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Abstract

Outside of the survey sampling literature, samples are often assumed to be generated by a simple 

random sampling process that produces independent and identically distributed (IID) samples. 

Many statistical methods are developed largely in this IID world. Application of these methods to 

data from complex sample surveys without making allowance for the survey design features can 

lead to erroneous inferences. Hence, much time and effort have been devoted to develop the 

statistical methods to analyze complex survey data and account for the sample design. This issue is 

particularly important when generating synthetic populations using finite population Bayesian 

inference, as is often done in missing data or disclosure risk settings, or when combining data 

from multiple surveys. By extending previous work in finite population Bayesian bootstrap 

literature, we propose a method to generate synthetic populations from a posterior predictive 

distribution in a fashion inverts the complex sampling design features and generates simple 

random samples from a superpopulation point of view, making adjustment on the complex data so 

that they can be analyzed as simple random samples. We consider a simulation study with a 

stratified, clustered unequal-probability of selection sample design, and use the proposed 

nonparametric method to generate synthetic populations for the 2006 National Health Interview 

Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered 

unequal-probability of selection sample designs.
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1 Introduction

Statistical methods outside the survey methodology setting have usually been developed 

without careful consideration for sample design, often implicitly assuming simple random 
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samples, or, occasionally, one-stage cluster samples. Major efforts of modern survey 

statistics focus on extending methods to analyze complex survey data (Skinner, Holt and 

Smith 1989), accommodating issues such as stratification, unequal probability of selection, 

nonresponse bias or calibration. Hinkins, Oh and Scheuren (1997) proposed an inverse 

sampling design algorithm that connects the survey statistics and the classical statistics from 

another perspective. Their basic idea is to choose a subsample that has a simple random 

sample structure unconditionally. The subsample is often much smaller than the original 

sample, so they propose to repeat the process independently many times and average the 

results to increase the precision. They also described exact or approximate inverse sampling 

schemes for stratified simple random sampling, one-stage cluster sampling, and two-stage 

cluster sampling. However, this new idea is not used widely in practice, perhaps because it is 

extremely computionally intensive and the precision losses are often substantial. Similarly, 

generating synthetic populations from a posterior predictive distribution of a population 

conditional on complex sample data in a fashion that accounts for the complex sample 

design is not straightforward (Little 1991). However, in recent years demand for synthetic 

populations has increased, in order to deal with weight trimming or windorization problems 

(Lazzeroni and Little 1998; Elliott and Little 2000; Elliott 2007; Chen, Elliott and Little 

2010), disclosure risk settings (Little 1993; Raghunathan, Reiter and Rubin 2003; Reiter 

2004, 2005), or combining data from multiple surveys (Raghunathan, Xie, Schenker, 

Parsons, Davis, Dodd and Feuer 2007; Dong 2012). Often the synthetic populations are 

generated under a distributional assumption (normal, binomial, Poisson), with the posterior 

distribution of the model parameters approximated by the asymptotic normal distribution. 

The mean and covariance matrix of the normal distribution are estimated after complex 

sampling design features are taken into account (Raghunathan et al. 2007).

A major weakness of model-based methods is that if the model is seriously misspecified, it 

may yield invalid inferences (Little 2004). In multivariate settings, we need to consider the 

relationships among the variables of interest and determine an appropriate model that fits the 

data, which may be hard if the data contains different types of variables. In this paper we 

propose a nonparametric method as a counterpart of the model-based method to generate 

synthetic populations. This work extends the finite population Bayesian bootstrap and 

related Pólya posterior models of Lo (1988), Ghosh and Meeden (1983), and Cohen (1997) 

to account for complex sample designs. Since it achieves the same goal of the inverse 

sampling technique, it can be treated as the Bayesian finite population version of inverse 

sampling. To make inference using this weighted finite population Bayesian bootstrap, we 

can either make use of the draws directly, or, for computational efficiency, use results 

previously derived in the disclosure risk and multiple imputation literature, since these non-

parametrically-generated populations can be viewed as multiple imputations of the 

unobserved elements of the population.

This paper is organized as follows. Section 2 briefly discusses synthetic populations in the 

context of Bayesian finite population inference. Section 3 reviews and summarizes the 

Bayesian bootstrap method and its finite population extension, and shows that, for an 

unequal probability of selection sample, the distribution of synthetic populations generated 

under a variant of a Pólya urn scheme matches the posterior predictive distribution of a finite 

population Bayesian bootstrap. Section 4 presents the proposed method under stratified 
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clustering sampling with unequal selection probabilities. Section 5 shows that inference 

from these non-parametrically-generated synthetic populations can be obtained using results 

from the disclosure risk and multiple imputation literature, where each synthetic population 

has zero “within-imputation” variance. Section 6 provides a simulation study to evaluate the 

performance of the nonparametric method in a repeated sampling context. Section 7 applies 

the method to generate synthetic populations than can be used to estimate health insurance 

coverage rates using the 2006 NHIS and MEPS data, and compares the result with a 

parametric (log-linear) modeling approach. Concluding remarks are provided in Section 8.

2 Generating synthetic populations from survey data

The basic concept of Bayesian finite population inference involves imputing the non-

sampled values of the population from the posterior predictive distribution based on the 

observed data. Assume the population values are Y = (Y1, …, YN) and the observed data, 

Yobs = (y1, …, yn) is obtained in a survey with sampling indicators I = (I1, …, IN). The 

Bayesian population inference allows for the use of parametric model Pr(Y | θ) for 

population data based on the posterior predictive distribution for the unobserved elements of 

the population Pr(Ynob | Yobs) :

(Ericson 1969; Little 1993; Rubin 1987; Scott 1977; Skinner et al. 1989). Here we use the 

model Pr(Y | θ) to approximate the entire population distribution Pr(Y) and average over the 

posterior distribution based on the sampled data Pr(θ | Yobs). In the case that there are 

design variables known for the entire population available, the above model can be naturally 

extended by conditioning on these variables.

Implicit in the derivation of above is that the sampling indicator I need not be modeled. This 

requires ignorable sampling (Rubin 1987) (the distribution of I does not depend on 

unobserved data), as well as a model for the data Pr(Y | θ) that is attentive to design features 

and robust enough to sufficiently capture all relevant aspects of the distribution of Y of 

interest. Our goal here is to develop a method to generate draws from Pr(Ynob | Yobs) that 

account for all the design features in Yobs so that draws from the posterior distribution of 

Ynob | Yobs can be treated as a simple random sample in analysis.

3 Weighted finite population Bayesian bootstrap

3.1 Finite Population Bayesian Bootstrap (FPBB)

Assume that the (scalar) population elements Yi, i = 1, …, N are exchangeable and can take 

on K ≤ N possible values (b1, …, bK); thus Yi | θ ~ MULTI (1;θ1, …, θK). Further assuming 

a conjugate Dirichlet prior for θ ~ DIR (α1, …, αK) yields (Ghosh and Meeden 1983)
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(3.1)

where , and n1, …, nK refers to the number of distinct values we 

observe from our sample y = (y1, …, yn), . If αi ≡ 0 then p (Ynob | y) reduces to

To ease implementation, Lo (1988) proposed making draws from the FPBB posterior 

predictive distribution using a “Pólya urn scheme” procedure. Suppose an urn contains n 
balls, each of which have a distinct real number label bi, i = 1, …, K. A Pólya sample of size 

m is selected by first selecting a ball at random from the urn and returning the selected ball 

into the urn, then putting one same ball into the urn and repeating this process until m balls 

have been selected. It can be shown that the probability of getting mi balls of type bi is given 

by

(3.2)

where ni is the number of balls of type bi originally in the urn. The distribution of the counts 

of type bi is invariant under any permutation of the draws. Note that this corresponds directly 

to the posterior probability of a total of (m1, …, mK) elements of type (b1, …, bK) in a 

population, given that (n1, …, nK) elements were observed in a (simple random) sample of 

size . Hence a FPBB replicate sample can be drawn from this Pólya posterior 

using the following steps:

Step 1. Draw a Pólya sample of size m = N − n, denoted by  from the 

urn {y1, …, yn}; by (3.2), with mk = Nk − nk draws of value  for k = 1, …, K, this 

corresponds to a draw of P (Ynob | y) from (3.1).
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Step 2. Form the FPBB population y1, …, yn, .

3.2 FPBB with unequal probabilities of selection

Cohen (1997) extended the FPBB procedure to adjust for the unequal probabilities of 

selection. Assume (y1, …, yn) is a sample from a finite population (Y1, …, YN) with design 

weights (w1, …, wn), where

and I is the sampling indicator. The procedure has two steps:

Step 1. Draw a sample of size N − n, denoted by , by drawing  from 

(y1, …, yn) in such a way that yi is selected with probability

where wi is the weight of unit i and li,k−1 is the number of bootstrap selections of yi 

among  (The function wtpolyap in the R package polypost can be used to 

obtain draws from a weighted Pólya urn.)

Step 2. Form the FPBB population y1, …, yn, .

Although Cohen (1997) did not provide theoretical proof for this procedure, it can be 

obtained as a straightforward extension of the standard FPBB and Pólya urn equivalency 

described in Section 3.1. First, we determine the posterior distribution of the FPBB sample 

with unequal probabilities of selection implied by the weighted FPBB procedure. The 

multinomial likelihood based on our weighted sample is given by

where

is the sum of the design weights minus one across all sampled elements with value bi, i = 1, 

…, K, normalized to sum to n. (Note that this removes subjects sampled with weights equal 

to one – “certainty sample” elements – from the likelihood, as they have no chance to be part 

of the unobserved portion of the population, and thus contribute no information about these 
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unobserved elements.) Assuming an improper Dirichlet prior , the weighted 

finite population Bayesian bootstrap posterior is given by

(3.3)

since  and .

Next, we show the distribution of samples obtained from the unequal probability of selection 

Pólya Urn scheme of Cohen (1997) is equal to the posterior distribution of the FPBB sample 

with unequal probabilities of selection. Given the observed data, the probability that we 

draw N − n balls and that the first r1 balls have value b1 through the last rk balls have value 

bk is:

where the first equality follows from the fact the distribution of the counts of type bi is 

invariant under any permutation of the draws, as in the unweighted setting, and the second 

equality from the identity Γ(x) = (x − 1)Γ(x) for x > 0. Thus, noting that

a draw from the unequal probability of selection Pólya Urn scheme yields a draw from P 
(Ynob | y, w) in (3.3).

4 Nonparametric method to generate synthetic populations

In this section, we extend the finite population Bayesian bootstrap methods to a stratified, 

clustered, unequal probability sample design setting to develop a nonparametric method to 

generate synthetic populations that adjusts for the complex sampling design features. The 

idea is to treat the unobserved part of the population as missing data and impute it by 
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making draws from the actual data. We do the imputation in such a fashion that the resulting 

draws from the posterior distribution of the population will capture the complex design 

features and can be used in a standard fashion to compute posterior distributions of the 

population quantities of interest.

4.1 Use the Bayesian bootstrap to adjust for stratification and clustering

For a stratified clustering sampling, we first need to resample clusters within the strata. 

Denote c as the total number of clusters in the actual data, , and C as the number 

of clusters in the population, . One approach is to first apply FPBB Pólya urn 

scheme to impute the unobserved clusters within each stratum, , which 

together with the observed clusters provide the clusters in stratum h in the population. 

However, we typically do not know the number of clusters in a stratum from available public 

use data. Thus we suggest as an alternative to FPBB sample drawing a standard Bayesian 

bootstrap sample of the clusters within each stratum. Considering the equivalence between 

the classical bootstrap and Bayesian bootstrap, we follow Rao and Wu (1988), who 

suggested drawing a simple random sample with replacement (SRSWR) of mh from the ch 

clusters and within each stratum h calculating replicate weights for computation for each 

bootstrap sample as

where

and  denotes the number of times that cluster i, i = 1, …, ch is selected. To ensure all the 

replicate weights are non-negative, mh ≤(ch − 1); here and below we take mh = (ch − 1).

Note that, when clustering is not present, we simply draw a standard Bayesian bootstrap 

sample from the sampled data within each stratum (when stratification is present) or from 

the entire sample (if stratification not present, so that H = 1) and calculate the replicate 

weights as .

This procedure is repeated L times to produce L Bayesian bootstrap (BB) samples denoted 

by S1, …, SL. This step generates L Bayesian bootstrap samples which essentially are L 
draws from the posterior predictive distribution of the unobserved clusters given the actual 

data. However, the units for the L Bayesian bootstrap samples still have weights and cannot 

be analyzed as simple random samples.
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4.2 Use weighted FPBB Pólya urn scheme to adjust for weighting

Once we have L BB samples with replicate weights, the second step imputes the unobserved 

units using the weighted FPBB Pólya urn scheme. In practice, the probability of selecting 

the kth unit, , depends on the selection of the first k − 1 units, . In other words, 

to determine the probability of selecting a new unit, we have to count the number of times 

that each unit in the sample has been selected among the previous selections. In settings 

where the population size is extremely large, we need only generate synthetic populations of 

size T * n, where T is sufficiently large to overwhelm the sample size (e.g., 20–100). To 

further computational efficiency, we could also draw a moderate sized population F > 1 

times and then pool these F populations to produce one synthetic population, Sl. The size of 

Sl then is F * T * n.

Note that our method only requires knowledge of the final weights in multistage cluster 

samples, since all stages of unequal probabilities of sampling will be corrected by use of the 

weighted FPBB Pólya urn scheme. This is a particularly useful feature of the proposed 

method, as in many public use datasets the components of the probabilities of selection (e.g., 
cluster-level selection probabilities, non-response weights) are not available.

5 Inference from multiple nonparametric synthetic populations

Assume we generate L synthetic populations, Sl, l = 1, …, L using the nonparametric 

method described in Section 4, and that our inferential target is Q ≡ Q (Y), a function of the 

population data (e.g., population mean, correlation, population maximum likelihood 

estimator of a regression parameter, etc.). We can compute Ql as the estimate of Q obtained 

from pooling the F synthetic populations that impute the unobserved units of Sl ; since these 

are direct draws from the posterior predictive distribution of the population, we can compute 

posterior means, quantiles, and credible intervals from the corresponding empirical estimates 

from the draws, if L is sufficiently large.

However, in many settings, the computational effort required to impute the population may 

be very large, even if the full population is not required to be synthesized. Hence an 

alternative approach for inference is to approximate the posterior predictive distribution of a 

scalar population statistic Q via a t-distribution:

where

The result follows immediately from Section 4.1 of Raghunathan et al. 2003, and is based on 

the standard Rubin (1987) multiple imputation combining rules, treating the unobserved 

units of Sl as missing data and the sampled units as observed data. The average “within” 
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imputation variance is zero, since the entire population is being synthesized; hence the 

posterior variance of Q is entirely a function of the between-imputation variance, and the 

degrees of freedom is simply given by the number of FPBB samples. (When the population 

is extremely large, we need only synthesize a draw sufficiently large for average “within” 

imputation variance to be trivial relative to the between imputation variance VL.) The result 

assumes that E(Qlf) = Q - a result guaranteed by our weighted FPBB estimator - as well as a 

a sufficiently large sample size for Bayesian asymptotics to apply.

6 Simulation studies

In this section, we conduct two simulation studies to evaluate the repeated sampling 

properties of the population estimators constructed using the nonparametric method that 

generates synthetic populations while adjusting for the complex sampling design features. 

The first of these considers a one-stage, unequal probability of selection design where we 

vary the number of weighted FPBB draws for each synthetic population and the number of 

synthetic populations to assess the impact on inference. The second compares inferential 

properties from observed data and from the posterior distribution obtained from synthetic 

population in a stratified, multistage, unequal probability of selection sample, this time 

fixing the posterior sample size while considering both population means and population 

regression parameters as targets of inferences.

6.1 Single stage, unequal probability of selection sample design

We generated outcome data Y in a population of N subjects from a moderately skewed 

gamma distribution, conditional on uniformly distributed covariate X :

We assume X is fully observed for the population, and that the probability of selection π is 

proportional to X, so that  in a without-replacement sample design as long 

as n ≪ N. The estimand of interest is the population mean . Note 

that corr (Yi, Xi) =0.6794, so that unweighted sample means will be positively biased, and 

use of design weights wi = 1/πi are required to obtained unbiased estimates of Ȳ. We 

generated a population of size N = 1,000 from which we sampled n = 100; bias, empirical 

and estimated variance, 95% interval length, and nominal 95% coverage are then estimated 

from 200 independent samples from the population. We varied the total number of simulated 

populations L as 5, 20, 100, and 1,000, and the number of FPBB draws F of size N − n (so 

that K = 9) as 1, 20, and 100, in full factorial design. Variance, interval length, and interval 

coverage are obtained via the normal approximation; for L =100 and 1,000, we also obtained 

variance, interval length, and interval coverage using the direct draws from the posterior 

predictive distribution, since a sufficient number of draws from the posterior were available 

to make such estimates.
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Table 6.1 shows the results of the simulation study. In all cases the point estimate Q̄
L of the 

population mean was approximately unbiased, reflecting the ability of the weighted FPBB to 

“undo” the sampling weights in the generation of the synthetic population. Under the normal 

approximation, larger numbers of the synthetic population were associated with smaller 

variances and narrower interval lengths, as expected with larger numbers of degrees of 

freedom, although the difference between 20 and 100 was minimal, just as the t20 

distribution begins to approximate a standard normal. Finally, using only a single FPBB 

draw of size N − n appeared to overestimate the variance and lead to overcoverage, 

especially for small values of L. Values of L and F of 20 or greater appeared to yield 

reasonable results. Use of the direct draws for L =100 and 1,000 yielded to variance and 

credible interval estimates that were very similar to that of the normal approximation, with 

slightly narrower interval lengths and somewhat less conservative coverage.

6.2 Stratified, multistage, unequal probability of selection sample design

We generated a population with strata and clusters within each stratum from the following 

bivariate normal distribution:

where

i = 1 : 150 denotes the stratum effect,

uij ~ N (0,10) denotes the random cluster effect,

ai ~ uniform (2,52) is the number of clusters within stratum i,

bij ~ uniform (10, 20) is the number of units within cluster j of stratum i.

The population for the simulation study has 61,324 subjects. We draw a stratified clustering 

sampling with unequal probabilities of selection. Specifically, we select two clusters from 

each stratum with probabilities proportional to cluster size (PPS) given by . 

Within each selected cluster, we select approximately 1/5 of the population. Thus, the 

probability that unit ij is selected is given by

for all j elements in cluster i with corresponding weight
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Since the number of clusters and units are random, the complex sample size is slightly 

different across replications, averaging approximately 770.

Because of the large sample and population size, we focus on inference using t 
approximations. We generate L = 100 synthetic populations using F weighted FPBB samples 

of size K = 100n. The estimands of interest are the population marginal mean for x1

and similarly for x2, and the population regression coefficients of x1 on x2 given by

We drew 200 independent samples from the population and used the sample data directly to 

compute weighted sample means and linear regression coefficients along with associated 

variance estimates and 95% nominal confidence intervals using Taylor Series 

approximations, and compared these with the equivalent estimates obtained using the 

nonparametric synthetic data. Results are given in Table 6.2. (Since the marginal means have 

the same superpopulation value, we combine the results in Table 6.2.) Figure 6.1 displays 

the scatter plot of the pairs of estimated mean, intercept and slope from the actual samples 

and the corresponding synthetic populations along with a 45-degee line. The sampling 

distributions of the actual sample and synthetic population estimates closely correspond. The 

point estimates and standard errors for both the means and regression parameters closely 

correspond. The 95% confidence interval coverage rates for all three statistics also closely 

correspond, and are close to nominal values.

7 Application

In this section, we use data from the 2006 National Health Interview Survey (NHIS) and the 

2006 Medical Expenditure Panel Survey (MEPS) to evaluate the performance of the 

nonparametric method in a stratified clustering sampling design. The National Health 

Interview Survey (NHIS) is a nationwide, face-to-face health survey based on a stratified 

multistage design, with oversamples of black, Hispanic, and elderly populations. For 

confidentiality purposes, the true stratification and primary sampling unit (PSU) variables 

are not publicly-released; instead pseudo-strata and PSUs (two per stratum) are released. 

The MEPS is a subsample of the previous year’s NHIS sample, and retains the same 

stratified multistage design.

Both NHIS and MEPS ask respondents whether they are covered by any health insurance 

and, if so, what type health insurance they are using (private versus government-sponsored 

such as Medicare or Medicaid). We estimate overall health insurance coverage rates as well 

as coverage rates in subpopulations defined by demographic variables such as gender, race, 
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income level, or combinations thereof: specifically, we estimate health insurance coverage 

for males, non-Hispanic whites, and non-Hispanic whites with household income between 

$25,000 and $35,000 per year. We delete the cases with item-missing values and focus on 

our simulation on the complete cases. This results in 20,147 and 20,893 cases in the NHIS 

and MEPS data respectively.

7.1 Estimation of health insurance coverage from the NHIS and MEPS

In this simulation study, we will use the nonparametric method to adjust for the stratified 

clustering sampling used by the 2006 NHIS and MEPS and generate synthetic populations 

that can be analyzed as simple random samples. We also consider a model-based approach 

for generating synthetic populations using a log-linear model for the health insurance status 

by six independent demographic variables: gender, race, census region, education level, age 

(categorical), and income level (categorical). Then we evaluate the method by comparing the 

estimates of the health insurance coverage rate for the whole population and selected 

subdomains obtained from both the non-parametric and log-linear model synthetic 

populations to those obtained from the actual data.

7.1.1 Generating nonparametric synthetic populations—Using the nonparametric 

method developed in Section 3, we generate 200 synthetic populations for each survey. 

Specifically, we generate B = 200 BB samples and for each BB sample, we generate F = 10 

FPBB of size 5n (K = 5). Thus, each synthetic population is 50 times as big as the actual 

sample (1,007,350 for NHIS, 1,044,650 for MEPS). Each synthetic population is analyzed 

as a simple random sample and the estimates are combined as described in Section 5.

7.1.2 Generating synthetic populations via log-linear models—In the common 

situation that the survey data of interest are in the form of a multidimensional contingency 

table, a log-linear model might be considered as a parametric approach to generate draws 

from a posterior predictive distribution. For simplicity of exposition, assume Y is the 

variable of our interest with m levels, and Z is a design variable with n levels (e.g., gender, 

race, etc.) whose marginal distribution is known for the population. Assume πij, i = 1, …, m, 

j = 1, …, n, represents the cell proportion of the ijth cell, . A fully 

saturated log-linear model is given by (Agresti 2002):

where log(πij) is the log of the probability that one observation falls in cell ij of the 

contingency table,  is the main effect for Z,  is the main effect for Y and  is the 

interaction effect for Z and Y. This model includes all possible one-way and two-way effects 

and thus is saturated as it has the same number of effects as cells in the contingency table. To 

avoid over-fitting the data in the example, we can consider non-saturated models that 

exclude some or all of the interaction terms, choosing the model based on likelihood ratio 

tests or AIC or BIC criteria.
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The synthetic populations can be generated from the posterior predictive distribution from 

the model. However, when the data is collected under a complex sampling design, we are 

not aware of standard statistical software that can produce both the point estimate and 

covariance estimate of the regression coefficients. Instead, we have to use a jackknife 

replication method to adjust for stratification, clustering and weighting. Specifically, the 

parametric synthetic populations can be generated from the following steps:

1. Estimate coefficients and covariance matrix:

Under the selected model (assume the two-dimensional saturated model here just 

for illustration), estimate the coefficients , i = 1, …, m − 1, 

j = 1, …, n − 1 and the covariance matrix of the estimates 

after taking into account the complex design features using jackknife repeated 

replication (JRR):

• For each replication, withdraw one cluster, and inflate the weights for 

the respondents in the other clusters within the same stratum by ch / (ch 

− 1) (replication weights), where ch denotes the number of clusters 

within stratum h. Assume we have  clusters in total, then 

we have C replications. For each replication, we fit the log-linear model 

and obtain the maximum likelihood estimates (MLE) of the 

coefficients, , i = 1, …, m − 1, j = 1, …, n − 1.

• For each replication, use the replication weights to fit the log-linear 

model. Specifically, use the replication weights to calculate the size of 

each cell of the contingency table, which is used to fit the log-linear 

model. We denote the MLE for the rth replication by a column vector, 

λ̂r, r = 1, …, ch for stratum h. Notice that , i = 1, 

…, m − 1, j = 1, …, n − 1 is a mn by 1 column vector. We denote 

. Similarly, λ̂
r, r = 1, …, ch,h 

= 1, …, H are also mn by 1 column vectors denoted by 

.

The MLE of the coefficients , i = 1, …, m − 1, j = 1, …, n 

− 1 can be obtained by . For the mn by mn covariance 

matrix, the jackknife replication estimate of the pqth(p, q = 1, …, mn) element is 

the covariance between the pth and qth coefficients, which is given by:
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where  and . This gives us the correct 

variance estimate of λ̂
MLE.

2. Approximate the posterior distribution of the coefficients:

Let T denote the Cholesky decomposition such that TTt = cov(λ̄
MLE). Generate a 

vector z of random normal deviates and define Λ* = λ̄
MLE + Tz.

3. Impute the unobserved values of the population:

Suppose L draws, Λ1, …, ΛL, are made from the approximate posterior 

distribution of λ. For each

we can generate one synthetic table using the assumed model:

Once the cell proportions are determined, we can generate the synthetic table of 

any size.

The results below are based on a seven-dimension contingency table (see Table 7.1 for the 

specific covariate categories). BIC measures indicated that a model with all 2-way but no 3-

way interactions provided the most parsimonious fit.

7.2 Results

The results are summarized in Table 7.2. For the total population and the larger 

subpopulations, we can see that the point estimates (posterior mean) of health insurance 

rates are the same for both the nonparametric and log-linear approach, and are almost 

identical to those obtained from the actual data after complex sampling design features are 

accounted for. Both methods yield synthetic populations with slightly higher (posterior) 

variances than the actual data, reflecting the information loss in the synthesis. In the NHIS, 

the loss for the non-parametric estimator averaged a little over 20% and was slightly greater 

than for the log-linear model, which averaged around 10%. Both had losses of about 10% 

over the actual data in MEPS. However, for the smaller subpopulation (non-Hispanic whites 

earning $25,000–$35,000 per year), the log-linear model produced biased results, due to the 

fact that the log-linear model did not include all possible interactions. The nonparametric 

method yields estimates almost identical to those obtained from the actual data after 

complex sampling design features are accounted for. The log-linear model also substantially 

underestimated the variance of insurance coverage by 30–40% in these cells, versus an 

overestimation in the nonparametric approach of 10–40%.
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8 Discussion

In this paper, we propose and evaluate a nonparametric method to generate synthetic 

populations. This method adjusts for the complex sampling design features without 

assuming any models to the observed data so it is robust to model-misspecification. Also, 

unlike model-based methods that needs to develop separate imputation models for different 

variables of interest, the nonparametric method only uses the design variables to generate 

synthetic populations and thus is not variable-specific.

We considered the repeated sampling properties of our non-parametric synthetic estimators 

in a univariate gamma and bivariate normal setting, estimating means, slopes, and intercepts. 

Point estimates were unbiased, intervals had approximately nominal coverage, and losses of 

efficiency relative to the actual data were trivial. We also considered a “real world” setting, 

generating a predictive distribution for the 2006 NHIS and MEPS and estimating rates and 

associated variance estimates of health insurance coverage using both the nonparametric 

method and a fully parametric log-linear modeling approach. When the model fits the data 

well, the model-based method is more efficient than the nonparametric method. However, 

when the assumed model does not fit the data well, as was the case in certain small domains, 

the model-based method may produce invalid inference. In such situations, the 

nonparametric method is robust to model misspecfication.

In addition to robustness to model misspecification, another advantage is that the 

nonparametric method only uses the design variables such as stratum, cluster and weight to 

impute the unobserved part of the population. Unlike model-based methods, it does not need 

to model the complicated relationships among the variables of interest, which becomes 

impossible if there are item missing values in the actual data. The synthetic populations 

generated by the nonparametric method still preserve the item missing values in the actual 

data. This potentially fills in a gap in the multiple imputation area in that existing imputation 

methods typically ignore the complex sampling design features in the data and impute the 

missing values as if they are simple random samples. A related advantage is that, while 

design variables are used in the nonparametric generation of the synthetic populations, the 

synthetic populations themselves do not need to contain them, since they can be analyzed as 

simple random samples. Hence, disclosure risk associated with release of design variables 

can be eliminated (De Waal and Willenborg 1997; Mitra and Reiter 2006; Reiter and Mitra 

2009).

A fourth practical advantage of the nonparametric method is that it is easier to implement in 

existing statistical software packages because it focuses on the design variables; thus 

specific strategies for various types of variables and data structures do not need to be 

developed.

Because use of the weighted FPBB does not require information about the number of 

clusters in the population or conditional probabilities of selection at each stage of selection 

in a multistage sample setting, we use an approximate Bayesian bootstrap method to adjust 

for stratification and clustering. We view this as advantageous in many ways, since public 

use datasets typically do not break out weights for each stage of the sample. However, it 
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does have the disadvantage that, to ensure positive replicate weights, the Bayesian bootstrap 

method produces fewer clusters within strata than in the actual data. In the setting where the 

probabilities of selection are known for all stages of the sample, it seems likely that the 

weighted FPBB can be implemented at each stage, with the population of unobserved 

clusters and the population of elements within each cluster imputed in a two-stage fashion, 

paralleling Meeden (1999) just as the one-stage FPBB parallels Ghosh and Meeden (1983). 

This remains an area for future research.
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Figure 7.1. 
Scatter plot of the descriptive and analytic statistics from the actual and synthetic 

populations
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Table 7.1

Variables and response categories for the 2006 NHIS and MEPS used in log-linear model.

Variables of Interest Response Categories

Age 1: [18; 24]; 2: [25; 34]; 3: [35; 44]; 4: [45; 54]; 5: [55; 64]; 6: >= 65

Census Region 1: Northeast; 2: Midwest; 3: South; 4: West

Education 1: Less than high school; 2: High school; 3: Some college; 4: College

Gender 1: Male; 2: Female

Health Insurance Coverage 1: Any Private Insurance; 2: Public Insurance; 3: Uninsured

Income 1: (0; 10,000); 2: [10,000; 15,000); 3: [15,000; 20,000); 4: [20,000; 25,000); 5: [25,000; 35,000); 6: [35,000; 
75,000); 7: >= 75,000

Race 1: Hispanic; 2: Non-Hispanic White; 3: Non-Hispanic Black; 4: Non-Hispanic All other race groups
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