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Abstract

Empyema is defined by the presence of bacteria and/or pus in pleural effusions. However,

the biology of bacteria within human pleural fluid has not been studied. Streptococcus pneu-

moniae is the most common cause of pediatric and frequent cause of adult empyema. We

investigated whether S. pneumoniae can proliferate within human pleural fluid and if growth

is affected by the cellular content of the fluid and/or characteristics of pneumococcal surface

proteins. Invasive S. pneumoniae isolates (n = 24) and reference strain recovered from

human blood or empyema were inoculated (1.5×106CFU/mL) into sterile human malignant

pleural fluid samples (n = 11). All S. pneumoniae (n = 25) strains proliferated rapidly,

increasing by a median of 3009 (IQR 1063–9846) from baseline at 24hrs in all pleural effu-

sions tested. Proliferation was greater than in commercial pneumococcal culture media and

concentrations were maintained for 48hrs without autolysis. A similar magnitude of prolifera-

tion was observed in pleural fluid before and after removal of its cellular content, p = 0.728.

S. pneumoniae (D39 strain) wild-type, and derivatives (n = 12), each with mutation(s) in a

different gene required for full virulence were inoculated into human pleural fluid (n = 8). S.

pneumoniae with pneumococcal surface antigen A (ΔpsaA) mutation failed to grow (2207-

fold lower than wild-type), p<0.001, however growth was restored with manganese supple-

mentation. Growth of other common respiratory pathogens (n = 14) across pleural fluid sam-

ples (n = 7) was variable and inconsistent, with some strains failing to grow. We establish for

the first time that pleural fluid is a potent growth medium for S. pneumoniae and proliferation

is dependent on the PsaA surface protein and manganese.
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Introduction

Pneumonia affects 450 million patients worldwide each year, [1] with Streptococcus pneumo-
niae the most common bacterial cause. As many as 20–40% of patients with pneumonia

develop a simple parapneumonic pleural effusion [2]. Pleural infection can develop when the

pleural fluid is secondarily infected, and affects ~80,000 people in the UK and USA a year with

significant morbidity and mortality [3].

Empyema represents the most severe end of the pleural infection spectrum. It is defined by

the presence of bacteria, or pus, in the pleural fluid. S. pneumoniae accounts for the vast major-

ity of pediatric empyema and is among the most frequent causative organisms of empyema in

adults [4–6]. The incidence of pneumococcal empyema continues to rise globally [7–9].

Compared to most other pathogens that cause pneumonia, S. pneumoniae seems to have a

particular affinity for causing pleural infection, but the reasons why are not fully understood.

During pleural infection, the pleural fluid is exudative and contains a diverse milieu of biologi-

cally active molecules. Despite the clinical importance of empyema, no studies have investi-

gated the biological interactions between bacteria and pleural fluids. It is unknown, for

example, if bacteria are merely shed from the pleural tissues into the fluid and if the fluid influ-

ences bacterial growth. On one hand, exudative fluids are rich in nutrients that can potentially

enhance microbial growth; on the other hand, many proteins and enzymes (eg defensins, and

lysozymes etc.) in the fluid can serve to defend against bacterial invasion. These questions are

difficult to study in empyema fluid as the presence of bacteria can profoundly alter the pleural

fluid composition. In clinical settings, patients are often given systemic antibiotics before the

fluid is sampled, taking away the opportunity to study the effects of bacterial growth.

Pleural effusion is not unique to pleural infection but is the common end-product of a vari-

ety of other non-infective pleural diseases/inflammation that leads to vascular hyper-perme-

ability and plasma leak into the pleural cavity. In this paper, we studied whether the pleural

fluid of patients with other non-infective pleural etiologies could support survival and growth

of S. pneumoniae strains. We hypothesized that pleural fluid can serve as a growth medium for

common empyema bacteria such as S. pneumoniae. We further investigated the role of com-

mon pneumococcal surface proteins, in particular nutrient transporters, on pneumococcal

growth and survival within human pleural fluid.

Materials and methods

Pleural fluid samples

Pleural fluid samples were collected from patients attending Sir Charles Gairdner Hospital

(SCGH) that required pleural fluid drainage for clinical indications, with approval (SCGH

Human Research Ethics Committee 2012–156).

Pleural fluid samples were collected using aseptic techniques from patients with pleural

effusions of non-infective etiologies. All samples were subjected to routine bacterial culture for

which the fluid was injected into and transported in blood culture bottles and processed in an

accredited hospital laboratory (PathWest, Western Australia). Pleural samples confirmed to be

culture-negative were used in experiments. Patients who received antibiotics within 72 hours

were excluded. Pleural fluid biochemistry (pH, protein, lactate dehydrogenase and glucose)

was measured as previously described [10]. Supernatant was obtained from pleural fluid by

centrifugation at 1020×g for 10 minutes.

Pleural fluids (n = 53) were collected from 45 patients; effusions obtained from the same

individual (n = 8) were collected on separate occasions at least 7 days apart. Most samples
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were malignant pleural effusions (n = 47, 88.7%) and 10.6% (n = 5) were transudates; (S1

Table). Samples were stored between 2–8˚C and used within 96hrs of drainage.

Bacterial strains and inoculums

Clinical isolates of S. pneumoniae (n = 24) from patients with invasive pneumococcal infection

were obtained from PathWest (Royal Perth Hospital, WA). Serotypes of the isolates include

type 1, 11A and 19F from pleural fluid and 1, 6B, 6C, 8 (n = 3), 10A, 11A, 12F, 19A (n = 8), 21,

22F (n = 2) and 35B from blood cultures. In addition, a S. pneumoniae reference strain of cap-

sular serotype 3 (CIP 104225, ATCC16303, American Type Culture Collection, Manassas,

VA, USA) was used (Table 1).

Bacterial reference strains (n = 9) including Streptococcus anginosis ATCC110556 and

ATCC133397, S. intermedius ATCC127335, Enterococcus faecalis NCTC18213 (National col-

lection of type culture, Salisbury UK), Staphylococcus aureus ATCC19144, Escherichia coli
ATCC1105365 and ATCC125922, Moraxella catarrhalis NCTC13622, Pseudomonas aerugi-
nosa ATCC125668 and clinical isolates (n = 5) capable of causing invasive disease including

methicillin-resistant S. aureus, P. aeruginosa (n = 2), Klebsiella pneumoniae and Klebsiella oxy-
toca (PathWest) were used for comparison growth studies with S. pneumoniae (Table 1).

Wild-type D39 S. pneumoniae, a capsule type-2 isolate, and its derivatives (n = 11) with

mutations in genes required for full virulence have previously been described [11–20], and

those used are listed in Table 2. Mutant strains were selected for using antibiotics (10μg/ml

chloramphenicol, 0.2μg/mL erythromycin and/or 500μg/mL kanamycin) where necessary.

Bacteria were stored in broth containing 10%(v/v) glycerol at -80˚C.

To standardize counts between experiments, frozen inocula of S. pneumoniae were pre-

pared as previously described [21]. Inocula for D39 strains and non-pneumococcal bacteria

Table 1. List of Streptococcus pneumoniae serotypes and other bacteria used in this study.

Source Capsular Serotype Bacteria Source

S. pneumoniae clinical isolates Reference strains

Pleural fluid 1

Pleural fluid 11A Streptococcus anginosus ATCC® 10556™
Pleural fluid 19A Streptococcus anginosus ATCC® 33397™
Blood culture 1 Streptococcus intermedius ATCC® 27335™
Blood culture 6B Enterococcus faecalis NCTC® 8213™
Blood culture 6C Staphylococcus aureus ATCC® 9144™
Blood culture 8 (n = 3) Escherichia coli ATCC® 105365™
Blood culture 10A Escherichia coli ATCC® 25922™
Blood culture 11A Moraxella catarrhalis NCTC® 3622™
Blood culture 12F Pseudomonas aeruginosa ATCC® 25668™
Blood culture 19A (n = 7) Clinical isolates

Blood culture 19F

Blood culture 21 Methicillin-resistant Staphylococcus aureus Clinical isolate

Blood culture 22F (n = 2) Pseudomonas aeruginosa Clinical isolate

Blood culture 35B Pseudomonas aeruginosa Clinical isolate

S. pneumoniae reference strain Klebsiella oxytoca Clinical isolate

ATCC® 6303™ 3 Klebsiella pneumoniae Clinical isolate

ATCC, American Type Culture, Collection, Manassas, VA, US; NCTC, National Collection of Type Cultures, Salisbury UK.

https://doi.org/10.1371/journal.pone.0188833.t001
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were prepared from 18-hour blood agar to a turbidity of 0.5 MacFarland (PathWest) in sodium

chloride 0.85% using a Sensititre Nephelometer (Thermo-Scientific; Waltham, USA).

Pleural fluid inoculation

Pleural fluid samples (in 3mL aliquots) were warmed to 37˚C then inoculated with approxi-

mately 1.5×106 CFU/mL of bacteria and incubated for 24hrs at 37˚C and 5% CO2 unless speci-

fied. Baseline inoculum and final concentrations (CFU/mL) were verified by manual counting

log serial dilutions from blood agar.

Pleural fluid characteristics and bacteria used in each experiment are presented in Table 3.

Pleural fluids before and after centrifugation (n = 11 pairs), to remove cells, were inoculated

with S. pneumoniae isolates (n = 25). Six pairs were inoculated within 6 hours from collection

and all within 24 hours (range 1 to 18 hours). Growth was compared in parallel to Todd-

Hewitt Broth (THB; Thermo-Scientific) containing 17% FCS (Serana Australia, WA), [21],

Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen, NY) containing 1000mg/L of glu-

cose and sodium chloride 0.85% (n = 3 each) over 48 hours in six pleural fluid samples at 4, 8,

12, 18, 24, 28 and 48 hours. A further 7 pleural fluids were inoculated with non-pneumococcal

bacteria (n = 14) and S. pneumoniae clinical isolate (n = 2) controls, at the same starting inocu-

lum of 1.5×106 CFU/mL, for comparison purposes. The CFU/mL of bacteria failing to grow at

24 hours was subsequently measured at 4 and 8 hours in pleural fluid (n = 3).

D39 wild and mutant pneumococci (n = 12) were tested in pleural effusions (n = 8). Further

experiments with ΔpsaA in parallel to wild type in pleural fluids (n = 16) with and without sup-

plementation of 3μM manganese chloride tetrahydrate (Sigma-Aldrich, Sydney, Australia)

Table 2. Characteristics of D39 S. pneumoniae mutants used across experiments.

D39

Mutant

Name Virulence role Construction Reference

Δply Pneumolysin • Host cell cytotoxin

• Diverts complement activity

In frame deletion

mutant

[11]

ΔlytA Autolysin • Major autolysin of S. pneumoniae

• Mediates the release of pneumolysin and possible

inflammatory cell wall degradation products

Insertion-duplication

mutation

[12]

ΔpspA Pneumococcal surface protein A • Prevents complement mediated opsonisation

• Inhibits lactoferrin

Insertion-duplication

mutation

[13]

ΔcbpD Choline binding protein D • Competence induced cell lysis and therefore affects

subsequent DNA release

Insertion-duplication

mutation

[16]

ΔluxS Biosynthesis of type 2 autoinducer AI-

2

• Quorum sensing

• Affects translocation of bacteria

Insertion-duplication

mutation

[15]

ΔpsaA Pneumococcal surface antigen A • Manganese uptake

• Resistance to oxidative stress

Insertion-duplication

mutation

[14]

ΔpitA Putative iron uptake lipoprotein • Iron uptake Insertion duplication

mutation

[17]

ΔpiuB/piaA Iron Uptake ABC transporter • Iron uptake Insertion duplication

mutation

[18]

ΔadcAI Zinc uptake ABC transporter • Zinc uptake Deletion mutant [19]

ΔadcAII/

adcA

Zinc uptake ABC transporter • Zinc uptake Deletion mutant [19]

ΔlivH Branched-chain amino-acid (BCAA)

transporter mutant

• BCAA uptake Deletion mutant [20]

https://doi.org/10.1371/journal.pone.0188833.t002
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were performed. The concentration was determined following concentration dependent sup-

plementation experiments ranging from 0.003 to 30μM of manganese.

Statistical analysis

Statistical analyses were performed using SigmaPlot 12.5 (Systat Software, San Jose, CA).

Results are presented as mean (SD) or median (IQR) based on normality of data. The Wil-

coxon Signed-Rank test and paired t-test (for non-parametric and parametric data respec-

tively) were used to compare baseline to 24 hour pneumococcal concentrations and Student’s

t-test to compare growth between pleural fluid and other medium at various time-points over

48 hours. The Mann-Whitney Rank Sum test was used to compare differences between sam-

ples containing cells and correspondent supernatant and the Pearson Correlation was used to

determine any relationship between spun and unspun samples. Significance was defined as

p<0.05.

Results

Optimization and pneumococcal growth conditions

Significant growth was observed when 3mL volumes of pleural fluid were inoculated with

1.5 × 106 CFU/mL S. pneumoniae (n = 3), with a median increase of 6875 (IQR 3494–15744)

fold at 24 hours compared to baseline. Volumes ranging from 1 to 10mL in both tubes and

multi-well plates demonstrated similar growth, however volumes less than 1mL had inconsis-

tent or poor growth (data not shown). Inoculum concentrations in the range of 1.5 x 103 to

1.5x 106 CFU/mL demonstrated similar bacterial growth at 24 hours; an initial concentration

of 106 CFU/mL was used across experiments. Samples were incubated for 24 hours following

Table 3. Pleural fluid characteristics for individual experiments.

Experiment S. pneumoniae in

pleural fluid

S. pneumoniae in

different medium

Other bacterial

pathogens

S. pneumoniae D39

mutants* including

ΔpsaA

S. pneumoniae D39

nutrient

transporters**

S. pneumoniae

ΔpsaA + manganese

(Mn)

Pleural Fluid

Samples, n

11 6 7 8 8 16

Pleural Fluid

ID †

1–11 12–17 47–53 18–25 26–33 31–46

Number of

bacterial strains

used

25 S. pneumoniae 3 S. pneumoniae 14 non-

pneumococci

2 S. pneumoniae

1 D39 wild-type

6 D39 mutants*
1 D39 wild-type

5 D39 mutants**
1 D39 wild

1 D39 ΔpsaA

Number of

aliquots

inoculated

275 pleural + cells

275 pleural—cells

18 pleural + cells

27 other media

112 pleural

+ cells

56 pleural + cells 48 pleural + cells 32 pleural + cells

32 pleural + cells

+Mn

Sex, male (%)

Age, mean ±SD

7 (63.6%)

63 years (SD±)]

3 (50%)

70 years (SD±14)

4 (57.1%)

74 years (SD±4)

3 (37.5%)

70 years (SD±10)

7 (87.5%)

69 years (SD±8)

13 (81.2%)

69 years (SD±8)

pH, mean (SD) 7.33 (SD±0.11) 7.28 (SD±0.11) 7.37 (SD±0.11) 7.34 (SD±0.15) 7.33 (SD±0.12) 7.32 (SD±0.12)

LDH, U/L median

(IQR)

303 (116–4350) 251 (218–397) 245 (82.5–392) 319 (189–752) 391 (200–574) 379 (200–574)

Protein, g/L

median (IQR)

39 (36–44) 31 (23–39) 31 (24–35) 34 (26–40) 39 (17–41) 39 (17–40)

Glucose, mmol/

L, mean (SD)

4.09 (SD±1.9) 4.9 (SD±1.8) 6.3 (SD±2.3) 4.9 (SD±2.4) 8.4 (SD±8.4) 6.8 (SD±6.0)

† Individual pleural fluid characteristics are presented in S1 Table.

*Δply, ΔlytA, ΔpspA, ΔpsaA, ΔluxS, ΔcbpD,

** ΔpitA, ΔpiuB/piaA, ΔadcAI, ΔadcAII/adcAI, ΔlivH

https://doi.org/10.1371/journal.pone.0188833.t003
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inoculation as both S. pneumoniae isolates and D39 mutant strains were found to plateau at

this time point (data not shown). No difference in CFU/mL of pneumococci was observed in

fluids stored for up to 96 hours at 2–8˚C following collection.

S. pneumoniae proliferated rapidly in all pleural effusions tested

All 25 strains of S. pneumoniae proliferated rapidly in all (n = 11) effusion samples tested (Fig

1) by a median of 3009 fold (IQR 1063–9846) from baseline (from 3.83 × 105 CFU/mL to

1.3 × 109 CFU/mL), p<0.001 after 24 hours. S. pneumoniae growth was consistent with no

Fig 1. The median growth of S. pneumoniae (n = 25) in human pleural fluid (n = 11) was consistent across all (a) pleural fluid

samples (b) pneumococcal isolates and (c) serotypes. Each dot-point represents data analyzed as (a) the median growth of all S.

pneumoniae in each pleural fluid samples (n = 11), (b) individual S. pneumoniae isolates (n = 25) and the median growth of each

isolate across pleural fluid samples and (c) S. pneumoniae grouped according to serotype (n = 13); data from the pleural fluid

samples (n = 11) is pooled when more than one serotype is available and includes serotypes 1 (n = 2), 6B, 6C, 8 (n = 3), 10A, 11A

(n = 2), 12F, 19A (n = 7), 19F, 21, 22F (n = 2), 35B and 3 reference strain. Proliferation was significant at 24hrs across all

pneumococci, serotypes and pleural fluids, p<0.001. The box plot represents the median and IQR of the dot plot data; whiskers

represent the 95th percentile. Pleural fluid characteristics are presented in Table 3.

https://doi.org/10.1371/journal.pone.0188833.g001
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difference in CFU/mL when data was analyzed as growth per S. pneumoniae isolate, growth in

each pleural fluid sample or growth per serotype (p = 0.776).

Removal of the cellular content of the pleural fluid by centrifugation did not affect S. pneu-
moniae growth, with a median fold increase at 24 hours of 2857 (IQR, 1020–9735, p = 0.728 v.

growth in uncentrifuged fluid). Growth of S. pneumoniae in pleural fluid with cells correlated

closely to growth in pleural fluid without cells present (Fig 2, p<0.001).

S. pneumoniae reaches high densities in pleural fluid and avoids

autolysis

Growth of S. pneumoniae in pleural fluid was compared to growth in 1) THB with fetal calf

serum (17%), a supplemented culture medium commonly used to cultivate pneumococci, 2)

DMEM, a glucose rich cell culture medium and 3) 0.85% saline as a control. Rapid prolifera-

tion of S. pneumoniae was observed in THB with FCS, DMEM and pleural fluid within 8

hours following inoculation (Fig 3). The pneumococci did not proliferate in saline alone. Max-

imum CFU/mL were obtained at 8-hours post-inoculation in broth medium with higher or

similar concentrations observed in pleural fluid at the same time point. From 8 to 18 hours’

post—inoculation, autolysis became evident for bacteria grown in either DMEM or culture

medium with S. pneumoniae CFU/mL returning to baseline by 24 to 48 hours. In contrast,

Fig 2. Correlation of S. pneumoniae (n = 25) growth in pleural fluid with and without cells (n = 11 pairs) expressed as the

fold change from baseline inoculum at 24 hours (n = 275 pairs), p<0.001.

https://doi.org/10.1371/journal.pone.0188833.g002
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concentrations of S. pneumoniae CFU/mL in pleural fluid were maintained at >1000 fold

from baseline over 48 hours.

S. pneumoniae strains demonstrated consistent growth whereas growth

of other bacterial pathogens was variable

We investigated the growth of other bacterial pathogens (n = 14) across pleural fluid samples

(n = 7). Growth measured at 24 hours was variable across other bacterial pathogens (Fig 4)

with a median fold change in CFU/mL of 12.0 (IQR 0.2–813.0) compared to 1172 (IQR, 587–

1757) for S. pneumoniae controls (n = 2), p<0.001. Furthermore, inconsistent growth between

strains of the same bacterial pathogen was evident, including within the viridans streptococci

group (n = 3) which are a frequent cause of adult empyema. The bacterial pathogens which

failed to grow at 24 hours in pleural fluid did not demonstrate increased growth at earlier time

points of 4 or 8 hours (data not shown).

S. pneumoniae proliferation in pleural fluid is dependent on

pneumococcal surface adhesin A (PsaA)

To identify factors required for S. pneumoniae growth in pleural fluid, growth experiments

were repeated using the D39 wild-type strain and eleven mutant strains (Δply, ΔlytA, ΔpspA,

ΔpsaA, ΔluxS, ΔcbpD, ΔpitA, ΔpiuB/piaA, ΔadcAI, ΔadcAII/adcAI,ΔlivH) in eight pleural fluid

samples (Table 2). These mutant strains contain mutations in S. pneumoniae genes required

for full virulence either because they encode surface proteins known to be important for host

interactions or components of ABC transporters required for nutrient acquisition in vivo [11–

17, 19, 20, 22]. All of the mutant strains achieved a similar density of CFU/mL as the wild-type

D39 stain with the exception of ΔpsaA. After 24 hours in pleural fluid, the CFU/mL of ΔpsaA
had decreased from baseline with a fold change of 0.55 (IQR, 0.08–3.255) whereas the D39

wild strain had increased 1214-fold (503–1746, p<0.001). A decrease in ΔpsaA concentrations

Fig 3. Fold change in CFU/mL from baseline in saline (n = 3), cell-culture medium (DMEM) (n = 3), THB supplemented with

fetal calf serum (n = 3) and pleural fluid (n = 6). Each graph represents a different S. pneumoniae clinical isolate (a) serotype 8

(blood) (b) serotype 19A (blood) and (c) serotype 19A (pleural fluid). Bacterial CFU/mL in each fluid was determined at 4, 8, 12, 18,

24, 28 and 48 hours. Fluid characteristics are listed in Table 3.

https://doi.org/10.1371/journal.pone.0188833.g003
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from baseline was apparent at 4 hours and further decreased at 8 and 24 hours. Importantly,

manganese supplementation of pleural fluid by the addition of 3uM of manganese prior to

inoculation restored ΔpsaA proliferation in the pleural fluid, increasing the median fold-

change in CFU from 0.11 (0.07–501) to 1546 (509–4775) at 24 hours, p<0.001 (Fig 5). 3μM

manganese chloride- tetrahydrate was selected following concentration dependent supplemen-

tation experiments ranging from 0.003 to 30μM of manganese. The addition of manganese

had no impact on growth of the D39 wild type strain. Iron and zinc supplementation of Δpit
and ΔadcAII/I mutants respectively had no impact on growth compared to the D39 wild type

control (data not shown).

Fig 4. The fold change in CFU/mL of other bacterial pathogens (n = 14) including P. aeruginosa (4), S. aureus (О),

S. anginosis group (×), E. coli (□), Klebsiella sp.(5), E. faecalis (�), M. catarrhalis (✯). Each dot point represents the

median fold change of each bacterial strain across pleural fluid (n = 7) samples at 24hrs. Data from other bacterial

pathogens is compared to previous results of S. pneumoniae (n = 25) growth in pleural fluid (n = 11), p<0.001. The box plot

represents the median and IQR; whiskers represent the 95th percentile.

https://doi.org/10.1371/journal.pone.0188833.g004
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Discussion

S. pneumoniae is a common cause of both pediatric and adult empyema, yet the reasons why

this pathogen can cause pleural infections have only been partially investigated. This is the first

study to investigate the interactions of bacteria, namely S. pneumoniae, and human pleural

fluid ex vivo. We found that pleural fluid provides a rich medium to support the growth of all

relevant S. pneumoniae strains tested and that pneumococci appear to be much better adapted

to grow in pleural fluid than most other common respiratory pathogens. More importantly,

growth of S. pneumoniae in pleural fluid was dependent on PsaA, a manganese transporter

making this a potential future therapeutic target. Mutations of other key virulence factors of

S. pneumoniae did not affect the growth of pneumococci in human pleural fluid ex vivo.

Fig 5. D39 S. pneumoniae wild type andΔpsaA growth in pleural fluid (n = 16) at 24 hrs with and without manganese (Mn2+)

3μM supplementation. ΔpsaA growth was restored with manganese supplementation, p<0.001.

https://doi.org/10.1371/journal.pone.0188833.g005
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We have previously shown in our mouse model that S. pneumoniae from infected pneumo-

nia tissues invades the pleural cavity within 4 hours of infection via transcytosis across the

mesothelial cells [23]. Little information exists on the fate of bacteria after they invade human

pleural fluid. This is the first study to investigate these interactions.

To investigate the capacity of pleural fluid to support bacterial growth we used human pleu-

ral effusions, most with malignant etiology. Parapneumonic effusions and malignant pleural

effusions are both exudative in nature and have indistinguishable biochemical compositions

with elevated protein and lactate dehydrogenase and reduced glucose and pH. The effusions

used for this study display the same biochemical features of non-infective simple parapneumo-

nic effusions. Our results show that all 25 isolates of S. pneumoniae consistently proliferated

across eleven human exudative pleural fluid samples tested with a median increase of approxi-

mately 3000-fold from baseline at 24 hours. In contrast, the median growth of other bacterial

pathogens in pleural fluid was approximately 10-fold, and interestingly the growth was variable

with some bacterial isolates demonstrating similar levels of growth to S. pneumoniae, whilst

other isolates consistently failed to grow.

When tested in parallel, the growth of S. pneumoniae was similar to optimal laboratory

media at 8 hours demonstrating that pleural fluid represents an excellent growth medium for

S. pneumoniae. Furthermore, pneumococci naturally undergo autolysis after reaching station-

ary phase during growth which was observed in broth at 18 hours, yet bacterial CFU/mL den-

sity was maintained for 48 hours after growth in human pleural fluid. This persistent growth is

likely to promote significant neutrophil influx and may be a reason why pneumococci are a

frequent cause of empyema. This failure of autolysis would ensure S. pneumoniae strains are

capable of maintaining high level infection even in a closed environment such as a pleural effu-

sion. The reasons why autolysis did not occur after growth in pleural fluid are not known. The

cellular content of the pleural fluid did not influence S. pneumoniae proliferation, indicating it

is the pleural fluid itself that provides the medium for S. pneumoniae growth. The ability to

grow in pleural fluid did not vary between individual S. pneumoniae isolates or serotypes

investigated.

Multiple cell surface proteins that function as adhesins, in complement resistance, auto-

lytic enzymes and nutrient transporters in S. pneumoniae have been identified as essential for

virulence and growth of the bacterium. We investigated eleven of these virulence factors for

their role during growth in pleural fluid, using mutants that are known to have reduced

growth in blood (eg Δply, ΔlytA, ΔpsaA and ΔlivH) [11, 20, 24–27] or in cation depleted

media (ΔpiuB/piaA, ΔadcAI/ΔadcAII) [22, 28, 29]. However, perhaps surprisingly, only one

mutant strain demonstrated reduced growth in pleural fluid, the ΔpsaA mutant. PsaA is a

lipoprotein required for manganese transport and resistance to oxidative stress [14, 30, 31].

Mutation of PsaA reduces virulence of S. pneumoniae and growth in laboratory medium that

has been depleted of manganese. Providing biochemical complementation of the ΔpsaA
mutation by supplementing pleural fluid with 3uM manganese was sufficient to restore

growth in pleural fluid, confirming that it is the low concentration of manganese that causes

failure of growth of the ΔpsaA strain [31]. This suggests that manganese is rate limiting for

growth of S. pneumoniae in pleural fluid yet pneumococci are capable of overcoming this

using the PsaA transporter. Potential PsaA inhibitors that have recently been identified open

opportunities to control S. pneumoniae proliferation in the pleural space [32]. Interestingly,

growth of S. pneumoniae with mutations affecting transporters required for iron or zinc

uptake was not affected, suggesting that manganese results are specific for growth within

pleural fluid.

The study has a number of potential limitations. We were unable to use pleural fluid of

infected etiology in the present study for reasons stated in the introduction. However,
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malignant pleural effusions have a close resemblance in biochemistry to parapneumonic effu-

sions and were therefore used for the majority of our experiments. Although the cellular con-

tent of these effusions may differ, we found that the cellular content of the fluid did not

influence the growth/proliferation of S. pneumoniae in vitro. Next, due to the nature of the

study, experiments were performed in ex vivo pleural fluid and therefore host defenses, includ-

ing neutrophils that may modify the bacterial proliferation were not accounted for. However,

as a proof of principle study our aim was to investigate the direct effect of pleural fluid on

S. pneumoniae proliferation. Furthermore, our data showed no difference in proliferation with

or without cellular content of the pleural fluid. Finally, we studied 25 invasive strains of S.

pneumoniae that had caused empyema or septicemia. Future studies that include other sero-

types may be needed, though the very consistent nature of the results indicates that the major-

ity of S. pneumoniae isolates are likely to grow in pleural fluid.

Pleural fluid is a potent growth medium for S. pneumoniae and may be one reason why

pneumococci are a common bacterial cause of empyema. The high density and persistent

growth of S. pneumoniae in pleural fluid highlights the importance of draining infected effu-

sions. Pneumococcal growth was independent of the cellular content of pleural fluid but

dependent on the PsaA surface protein, making PsaA a potential future therapeutic target. The

variable growth of other bacterial pathogens in pleural fluid may account for the lower inci-

dence of otherwise common respiratory pathogens in empyema and warrants further explora-

tion in order to understand pathogenesis of pleural infection.
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