Skip to main content
. 2017 Nov 30;13(11):e1005793. doi: 10.1371/journal.pcbi.1005793

Table 5. Prediction accuracues using diffusion based fuctional profiles and annotation based functional profiles quantified by AUC-ROC.

The following table displays the AUC estimates of the 7 independent classifiers trained with two different feature sets (diffusion-based functional activity and annotation-based functional activity) for each clinical indicator.

Clinical Indicator AUC—Diffusion AUC–Annotation (Control) P-value (AUC-Diffusion > AUC-Control)
Basal 0.87 (95% CI = 0.867–0.882) 0.81 (95% CI = 0.803–0.823) <2.2e-16
Her2 0.73 (95% CI = 0.72–0.746) 0.65 (95% CI = 0.644–0.67) <2.2e-16
Luminal A 0.74 (95% CI = 0.741–0.756) 0.73 (95% CI = 0.722–0.739) <2.2e-16
Luminal B 0.73 (95% CI = 0.727–0.742) 0.75 (95% CI = 0.731–0.748) 1
Normal 0. 87(95% CI = 0.866–0.882) 0.81 (95% CI = 0.803–0.823) <2.2e-16
ER+ 0.88 (95% CI = 0.882–0.895) 0.81 (95% CI = 0.811–0.828) <2.2e-16
PR+ 0.74 (95% CI = 0.736–0.75) 0.72 (95% CI = 0.719–0.735) <2.2e-16