fitness values of the 6 island subpopulations (with 10 individuals each)

also increased progressively over generations (Figure 3, blue lines). This monotonic increase

was ensured by the “plus” replacement method, which only allows the fittest individuals to

survive. Islands evolved asynchronously, therefore producing different numbers of

generations within the same execution time. Although islands evolved independently,

random migration occurred every 5 generations and increased the diversity of the islands by

introducing an external individual. Therefore, although the highest fitness values were

predominantly obtained by island 2; other islands could have had an effect via migration.

Parallelization of the evolutionary optimization process happened at three levels. First, each

fitness evaluation consisting of a NEURON simulation to train and test the system was

parallelized to use 16 cores. Second, the 10 fitness evaluations required by each island every

new generation were also executed in parallel. Finally, the 6 islands were also executed as

parallel processes. Every level of parallelization provided a speedup compared to the

corresponding serial or sequential equivalent version (Table 2).

The speedup achieved by parallelizing each simulation on 16 cores was sublinear (11:3×),

due to some fixed computational overhead to run and interface with the virtual arm,

distribute cells across nodes and gather the spikes back. Parallelizing the execution of the 10

individuals per island also resulted in a sublinear speedup (5:8×), since advancing to the next

generation required evaluating all individuals, which implies waiting for the slowest one.

Finally, the speedup gained by parallelizing islands was linear (6:0×), since islands evolved

independently—they can advance to the next generation once its 10 individuals have been

evaluated, without depending on the stage of the remaining islands. In contrast, the single

population approach (no islands) required the full population of 60 individuals to be

evaluated each generation, leading to a strongly sublinear speedup—60 times more cores

only achieved a speedup of 20:0×. The island model technique increased the speedup by a

factor of 1.74. Overall, the island model technique together with parallelization of the model

and the optimization process yielded a speedup of 393:2× over the single-core sequential

approach (see Table 2).

Optimized model performance

The list of metaparameters optimized, the range of values explored for each, and the optimal

set of values corresponding to the individual with the highest fitness, are shown in Table 1.

To provide a better understanding of the effect of each metaparameter, Table 1 also includes

the fitness of the system when the minimum or maximum value of each metaparameter was

used (keeping the optimized values for the remaining metaparameters). Exploratory
movements rate and training phase duration were the metaparameters with the highest

sensitivity, whereas the system exhibited highest robustness to variations of eligibility trace
window duration and STDP window duration. The optimized value of some metaparameters

coincided with its lower bound value (RL learning rate, exploratory movements rate and

PMd to M1 probability). This could indicate that fitness can be improved by increasing the

range of values allowed for that metaparameter. However, it could also simply be a

consequence of the stochastic nature of the evolutionary algorithm. Interestingly, fitness

values improved slightly when using the minimum and maximum values of the eligibility

Dura-Bernal et al. Page 11

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

trace window duration. This suggests that performing a standard parameter grid search after

the evolutionary algorithm could be an effective method to further optimize the system’s

performance.

The optimized set of metaparameter values enabled the motor system model to learn the 2-

target reaching task employing a biological reinforcement learning method. Premotor cortex

(PMd) spiking activity, recorded from a macaque monkey during a reaching task, was used

as a target selection input to the primary motor cortex (M1) model. After training, M1

populations produced different patterns of activity in response to the different PMd recorded

spiking patterns for each target (Figure 4).

We compared model results to macaque monkey experimental data, including arm

trajectories and multielectrode array extracellular recordings of 110 neurons from M1 L5.

The data corresponds to 10 trials of a center-out reaching task to right and left targets placed

4 cm away from the center. Arm trajectory errors were normalized by target distance to

enable comparison between our motor system model and the experimental task. More details

on the recording procedures and experimental task can be found in [22].

The average firing rate during reaching of layer 5 excitatory neurons for the 10 fittest models

(14:0 Hz ± 4:5 Hz) was similar to that measured experimentally (19:3 Hz ± 1:4 Hz). The

distribution of firing rates across cells also exhibited similar statistics for the top 10 models

(median = 20:5 Hz ± 6:0 Hz and interquartile range = 26:2 ± 8:9 Hz) and experiment

(median = 16:0 ± 1:4 Hz and interquartile range = 17:3 ± 1:9 Hz).

When the model learning metaparameters corresponded to individuals with the highest

fitness values, the arm trajectory errors were closer to those measured experimentally (Table

3). Note that fitness takes into account the trajectory error to both targets. Table 3 also

includes the model solutions that achieve the lowest trajectory error for a given target, but

these show high trajectory errors to the alternative target. These results further illustrate the

complexity of finding networks capable of generating good reaching trajectories to both

targets.

Conclusion

Our research lays the groundwork for a new generation of neuroprosthetic systems, where

biological brain circuits interact directly with biomimetic cortical models, and employ co-

adaptation and learning to accomplish a functional task. Such a multiscale approach, ranging

from the cellular to the behavioral level, will furthermore provide deeper insights into brain

dynamics and have applications for the diagnosis and restoration of brain disorders.

We have reproduced experimental data of a center-out reaching task using a biomimetic

model of the sensorimotor system and a virtual musculoskeletal arm. To achieve this we

have combined a biological reinforcement learning rule, used to adapt the synaptic weights

of a cortical spiking network model during training, with an evolutionary algorithm to

automatically tune the metaparameters of the system. By evolving a set of indirect

parameters or metaparameters, instead of the direct network parameters (i.e., the synaptic

weights), we were able to employ a biologically realistic sensorimotor learning approach,

Dura-Bernal et al. Page 12

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

namely, dopamine neuromodulation of STDP. Previously, we had performed manual

metaparameter tuning of similar models [32, 33]. However, the increased complexity of the

virtual arm, which included many realistic biomechanical properties—and the more

challenging dynamics of the detailed cortical model, spinal cord, and premotor cortex target

selection inputs—required more sophisticated methods. We demonstrate the potential of

parallel evolutionary algorithms in providing a solution to the problem of automated

parameter optimization in biomimetic multiscale neural systems. The solutions found by our

fitting algorithm yielded virtual arm trajectories and firing rates comparable to those

measured experimentally.

The parallel implementation of the evolutionary algorithm over a large HPC cluster was

achieved by combining the flexibility of a Python-based optimization package (Inspyred),

with the HPC job scheduling software. Multiple fitness functions (up to 60) were evaluated

concurrently, where each function consisted of running a NEURON simulation, which in

turn executed, and interacted with, an instance of the musculoskeletal arm model, developed

in C++. This demonstrates the modularity and adaptability of the parallel optimization

framework, and suggests it could be useful for a diverse range of models, including those

developed in different languages. Furthermore, our evolutionary algorithm implementation

made use of an island model technique, whereby the population is subdivided into smaller

groups that evolve independently and periodically exchange information via migration. This

method significantly reduced the execution time and increased the HPC CPU usage, by

eliminating the bottleneck caused by the slowest individuals in large populations.

Parallel evolutionary algorithms constitute an effective tool for automated parameter

optimization in complex multiscale systems, such as those linking neural and behavioral

models. These kinds of tools are likely to become indispensable in the development of

hybrid co-adapting systems where in silico biomimetic brain models interact with real brains

and prosthetic devices [13]. We previously showed that spikes from multielectrode

recordings in macaque monkeys can be fed in real-time into a biomimetic model [34]. In this

work, we extend this to show how spiking data recorded from macaque premotor cortex can

be used to modulate a primary motor cortex (M1) model to select a desired target for

reaching. This approach may enable the development of more advanced control of robotic

limbs [10, 50], and have clinical applications by employing electrical or optogenetic

stimulation neural control methods [12, 14, 51] to restore normal function in damaged brains

[52, 53].

Acknowledgments

This work was supported in part by the Defense Advanced Research Projects Agency under Grant N66001-10-
C-2008, in part by the National Institutes of Health under Grant U01EB017695, in part by the National Science
Foundation, Division of Biological Infrastructure under Grant 1146949 and Grant1458840, and in part by NYS
SCIRB DOH01-C30838GG-3450000. We thank A. Tarigoppula for his help with the experimental data, and A.
Capilla for professional figure design.

References

1. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A,
Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N,

Dura-Bernal et al. Page 13

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chalimourda A, Chindemi G, Courcol J-D, Delalondre F, Delattre V, Druckmann S, Dumusc R,
Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril J-P, Gidon A, Graham JW, Gupta A, Haenel V,
Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG,
Kisvarday Z, Kumbhar P, Lasserre S, Le Bé J-V, Magalhães BRC, Merchan-Péerez A, Meystre J,
Morrice BR, Muller J, Munñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH,
Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J-R, Riquelme
JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M,
Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe
J, Hill SL, Segev I, Schïrmann F. Reconstruction and simulation of neocortical microcircuitry. Cell.
2015; 163:456–492. [PubMed: 26451489]

2. Kozloski J. Closed loop brain model of neocortical information based exchange. Front
Neuroanatomy. 2016; 10(3)

3. Neymotin S, McDougal R, Bulanova A, Zeki M, Lakatos P, Terman D, Hines M, Lytton W. Calcium
regulation of HCN channels supports persistent activity in a multiscale model of neocortex.
Neuroscience. 2016; 316:344–366. [PubMed: 26746357]

4. Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K, Donoghue JP,
Hudson KL, Ling GS, MacLeish PR, Marder E, Normann RA, Sanes JR, Schnitzer MJ, Sejnowski
TJ, Tank DW, Tsien RY, Ugurbil K, Wingfield JC. The BRAIN initiative: Developing technology to
catalyse neuroscience discovery. Philos Trans R Soc London, Ser B. 2015; 370(1668) Art. no.
20140164.

5. Bensmaia SJ, Miller LE. Restoring sensorimotor function through intracortical interfaces: progress
and looming challenges. Nature Rev Neurosci. 2014; 15:313–325. [PubMed: 24739786]

6. Underwood E. Darpa aims to rebuild brains. Science. 2013; 342(6162):1029–1030. [PubMed:
24288309]

7. Kocaturk M, Gulcur HO, Canbeyli R. Towards building hybrid biological/in silico neural networks
for motor neuroprosthetic control. Front Neurorobot. 2015; 9(8)

8. Miranda RA, Casebeer WD, Hein AM, Judy JW, Krotkov EP, Laabs TL, Manzo JE, Pankratz KG,
Pratt GA, Sanchez JC. DARPA-funded efforts in the development of novel brain–computer interface
technologies. J Neurosci Methods. 2014; 244:52–67. [PubMed: 25107852]

9. Tessadori J, Bisio M, Martinoia S, Chiappalone M. Modular neuronal assemblies embodied in a
closed-loop environment: Towards future integration of brains and machines. Front Neural Circuits.
2012; 6(99)

10. Dura-Bernal S, Zhou X, Neymotin SA, Przekwas A, Francis JT, Lytton W. Cortical spiking
network interfaced with virtual musculoskeletal arm and robotic arm. Front Neurorobot. 2015;
9(13)

11. Dura-Bernal S, Kerr CC, Neymotin SA, Suter BA, Shepherd GM, Francis JT, Lytton WW. Large-
scale M1 microcircuit model with plastic input connections from biological pmd neurons used for
prosthetic arm control. BMC Neurosci. 2015; 16(Suppl 1) Art. no. P153.

12. Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW. Restoring behavior via
inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front Neurosci.
2016; 10(28)

13. Sanchez JC, Lytton WW, Carmena J, Principe J, Fortes J, Barbour R, Francis JT. Dynamically
repairing and replacing neural networks: using hybrid computational and biological tools. IEEE
Pulse. Jan; 2012 3(1):57–59.

14. Kerr CC, Neymotin SA, Chadderdon G, Fietkiewicz C, Francis JT, Lytton WW. Electrostimulation
as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans
Neural Syst Rehabil Eng. Mar; 2012 20(2):153–160. [PubMed: 22180517]

15. Hogri R, Bamford SA, Taub AH, Magal A, Del Giudice P, Mintz M. A neuro-inspired model-based
closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized
rats. Sci Rep. 2015; 5 Art. no. 8451.

16. Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev
Neurosci. 2012; 35:287–308. [PubMed: 22462543]

Dura-Bernal et al. Page 14

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17. Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, Urakubo H, Ishii S, Kasai H. A critical time
window for dopamine actions on the structural plasticity of dendritic spines. Science. 2014;
345(6204):1616–1620. [PubMed: 25258080]

18. Kubikova L, Kostál L. Dopaminergic system in birdsong learning and maintenance. J Chem
Neuroanatomy. 2010; 39(2):112–123.

19. Izhikevich E. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cerebral Cortex. 2007; 17:2443–2452. [PubMed: 17220510]

20. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to
primary motor cortex mediate motor skill learning. J Neurosci. Feb.2011 31:2481–2487. [PubMed:
21325515]

21. Molina-Luna K, Pekanovic A, Róhrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti M-S, Luft
AR. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE.
2009; 4 Art. no. e7082.

22. Marsh B, Tarigoppula A, Chen C, Francis JT. Towards an autonomous brain machine interface:
integrating sensorimotor reward modulation and reinforcement learning. J Neurosci. 2015; 35(19):
7374–7387. [PubMed: 25972167]

23. Prins NW, Sanchez JC, Prasad A. A confidence metric for using neurobiological feedback in actor-
critic reinforcement learning based brain-machine interfaces. Front Neurosci. 2014; 8

24. Rumbell T, Draguljić D, Yadav A, Hof PR, Luebke JI, Weaver CM. Automated evolutionary
optimization of ion channel conductances and kinetics in models of young and aged rhesus
monkey pyramidal neurons. J Comput Neurosci. 2016; 41(1):65–90. [PubMed: 27106692]

25. Van Geit W, De Schutter E, Achard P. Automated neuron model optimization techniques: A review.
Biol Cyber. 2008; 99(4/5):241–251.

26. Martin, WN., Lienig, J., Cohoon, JP. Handbook of Evolutionary Computation. Vol. 6. London,
U.K: Oxford Univ. Press; 1997. Island (migration) models: Evolutionary algorithms based on
punctuated equilibria.

27. Carlson KD, Nageswaran JM, Dutt N, Krichmar JL. An efficient automated parameter tuning
framework for spiking neural networks. Front Neurosci. 2014; 8(10)

28. Asher DE, Krichmar JL, Oros N. Evolution of biologically plausible neural networks performing a
visually guided reaching task. Proc Genetic Evol Comput Conf. 2014:145–152.

29. Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton
WW. Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput.
2014; 26(7):1239–1262. [PubMed: 24708371]

30. Weiler N, Wood L, Yu J, Solla SA, Shepherd GMG. Top-down laminar organization of the
excitatory network in motor cortex. Nature Neurosci. Mar.2008 11:360–366. [PubMed: 18246064]

31. Anderson CT, Sheets PL, Kiritani T, Shepherd GMG. Sublayer-specific microcircuits of
corticospinal and corticostriatal neurons in motor cortex. Nature Neurosci. Jun.2010 13:739–44.
[PubMed: 20436481]

32. Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW. Reinforcement learning of targeted
movement in a spiking neuronal model of motor cortex. PLoS ONE. 2012; 7 Art. no. e47251.

33. Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW. Reinforcement learning of 2-
joint virtual arm reaching in a computer model of sensorimotor cortex. Neural Comput. 2013;
25(12):3263–3293. [PubMed: 24047323]

34. Lee G, Matsunaga A, Dura-Bernal S, Zhang W, Lytton W, Francis J, Fortes J. Towards real-time
communication between in vivo neurophysiological data sources and simulator-based brain
biomimetic models. J Comput Surg. 2014; 3(12):1–23. [PubMed: 26702394]

35. Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS Comput Biol. 2013; 9(4) Art. no. e1003024.

36. DeWolf T, Eliasmith C. The neural optimal control hierarchy for motor control. J Neural Eng.
2011; 8(6) Art. no. 065009.

37. Luque N, Garrido J, Carrillo R, Coenen O, Ros E. Cerebellar input configuration toward object
model abstraction in manipulation tasks. IEEE Trans Neural Netw. Aug; 2011 22(8):1321–1328.
[PubMed: 21708499]

Dura-Bernal et al. Page 15

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

38. Izhikevich E, Edelman G. Large-scale model of mammalian thalamocortical systems. Proc Nat
Acad Sci USA. 2008; 105(9):3593–3598. [PubMed: 18292226]

39. Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed
muscle control. J Biomech. 2003; 36(3):321–328. [PubMed: 12594980]

40. Featherstone, R., Orin, D. Robot dynamics: Equations and algorithms. Proc. Int. Conf. Robot.
Autom; San Francisco, CA, USA. 2000. p. 826-834.

41. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. Mar.
2008 185:359–381. [PubMed: 18251019]

42. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor
task. J Neurosci. 1994; 14(5):3208–3224. [PubMed: 8182467]

43. Flint RD, Lindberg EW, Jordan LR, Miller LE, Slutzky MW. Accurate decoding of reaching
movements from field potentials in the absence of spikes. J Neural Eng. 2012; 9(4) Art. no.
046006.

44. Demandt E, Mehring C, Vogt K, Schulze Bonhage A, Aertsen A, Ball T. Reaching movement
onset- and end-related characteristics of EEG spectral power modulations. Front Neurosci. 2012;
6(65)

45. Beyer H. Evolution strategies. Scholarpedia. 2007; 2(8):1965.

46. Migliore M, Cannia C, Lytton WW, Markram H, Hines ML. Parallel network simulations with
neuron. J Comput Neurosci. 2006; 21(2):119–129. [PubMed: 16732488]

47. Nowostawski M, Poli R. Parallel genetic algorithm taxonomy. Proc IEEE 3rd Int Conf Knowl-
Based Intell Inf Eng Syst. 1999:88–92.

48. Skolicki Z, De Jong K. The influence of migration sizes and intervals on island models. Proc 7th
Annu Conf Genetic Evol Comput. 2005:1295–1302.

49. Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schurmann F, Hines ML. Simulation
neurotechnologies for advancing brain research: Parallelizing large networks in neuron. Neural
Comput. 2016; 28:2063–2090. [PubMed: 27557104]

50. Carmena JM. Advances in neuroprosthetic learning and control. PLoS Biol. 2013; 11(5) Art. no.
e1001561.

51. Song W, Kerr CC, Lytton WW, Francis JT. Cortical plasticity induced by spike-triggered
microstimulation in primate somatosensory cortex. PLoS ONE. 2013; 8(3) Art. no. e57453.

52. Fagg AH, Hatsopoulos NG, de Lafuente V, Moxon KA, Nemati S, Rebesco JM, Romo R, Solla
SA, Reimer J, Tkach D, Pohlmeyer EA, Miller LE. Biomimetic brain machine interfaces for the
control of movement. J Neurosci. 2007; 27(44):11842–11846. [PubMed: 17978021]

53. Stanley GB. Reading and writing the neural code. Nature Neurosci. 2013; 16(3):259–263.
[PubMed: 23434978]

Biographies

Salvador Dura-Bernal Neurosim Lab, SUNY Downstate Medical Center, Brooklyn, NY
11203 USA (salvadordura@gmail.com). Dr. Dura-Bernal is a Research Assistant Professor

in the Physiology and Pharmacology Department at SUNY Downstate Medical Center. He

completed his B.Sc. and M.Sc. degrees in telecommunication engineering in Spain and

received his Ph.D. degree in computational neuroscience (2011) from the University of

Plymouth, United Kingdom. He then worked as a Postdoctoral Researcher for the University

of Plymouth and Johns Hopkins University, developing biologically inspired, hierarchical

models of auditory processing, and multimodal integration. In 2012, Dr. Dura-Bernal joined

the Neurosim Lab at SUNY Downstate as a Postdoctoral Researcher for the Defense

Advanced Research Projects Agency (DARPA) REPAIR project, aimed at replacing

damaged brain motor regions with biomimetic neuroprosthetic systems. He currently works

on a National Institutes of Health grant, developing a detailed multiscale model of primary

motor cortex. Dr. Dura-Bernal also teaches computational neuroscience at the NYU Tandon

Dura-Bernal et al. Page 16

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

School of Engineering as an Adjunct Professor. He is author or coauthor of 18 peer-reviewed

journal papers or book chapters as well as 22 conference proceedings. He is a member of the

Society for Neuroscience and the Organization for Computational Neurosciences.

Samuel A. Neymotin Brown University, Providence, RI 02912 USA
(samuel_neymotin@brown.edu). Dr. Neymotin is Assistant Research Professor in

Neuroscience at Brown University. He received a B.S. degree in computer science from

Queens College in 2001, an M.S. degree in computer science from Columbia University in

2005, and a Ph.D. degree in biomedical engineering from SUNY Downstate/NYU-Poly in

2012. He subsequently joined Yale University as a Postdoctoral Associate in neurobiology.

Afterwards, he joined SUNY Downstate Medical Center as Research Assistant Professor

(2013). In 2017, he joined Brown where his research focuses on computational neuroscience

and analysis of neural data. In 2012, he received the Robert F. Furchgott Award for

Excellence in Research. He is an author on 32 peer-reviewed papers and 6 book chapters/

review articles. Dr. Neymotin is a member of the Society for Neuroscience and the

Organization for Computational Neurosciences.

Cliff C. Kerr Complex Systems Group, School of Physics, University of Sydney, Sydney,
NSW 2006, Australia (cliff@thekerrlab.com). Dr. Kerr is an Australian Research Council

(ARC) Discovery Early Career Research Award (DECRA) Fellow, focusing on investigating

the interplay between small-scale and large-scale dynamics in biomimetic spiking network

models of the brain. In addition to neuroscience, he works on human immunodeficiency

virus epidemic modeling and big data analytics. He has authored 30 scientific papers and 4

book chapters. He is a member of the Organization for Computational Neuroscience.

Subhashini Sivagnanam Data Enabled Scientific Computing Division, San Diego
Supercomputer Center, University of California, San Diego, La Jolla, CA 92093 USA
(sivagnan@sdsc.edu). Ms. Sivagnanam is a computational and data science research

specialist at the San Diego Supercomputer Center. She received a B.E. degree in electronics

and communication from University of Madras, Chennai, India, in 2001, and an M.S. degree

in computer engineering from North Carolina State University in 2004. She joined the San

Diego Supercomputer Center in 2005 and has been working on web-based science platforms

and high-performance computing applications and systems. She is author or coauthor of 16

papers and conference proceedings. She is a member of the Organization for Computational

Neuroscience.

Amit Majumdar Data Enabled Scientific Computing Division and Department of Radiation
Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92093
USA (majumdar@sdsc.edu). Dr. Majumdar is the Director of the Data Enabled Scientific

Computing Division at the San Diego Supercomputer Center and a faculty member at the

Department of Radiation Medicine and Applied Sciences. He received his B.S. degree in

electronics and telecommunication from Jadavpur University, Calcutta, India, in 1985, M.S.

degree in nuclear engineering from Idaho State University in 1988, and Ph.D. degree in

nuclear engineering and scientific computing from the University of Michigan in 1996. After

working at the Ford Research Laboratory for one year, he subsequently joined the San Diego

Dura-Bernal et al. Page 17

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Supercomputer Center, working on high-performance computing and cyberinfrastructure

software. Since 2009, he has been a faculty member in the Department of Radiation

Medicine and Applied Sciences. He is author or coauthor of 50 papers and conference

proceedings. He is a member of the Organization for Computational Neuroscience, the

Institute of Electrical and Electronics Engineer, the Society for Industrial and Applied

Science, and the American Physical Society.

Joseph T. Francis Cullan College of Engineering, University of Houston, Houston, TX
77004 USA (joey199us@gmail.com). Dr. Francis is an Associate Professor of the Cullen

College of Engineering at The University of Houston. He graduated from the honors

program in biology at SUNY Buffalo in 1994. Subsequently, he studied neural dynamics

with an emphasis on non-linear dynamical systems theory applied to the nervous system, as

well as ephaptic interactions, for which he obtained his Ph.D. degree in 2000 at The George

Washington University in Washington, D.C. He had two postdoctoral fellowships; the first

was in computational sensorimotor control and learning under the guidance of Reza

Shadmehr at Johns Hopkins University. He then started researching brain-machine interfaces

with John Chapin at SUNY Downstate, where he later obtained a faculty position. In 2015,

he was appointed Associate Professor at The University of Houston, where he continues his

work on brain-machine interfaces. He is author or coauthor of more than 60 publications. He

is a member the Society for Neuroscience, the American Physiological Society, and the

Institute of Electrical and Electronics Engineers.

William W. Lytton Neurosim Lab, SUNY Downstate Medical Center, Brooklyn, NY 11203
USA (billl@neurosim.downstate.edu). Dr. Lytton is a practicing Neurologist caring for the

indigent at Kings County Hospital, and he is Professor of physiology and pharmacology at

Downstate Medical Center. Dr. Lytton is an M.D., trained at Harvard, Columbia, Alabama,

Johns Hopkins, UCSD, and Salk Institute. He is the author of From Computer to Brain, a

basic introduction to computational neuroscience. His research is concerned with multiscale

modeling, at scales from molecule to brain to assist in understanding of brain diseases

including epilepsy, stroke, and schizophrenia, with a focus on using modeling for clinical

translation from bench to bedside. He is author or coauthor of more than 80 publications. He

is a member the Society for Neuroscience and the Organization for Computational

Neurosciences.

Dura-Bernal et al. Page 18

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Overview of neuroprosthetic motor system model. Recordings from premotor cortex

modulated the primary motor cortex (M1) to select the target to reach. M1 excited the

descending spinal cord neurons that drove the arm muscles, and received arm proprioceptive

feedback via the ascending spinal cord neurons. The virtual arm trajectory can be

reproduced by a robotic arm in real time. To close the loop, neurostimulation could be fed

back into the brain based on the motor cortex model activity. L2/3, L5A, L5B, and L6 refer

to cortical layers.

Dura-Bernal et al. Page 19

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Parallel implementation of the island model evolutionary algorithm. A set of 6 islands is

instantiated via multiprocessing parallel jobs, each with a population of 10 individuals that

evolve independently. Information between islands is exchanged via migration of individuals

implemented using a shared queue. Individuals are selected and mutated using internal

adaptive strategy parameters to create new offspring. New individuals are evaluated to obtain

their fitness values. Evaluation of fitness functions occurs in parallel in the HPC using PBS/

SLURM, with each evaluation consisting of training the motor system model via

reinforcement learning (RL), and testing its reaching performance to each of the targets. In

every generation, the population is replaced by the fittest individuals out of all the parents

and offspring.

Dura-Bernal et al. Page 20

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Evolution of the average (solid lines, with shaded areas showing standard deviation) and best

(dashed lines) fitness values over 1,000 generations, for each island (blue) and the entire

population (black, at bottom). The width of shaded areas corresponds to the standard

deviation of the fitness of individuals in each island. Each individual consists of a different

set of metaparameters, which are evaluated using a fitness function that reflects the degree of

accuracy of the resulting arm trajectory.

Dura-Bernal et al. Page 21

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Time-resolved average firing rates of the premotor and motor cortical populations during

reaching to two targets. Premotor spiking activity was recorded from a macaque monkey,

and is used as a target selection input to the primary motor cortex (M1) model. M1

population firing patterns are modulated by the PMd input and result in different reaching

movement (see Table 3). The initial 200 ms of transient activity did not directly affect arm

movements and are omitted.

Dura-Bernal et al. Page 22

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dura-Bernal et al. Page 23

Table 1

List of metaparameters optimized using the parallel evolutionary algorithm, including range and optimized

value to obtain fitness of 0.619.

Description Minimum (fitness using minimum) Max (fitness using maximum) Optimized value

STDP window duration (ms) 10 (0.557) 50 (0.581) 48.5

Eligibility trace window duration (ms) 50 (0.636) 150 (0.631) 117.8

Training phase duration (s) 30 (0.565) 180 (0.192) 85

RL learning rate 0.01 (0.619) 0.1 (0.444) 0.01

RL interval (ms) 50 (0.466) 100 (0.560) 76.8

Background rate (Hz) 50 (0.516) 150 (0.355) 134.5

Exploratory movements rate (Hz) 5 (0.619) 250 (0.426) 5

Motor command threshold (spikes) 500 (0.566) 2000 (0.531) 528.8

PMd to M1 probability of connection factor 1 (0.619) 8 (0.515) 1.0

Initial PMd to M1 weights 0.5 (0.508) 4 (0.433) 2.4

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dura-Bernal et al. Page 24

Table 2

Speedup achieved by parallelization of the model and evolutionary optimization process for a population of 60

individuals (6 islands).

Description Cores required
(network + arm)

Time/generation (minutes) Speedup

Purely sequential 1 + 1 2,945.2 1

Parallel simulation (sequential individuals + islands) 16 + 1 260.6 11.3

Parallel simulation + individuals (sequential islands) 160 + 10 44.9 11.3 × 5.8 = 65.6

Parallel simulation + individuals + islands 960 + 60 7.5 11.3 × 5.8 × 6.0 = 393.2

Parallel simulation + individuals (single population, no
islands)

960 + 60 13.0 11.3 × 20.0 = 226.6

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dura-Bernal et al. Page 25

Ta
b

le
 3

C
om

pa
ri

so
n

of
 n

or
m

al
iz

ed
 a

rm
 tr

aj
ec

to
ry

 e
rr

or
 f

or
 e

xp
er

im
en

ta
l d

at
a

vs
. t

he
 b

es
t a

nd
 w

or
st

 m
od

el
 s

ol
ut

io
ns

 (
av

er
ag

e
an

d
st

an
da

rd
 d

ev
ia

tio
n)

.

Ta
rg

et
E

xp
er

im
en

t
(1

0
tr

ia
ls

)
B

es
t

10
 m

od
el

s
(b

ot
h

ta
rg

et
s)

B
es

t
10

 m
od

el
s

(l
ef

t
ta

rg
et

)
B

es
t

10
 m

od
el

s
(r

ig
ht

ta

rg
et

)
W

or
st

 1
0

m
od

el
s

(b
ot

h
ta

rg
et

s)
W

or
st

 1
0

m
od

el
s

(l
ef

t
ta

rg
et

)
W

or
st

 1
0

m
od

el
s

(r
ig

ht

ta
rg

et
)

R
ig

ht
0.

63
 ±

 0
.0

9
0.

85
 ±

 0
.0

2
1.

14
 ±

 0
.0

9
0.

66
 ±

 0
.0

1
1.

08
 ±

 0
.0

2
0.

72
 ±

 0
.0

4
1.

26
 ±

 0
.0

3

L
ef

t
0.

73
 ±

 0
.1

0
0.

85
 ±

 0
.0

2
0.

69
 ±

 0
.0

2
1.

21
 ±

 0
.0

8
1.

08
 ±

 0
.0

2
1.

59
 ±

 0
.0

3
0.

80
 ±

 0
.1

0

IBM J Res Dev. Author manuscript; available in PMC 2017 November 30.

	Abstract
	Introduction
	Combining brain models and neuroprosthetics
	Biological learning and evolutionary optimization
	Motor system neuroprosthesis

	Methods
	Motor system model
	Biological reinforcement learning
	Parallel evolutionary optimization

	Results
	Fitness evolution
	Optimized model performance

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

