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Abstract

Reductionist approaches, where individual pieces of a process are examined in isolation,

have been the mainstay of biomedical research. While these methods are effective in highly

compartmentalized systems, they fail to account for the inherent plasticity and non-linearity

within the signaling structure. In the current manuscript, we present the computational archi-

tecture for tracking an acute perturbation in a biologic system through a multiscale model that

links gene dynamics to cell kinetics, with the overall goal of predicting tissue adaptation.

Given the complexity of the genome, the problem is made tractable by clustering temporal

changes in gene expression into unique patterns. These cluster elements form the core of an

integrated network that serves as the driving force for the response of the biologic system.

This modeling approach is illustrated using the clinical scenario of vein bypass graft adapta-

tion. Vein segments placed in the arterial circulation for treatment of advanced occlusive dis-

ease can develop an aggressive hyperplastic response that narrows the lumen, reduces

blood flow, and induces in situ thrombosis. Reducing this hyperplastic response has been a

long-standing but unrealized goal of biologic researchers in the field. With repeated failures

of single target therapies, the redundant response pathways are thought to be a fundamental

issue preventing progress towards a solution. Using the current framework, we demonstrate

how theoretical genomic manipulations can be introduced into the system to shift the adapta-

tion to a more beneficial phenotype, where the hyperplastic response is mitigated and the

risk of thrombosis reduced. Utilizing our previously published rabbit vein graft genomic data,

where grafts were harvested at time points ranging from 2 hours to 28 days and under differ-

ential flow conditions, and a customized clustering algorithm, five gene clusters that differenti-

ated the low flow (i.e., pro-hyperplastic) from high flow (i.e., anti-hyperplastic) response were

identified. The current analysis advances these general associations to create a model that

identifies those genes sets most likely to be of therapeutic benefit. Using this approach, we

examine the range of potential opportunities for intervention via gene cluster over-expression

or inhibition, delivered in isolation or combination, at the time of vein graft implantation.

PLOS ONE | https://doi.org/10.1371/journal.pone.0187606 November 30, 2017 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Casarin S, Berceli SA, Garbey M (2017)

Linking gene dynamics to vascular hyperplasia –

Toward a predictive model of vein graft adaptation.

PLoS ONE 12(11): e0187606. https://doi.org/

10.1371/journal.pone.0187606

Editor: Monica Soncini, Politecnico di Milano,

ITALY

Received: March 24, 2017

Accepted: October 20, 2017

Published: November 30, 2017

Copyright: © 2017 Casarin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Grant NIH - U01HL119178-01 has

supported in full this research.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187606
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187606&domain=pdf&date_stamp=2017-11-30
https://doi.org/10.1371/journal.pone.0187606
https://doi.org/10.1371/journal.pone.0187606
http://creativecommons.org/licenses/by/4.0/


Introduction

While endovascular interventions via angioplasty and/or stent placement have defined roles in

the treatment of arterial occlusive pathologies, bypass grafting remains the most effective ther-

apy to re-establish flow in the setting of advanced coronary and peripheral lesions [1–4].

Providing a pathway to shunt blood around these segmental regions of high-grade stenosis

or occlusion, the long-term success of these interventions is implicitly linked to the durability

of these conduits to provide an unobstructed pathway for flow. While a variety of biomaterials

has been developed for this purpose, autologous vein remains the conduit of choice for these

procedures. Although being conceptually the ideal conduit, failure rates remains unacceptably

high, approaching 40% within one year following implantation [5,6].

Implicit in the creation of a vein graft is the transposition of this conduit from a low pres-

sure/continuous flow regime to a high pressure/pulsatile flow environment. This initiates a

series of adaptation and repair mechanisms that are critical in maintaining structural stability

in the face of these more extreme hemodynamics [4,7,8]. While this arterialization process,

characterized by thickening of the wall and expansion of the lumen, provides a normalization

of the biomechanical forces to a more physiologic level, the biologic processes that regulate

this adaptation can overcompensate, leading to an aggressive hyperplastic response and nar-

rowing of the lumen. This maladaptive phenotype, and the resulting stenotic lesion, results in

a significant reduction in blood flow through the graft and failure secondary to in situ throm-

bosis [9–13].

Attempts to develop targeted pharmacologic therapies to mitigate this aggressive hyper-

plastic response and improve vein graft outcomes have been unsuccessful [5,6]. Our group

and others [14–16] have postulated that the redundancy among the pathways that regulate this

maladaptive response undermines the success of a “single-bulleted” approach, and multiple

targeted therapies at critical stages in the disease process are required for a successful outcome.

The challenge remains to identify those cornerstone elements that can be manipulated to alter

the trajectory of this response.

Investigations has previously shown that changes in the hemodynamics environment within

blood vessel are perceived at the genomic level [17,18]. Levering this concept, the current manu-

script details the methodology to utilize high-throughput genomic data to create a multiscale

model of vein graft adaptation. The rationale is to offer a general mathematical construct that

can simulate the outcome of targeted gene therapies and reduce the complexity from millions of

possible combinations to few hundred of potential ones. Within the proposed framework,

unique temporal patterns of gene expression are quantitatively linked to their effect on cell and

matrix kinetics, and ultimately their impact on graft architecture. The resulting predictive

model provides a tool for the in silico exploration of the connection between gene regulatory

networks and the adaptive response of grafts, identifying key gene sets that can be manipulated

to mitigate the maladaptive remodeling response following vein graft implantation. The current

version of the model wants to serve as a modular framework. Our plan is to keep improving the

model and to further narrow the gene therapy target with in vivo validation.

Materials and methods

Multiscale model

In order to understand the complex interplay of all the elements influencing the vasculariza-

tion of the graft, we chose a systems biology approach that puts an emphasis on understanding

the intervening components and on providing predictive models to anticipate the final out-

come [19,20]. Fundamental to the systems biology approach is the understanding of the
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existence of a critical link between the system, in our case the vein graft, and the environment.

Perturbations of the environment influence the structure and the function of the system,

which impacts the environment itself creating a feedback loop between system and environ-

ment. This interaction may lead to a relative homeostasis, where variations in the environment

and in the system converge to a stable phenotype, but also it may result in a dynamic instability

if one side of the loop is not properly balanced by the other. Early vein graft remodeling is the

perfect example of how the balance between system and environment may drive the surgical

outcome toward a stable phenotype, or toward the failure of the procedure. The current model

is based on the concept of a direct link between hemodynamics and transcriptional regulation

as illustrated in Fig 1. The result is a highly interdependent system where local perturbations

provide feedback to other elements leading the system either to a new set point, which repre-

sents the arterialized vein, or to instability, which represents the restenosis phenomenon that

leads to the failure of the surgical procedure.

The environmental condition (shear stress) directs the initial working point of the gene net-

work, which dictates the cellular and the matrix-based remodeling response of the vein.

Changes at the cellular level define the local graft architecture, which directly impacts the shear

stress that determines a new set point for the gene network, and consequently a new biological

response of the graft.

Our multiscale model is made up of 2 distinct parts: i) a subset of a Dynamical System (DS)

already developed in our previous work [21], and ii) a gene Cluster Network (CN). The first is

a heuristic model derived from a conceptual diagram based on experimental observations,

with the feature to be able to predict the final outcome of the vein graft arterialization, while

the second is implemented as a system of Ordinary Differential Equations (ODE) that repli-

cates both the expression and the level of mutual interconnectedness of targeted cluster of

genes. The two parts are combined to form a hybrid model able to cover both the macro and

the micro scale aspect of hyperplasia.

Fig 2 details the general construct of the hybrid model, which can be summarized in five

fundamental steps:

1. Construction of the Dynamical System (DS) that replicates hyperplasia (first sub-model);

2. Construction and calibration of the Cluster Network (CN), that details the expression of

each single cluster of genes and the level of mutual interconnectedness among them (sec-

ond sub-model);

Fig 1. System biology approach. The vein graft arterialization process is described by a loop of

interdependent events, where the dynamic interplay between physical forces and gene network regulates the

early graft remodeling.

https://doi.org/10.1371/journal.pone.0187606.g001
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3. Coupling of CN and DS to form the hybrid model;

4. Calibration of the different level of impact that each component of each network has on the

specific biologic event (relative weights of the clusters);

5. Calibration of the hybrid model on experimental data.

The skeleton of the multiscale model is implemented as a Matlab1 code and also all the

couplings and the validations introduced have been performed by using Matlab1 functions

from the Optimization Toolbox. The code implemented has not been provided within the cur-

rent publication, however it will be provided upon request to foster and encourage future

collaborations.

Experimental setup. Our multiscale model was calibrated at various levels through non-

linear fitting on experimental data, which were retrieved from a rabbit vein graft model, which

included shear-modulation in order to examine the influence of hemodynamics on graft

remodeling [22–25]. Specifically the experimental data are retrieved from our previously pub-

lished work [26], where jugular veins were inserted into both the left and right common

carotid arteries of the rabbit and coupled with unilateral ligation of the internal carotid. This

causes a 90% reduction in flow on the ligated vein graft side, which enhances the hyperplasic

response and narrows the lumen [27–31]. Grafts were harvested at multiple time points, rang-

ing from 2 hours to 28 days, to facilitate microarray, cell and matrix kinetic, and graft mor-

phology measurements that are needed to calibrate the model.

All data needed for the calibration and the validation of the multiscale model were retrieved

from the rabbit model described [26] and they will be presented in detail at the beginning of

each corresponding section.

1. Dynamical System (DS). Hyperplasia is the dominant event in the first month of graft’s

adaptation [4,7] and it is primarily driven by alterations in shear stress [8,27,28,31,32]. The

Fig 2. Hybrid model development step-by-step diagram. Significant clusters of expression (Gi(t)) are

organized in Cluster Network (CN) through an Ordinary Differential Equations (ODE) system, which

unknowns (highlighted in bold red) are retrieved fitting the ODE system on experimental data from gene

microprobes (dashed red line box). The CN is plugged into a Dynamical System (DS) that simulate the long-

term vein graft healing, to create a hybrid model, characterized by 2 kinds of unknowns: in bold green the

weights of each cluster on a specific cellular event, that are retrieved on the base of experimental data

(dashed green line box); in bold blue the scaling factors that adjust the unite of measurement of each cluster

expression into the hybrid model, also retrieved on the base of experimental data (dashed blue line box). In

general, a large use of heterogenic experimental data (highlighted in bold purple) has been made at various

levels through the development of the model for validation and calibration purposes.

https://doi.org/10.1371/journal.pone.0187606.g002
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atherosclerotic disease progression in the venous system is indeed analogous to the one

recorded for arterial system, in which local wall shearing forces have been postulated as a

major regulator of vein graft adaptation [33]. Suggested by an array of animal experiments

from both our group [34] and others [35] and also more recently confirmed by observations in

humans [4], reductions in local wall shear have been demonstrated to be critical components

leading to accelerated intimal hyperplasia development. In addition, as studied by Langille BL

et al. [36] and Kohler TR et al. [37], morphological changes related to graft adaptation in the

first weeks of follow-up are strongly endothelial dependent and the endothelium is strongly

sensitive to shear stress [37]. Accordingly, in order to study the temporal dynamic of the

hyperplastic response, we used an adapted subset of a previously developed DS [21]. The latter

is a system of Ordinary Differential Equations (ODEs) designed to model and replicate the

interconnectedness between shear/tensile forces, biologic processes, and morphology changes

within the vein graft following the implantation. The model approximates the geometry of the

graft as a straight, thick, and circumferential symmetric cylinder with internal radius R1 and

external radius R2, and internal pressure P1 and external pressure P2. Accordingly, assuming a

Poiseuille flow across the cylinder, the dynamic of the intima is solely led by shear stress, given

by the formula:

t ¼ m
2U
R1

; ð1Þ

where U is the maximum velocity of the blood at the centerline, and μ is the dynamic viscosity

of the blood.

For the purpose of this work, we extracted a new conceptual scheme, reported in Fig 3, and

we based our version of the DS on it. Our sub-model of graft adaptation is fully described by

the following system of ODEs:

(
_ASMC ¼ � a1Dt� ASMC

_AECM ¼ � a2 Dt� ASMC

: ð2Þ

In (2), ASMC is the cross-sectional area occupied by cellular density and AECM the area occu-

pied by the extracellular matrix (ECM) density. Δτ− = min(Δτ,0), is the deviation of the shear

stress from its baseline, which is imposed to be negative in order to enhance cellular mitosis.

The model is indeed formulated such that a reduction in shear stress is the driving force for

augmented hyperplasia. Letting τ0 be the shear stress at time t = 0 (assumed to be the time of

implantation of the graft), the intimal growth rate can be expressed as a function of the differ-

ence between the mechanical condition at time t and the baseline setting (recorded at t = 0):

Dt ¼ tðtÞ � t0: ð3Þ

Assuming unitary velocity at the inlet of the graft, and being μ = 3.2cP the blood viscosity,

the shear stress at time t = 0 was recorded to be 6.4 Pa and considered to be an arterial value.

Finally α1 and α2 are the constant parameters that regulate the cellular events responsible for

the hyperplasia, namely cell proliferation, here intended as an average between mitosis and

apoptosis, and ECM synthesis. Critical in the coupling of the DS with the CN will be to replace

the constant character of α1 and α2 in favor of a time dependent trend derived from the gene

dynamic.

2. Cluster network (CN). With our rabbit model, we explored the complexity of shear-

mediated vein graft remodeling through a transcriptional profiling. Using a rabbit-specific

microarray probe [38], we examined the temporal variation in gene expression within the vein

graft wall at 2 hours, 1, 3, 7, 14 and 28 days following the original implantation. The dynamic
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of all the genes analyzed is reported in the supporting information file S1 Data. We used our

customized statistical algorithm [22] in order to organize the genes in 29 different clusters of

expression. Using an analysis of variance (p<0.05), minimum effect size (>0.5) and minimum

fold change (>0.5) criteria, 13 clusters out of the original 29 were found to have a pattern sig-

nificantly different once exposed to a different flow condition and for this reason the remain-

ing 16 have not been considered as significant for the purposes of our analysis. Cell

proliferation and matrix dynamic are recognized to be the cellular events that mainly drive the

hyperplasia. Accordingly, by focusing only on the clusters that are highly populated by genes

impacting these cellular events, we further reduced the number of significant clusters to five,

which are identified as the primary elements that control the accelerated response to low shear

conditions. Finally, we used a repository of gene networking information IPA ingenuity [39]

to identify the association of the genes belonging to the significant clusters with upstream bio-

logic mediators and with downstream biologic events. While the relation with the upstream

mediators will be addressed in future developments, the relation between clusters and biologic

event will be one of the keys of the present work.

Fig 4 shows the expression of the five significant clusters, labeled from A to E along with the

expression of the genes belonging to each specific cluster.

Fig 3. Dynamical System (DS). Conceptual scheme of the subset of DS that replicates hyperplasia during

the first month of post-surgical follow-up [21].

https://doi.org/10.1371/journal.pone.0187606.g003
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Gene ontology analysis shows a common behavior for the five clusters. An initial response

during the first week following implantation corresponds to the inflammatory state that fol-

lows the implantation. The excitation lowers starting from Day 7, when the expression starts to

stabilize around an asymptote.

We replicated both the expression of each single cluster, and the level of interconnectedness

between them. Two main properties of the genes clusters drove our modeling approach: i)

their mutual interconnectedness, and ii) their impact on the main cellular events leading the

restenosis (i.e. SMCs proliferation and death, and ECM synthesis).

The different clusters have a certain level of mutual interconnectedness that can be

expressed by organizing them in a highly integrated network, so that a variation of expression

in one single node leads to adaptive changes in the other interconnected components. The

choice of a mutual interconnected network allowed us to replicate the property for which a

variation of expression in one single cluster influences the level of expression of all the others

that are connected to it. This feature is fundamental in order to study the effect of a gene ther-

apy, as it is to be expected that the alteration of one element brings a certain level of activity

modifications in other components too, potentially causing secondary effects on the outcome,

which must be taking in consideration.

To reduce the problem to one that is sufficiently powered to support a discrete solution, the

model will be constructed around gene clusters, which are composed of a set of genes with a

unique temporal expression pattern and similar biologic function. Potential interventional

strategies can then be contemplated for key elements or upstream regulators within the most

influential clusters.

In order to build the skeleton of the CN, we started from a system of Ordinary Differential

Equations (ODE), where each cluster’s dynamic is described with one equation, for a total of 5

as the number of clusters identified by the clustering algorithm. The choice of an ODE system

is driven by the need of replicate the temporal dynamic of the single cluster along with the

level of interconnectedness among the clusters, as previously introduced. Every cluster

dynamic is dependent from the dynamic of all the other clusters and it is so mediated through

a constant factor Ajk that represents the impact carried out by cluster j on cluster k, as it will be

described later. The ODE system writes

d
dt
G1 ¼ lðtÞ½

A11ðG1 � B1Þ þ A21ðG2 � B2Þ þ A31ðG3 � B3Þ þ A41ðG4 � B4Þþ

A51ðG5 � B5Þ
�

d
dt
G2 ¼ lðtÞ½

A12ðG1 � B1Þ þ A22ðG2 � B2Þ þ A32ðG3 � B3Þ þ A42ðG4 � B4Þþ

A52ðG5 � B5Þ
�

d
dt
G3 ¼ lðtÞ½

A13ðG1 � B1Þ þ A23ðG2 � B2Þ þ A33ðG3 � B3Þ þ A43ðG4 � B4Þþ

A53ðG5 � B5Þ
�

d
dt
G4 ¼ lðtÞ½

A14ðG1 � B1Þ þ A24ðG2 � B2Þ þ A34ðG3 � B3Þ þ A44ðG4 � B4Þþ

A54ðG5 � B5Þ
�

d
dt
G5 ¼ lðtÞ½

A15ðG1 � B1Þ þ A25ðG2 � B2Þ þ A35ðG3 � B3Þ þ A45ðG4 � B4Þþ

A55ðG5 � B5Þ
�

ð4Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

where Gi = 1,. . .,5 represents the expression of the i-th cluster, while Bi = 1, . . ., 5 is the param-

eter driving the asymptotic trend of the i-th cluster. λ(t) is a third order polynomial function

that serves as time modulation used to drive the dynamic of the cluster expression toward its
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reference trend described by the experimental data. The output of the basic model expressed

with (4) is indeed a linear combination of exponential functions, and the solution of it can

either converge to an asymptote, diverge toward infinite, or result in high frequency oscilla-

tions trend. On the other hand, from the analysis of the experimental data shown in Fig 4, we

observed a common trend for the dynamic of all the clusters, which share a non-monotonic

dynamic characterized by one inflection point that perfectly mimics the inflammatory phase

the vein faces in the early post-surgical follow-up, and a final asymptotic trend that mimics the

post-inflammation relaxation. To be able to catch the non-linearity of the clusters’ dynamic,

we applied a modulation mask described by the following:

lðtÞ ¼ C1t
3 þ C2t

2 þ C3t þ 1 ð5Þ

Finally Ajk, j = 1,. . .,5; k = 1,. . .,5 describes the level of incidence that the j-th cluster carries

out on the k-th cluster. It is necessary to highlight how Ajk, Bi and Cn (n = 1,2,3) are unknown

parameters that have to be retrieved from experimental data. Among the unknowns, Ajk cer-

tainly carries the most valuable information. Indeed, starting from it, we can define a matrix

associated to the cluster network, which precisely defines the level of mutual incidence

between the various clusters (S1 Table). Basing on this matrix, a network that respects the dif-

ferent level of interconnectedness between clusters can be defined.

Using curated ontology information, genes can be linked to specific biologic processes, i.e.

genes belonging to a specific cluster can impact one or more cellular activities. With respect to

vein graft adaptation, we have already mentioned in the introduction how the leading cellular

events are cell proliferation and death, and ECM synthesis. Within the construct of the cluster-

ing model, individual gene sets in each cluster can be mapped to each of the three processes,

and these subsets of clustered genes can be assumed to form an integrated network by them-

selves. Consequently, we deal now with three different network of clusters, one per cellular

Fig 4. Genes dynamic retrieved from microarray probe for the five significant clusters. In each graph,

the dynamic of each gene is represented with a light gray solid line, while the cluster expression, intended as

the mean of the genes expression, is represented with a black solid line.

https://doi.org/10.1371/journal.pone.0187606.g004
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activity. Each of these distinct networks will be labeled CN1, CN2, and CN3, respectively map-

ping to the biologic activities of cell mitosis, cell apoptosis and ECM deposition.

In each network, the pattern of expression for each cluster is known from experimental

data and this allowed us to retrieve the precise level of interconnectedness among clusters

belonging to the same network (Ajk), also along with the other unknown variables (Bi, and

Cn). For each network, to retrieve the unknown parameters is equivalent to calibrate the gen-

eral mathematical model described with (4) on the correspondent experimental data, that are

different between SMCs proliferation and death, and ECM synthesis. Indeed, generally speak-

ing, the calibration of a model is the task of adjusting an already existing model to a reference

system, typically by minimizing an objective function defined ad hoc. In our case, we want to

adjust the general cluster network to each experimental dataset by retrieving the value of the

unknowns. S1 Fig shows the conceptual diagram followed in order to calibrate the model and

to retrieve the unknowns. It corresponds to the red dashed box already seen in Fig 2 and now

further described step-by-step in S1 Fig. The calibration was performed by minimizing the dis-

tance between the output of the general cluster network, which is parameterized in Ajk, Bi and

Cn, and the correspondent experimental data. The distance is evaluated using the Root Mean

Square (RMS) deviation, which is also function of Ajk, Bi and Cn, and that describes the objec-

tive function that has to be minimized. It writes

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

r¼1

PM
t¼1
ðxRefrt � xModrt Þ

2

q

¼ f ðAjk;Bi;CnÞ ð6Þ

N = 5 is the number of clusters belonging to the network, while M = 6 is the number of time

points at which the vein graft has been harvested. xRefrt is the expression of the r-th cluster at the

t-th time point retrieved from the experimental data (reference of the calibration), while xModrt

still stands for the expression of the r-th cluster at the t-th time point, but referred to the gen-

eral network model to be fitted. The objective function has been minimized using a Genetic

Algorithm (GA) from the Matlab1 Optimization Toolbox. A GA is a method for solving opti-

mization problems based on a natural selection process that mimics the biological evolution

[40]. The algorithm repeatedly modifies an initial population of individuals (randomly selected

within a pre-defined range), each of them representing a potential solution, by promoting the

best and discarding the worst. The right setup of the GA is the key to handle all the potential

issues that may occur during the minimization of the objective function. For each network, the

high number of unknowns (33), arranges that the algorithm was prone to become stuck in a

local minimum instead of a global one. In order to cope with it, the population size of the GA

was increased from its Matlab1 default value of 50 to 100 time the number of unknowns. Even

though in this way the algorithm can explore a wider range of solutions, a too wide initial

range can certainly affect the accuracy of the minimization. This issue can be resolved by run-

ning the GA recursively, i.e. running the same algorithm several times and by setting as initial

range of the n-th run an interval defined inside the proximal surrounding of the solution of

the (n-1)-th run. In this specific case we refined in first approximation our solution by running

the minimization twice where the initial guess for the second simulation is taken inside the

surrounding of the first one. Finally, a penalty factor was added to the objective function in

order to maintain the system stable even upon manipulation of the cluster expression that is,

after all, the spirit of a potential gene therapy. Specifically, within the definition of the objective

function, the best fitting is not only evaluated with the whole group of clusters active, but also

with one cluster turn down at each time. For every single evaluation, a threshold tolerance has

been set to be Tol = 10 which was believed to be a number sufficient high to provide a reason-

able first selection. If the single fitting value has exceeded the tolerance, the current solution

would have been discarded a priori. In fact, a loss of stability has been observed a posteriori
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upon manipulation of the network, and in particular by singularly knocking down the expres-

sion of most of the cluster. During the minimization process, we systematically tested the best

solution found by the algorithm at each step in case of singularly silencing of each single clus-

ter belonging to the network. If the system remains stable knocking the cluster down, the cur-

rent solution is kept and the algorithm can proceed to the next generation, otherwise the

solution is discarded and the algorithm picks another best.

The calibration of the general model on the three series of experimental data allowed us to

associate to each biologic event a matrix like the one described with S1 Table and a network

reflecting the matrix itself.

3. Sub-models coupling. The hybrid model was obtained by linking the DS and the three

CNs, and specifically by replacing the constant parameter α1 and α2 of the DS with the time-

dependent cluster expression derived from the CNs and associated to the same cellular event,

as shown in Fig 5.

By linking the two sub-models, we detailed the genetic impact on the biologic events that

lead the hyperplasia. Indeed the CNs link the dynamic of clusters to the relative activity of the

biologic process, while through the DS, the aggregate change in biologic processes can be

tracked to predict the net influence on the final vein graft morphology.

In the DS previously introduced, α1 was designated to control cell proliferation and its con-

stant value was comprehensive of both mitosis and apoptosis. These cell processes are assumed

to be directly controlled at the genetic level and accordingly retrieved from their respective

CNs, each of them represented by the average of the expressions of the five clusters belonging

to the single network. With respect to Fig 5, α1 is now both cluster and time dependent, and

can be written as:

a1 tð Þ ¼
PN

i¼1
b1i � GiMitðtÞ

5
�

PN
i¼1

b2i � GiApopðtÞ
5

; ð7Þ

where N is again equal to 5, that is the number of clusters belonging to a single network,

GiMitðtÞ is the time-dependent expression of the i-th cluster belonging to CN1, while GiApopðtÞ
is the time-dependent expression of the i-th cluster belonging to CN2. β1i is the scaling factor

that adapts the unit of measure of the i-th cluster expression belonging to CN1 ([mRNA]) into

the hybrid model, and at the same way, β2i takes care of CN2.

In an analogous manner, α2 was designated in the DS to dictate ECM deposition kinetics

within the wall, and was re-defined via the following expression:

a2 tð Þ ¼
PN

i¼1
b3i � GiECMðtÞ

5
: ð8Þ

Again, GiECMðtÞ is the time-dependent expression of the i-th cluster belonging to CN3, and β3i

is the relative scaling factor for the i-th cluster into the hybrid model.

The current stage of the hybrid model still represents a basic structure characterized by

unknown parameters, such as β1i, β2i, and β3i, for a total of 15 unknowns. These latter are

retrieved by calibrating the hybrid model on experimental cell mitosis, cell apoptosis, and

ECM deposition data obtained from our rabbit model [41].

4. Clusters weights. Within the same network, each cluster has a different impact on the

biologic process to which it is mapped. In order to determine how each network influences its

respective cellular event, the relative weight that each cluster employs on the relative cellular

event must be defined. This also means that it is necessary to re-visit the definition of α1(t)
and α2(t), originally introduced with the DS. Assuming each cluster within a network has a
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different relative impact on a cellular event, α1(t) and α2(t) can be defined as:

a1 tð Þ ¼
PN

i¼1
b1i � w1i � GiMitðtÞ

5
�

PN
i¼1

b2i � w2i � GiApopðtÞ
5

ð9Þ

and

a2 tð Þ ¼
PN

i¼1
b3i � w3i � GiECMðtÞ

5
: ð10Þ

Within these expressions, three new sets of variables have been introduced: w1i is the weight

of the i-th cluster belonging to C1 carried out on cell mitosis, w2i the weight of the i-th cluster

belonging to C2 carried out on cell apoptosis, and finally w3i the weight of the i-th cluster

belonging to C3 carried out on ECM synthesis. w1i, w2i, and w3i are unknowns and their values

were retrieved following the general principle described in Fig 6, which shows a simplified

three-cluster version of the calibration. The weighting of the calibration is based on the con-

cept of representing the dynamic of the biologic process (Fig 6B), which is known from

Fig 5. Sub-models coupling. Constant parameters α1 and α2 are replaced by the time dependent cluster

dynamics mapped to the correspondent biologic event.

https://doi.org/10.1371/journal.pone.0187606.g005
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experimental data, through a linear combination of clusters’ dynamics (Fig 6A), which are

mediated by the different weights that the clusters have on the cellular event.

The temporal evolutions of the three cellular events were retrieved from our rabbit model

previously described. For each event, a characteristic variable was recorded at time 0 and after

2 hours, 1, 3, 7, 14, and 28 days from the implant. Fig 7 shows the temporal dynamic of the

three cellular events as also reported in the supporting information file S3 Data. Cell mitosis

and apoptosis were studied by measuring the SMC concentration within the cross section of

the graft as shown respectively in Fig 7A and 7B and reported respectively in S3 Data Prolifera-

tion Rate and S3 Data Apoptosis Rate, while the ECM dynamic was studied by measuring the

rate of change of ECM area within the graft cross section as shown in Fig 7C and reported in

S3 Data Matrix Growth Rate. The temporal dynamic of the cellular events served as reference

for the calibration of the clusters’ weights and they were labeled as M(t), D(t), and E(t) respec-

tively for cell mitosis, cell apoptosis, and finally ECM synthesis.

As done for the calibration of the CNs we used a GA in order to minimize an objective

function that describes the distance between experimental data and parameterized model,

retrieving in this way the unknown weights. The steps followed for the calibration of each set

of weights is described in S2 Fig and it reflects the general principle reported in Fig 2 (dashed

green box), where the reference is the temporal dynamic of the cellular event, known for

Fig 6. Calibration of the clusters’ weights. The temporal dynamic of a generic cellular event (B) is

described with a linear combination of the clusters of expression ontologically related to it (A). The level of

impact that a generic cluster (Gi(t)) employs on the cellular event (φ(t)) is mediated through its relative weight

(wi).

https://doi.org/10.1371/journal.pone.0187606.g006

Fig 7. Cellular events dynamic from rabbit model. Cell mitosis rate (A), cell apoptosis rate (B) and ECM synthesis rate (C) are recorded on a

post-surgical follow-up of 28 days and harvested at time of implant, and after 2 hours, 1, 3, 7, 14, 28 days.

https://doi.org/10.1371/journal.pone.0187606.g007
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experimental data, and the model to be fitted is the linear combination of clusters dynamics

mediated by the unknown weights.

Going from a general example to our precise case, the three linear combinations, one per

cellular event, were defined as follows:

φMitðtÞ ¼
PN

i¼1
w1i � G1iðtÞ ð11Þ

φApopðtÞ ¼
PN

i¼1
w2i � G2iðtÞ ð12Þ

φECMðtÞ ¼
PN

i¼1
w3i � G3iðtÞ ð13Þ

and their correspondent objective functions write:

RMSMit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1
ðφMit iðtÞ � MiðtÞÞ

q

¼ f ðw1iÞ ð14Þ

RMSApop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1
ðφApopiðtÞ � AiðtÞÞ

q

¼ f ðw2iÞ ð15Þ

RMSECM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1
ðφECMiðtÞ � EiðtÞÞ

q

¼ f ðw3iÞ ð16Þ

Thanks to the limited number of unknowns for each minimization (5), the Matlab1 default

setup for the GA was already appropriate to reach a reasonable objective function minimiza-

tion. In addition, two constraints, described with (17), have been applied to the GA: in each

network, the value of a cluster weight is included in the interval [-1;1], and the sum of the abso-

lute value of the weights does not exceed a unitary value. The set of constraints writes:

(
wi 2 ½� 1; 1�
P5

i¼1
jwij ¼ 1

ð17Þ

With these constraints, we allowed a cluster to affect a biologic process both positively and nega-

tively, founded on the concept that a gene can either enhance or inhibit a defined cellular event.

5. Hybrid model calibration. The hybrid model was calibrated on experimental data

accurately described in S2 Data in order to retrieve the unknowns previously introduced (β1i,

β2i and β3i), which values is reported in S7 Table. The calibration scheme is illustrated in S3 Fig

following the principle of Fig 2 (blue dashed box). We chose as reference the temporal

dynamic of intimal thickness, which was recorded at the harvesting of the grafts from our rab-

bit model after 2 hours, 1, 3, 7, 14, and 28 days from the original implant as fully described in

the supporting information file S2 Data. On the other hand, the basic model is represented by

the hybrid model parameterized in β1i, β2i, and β3i. The objective function was defined as the

RMS between parameterized model and experimental data as follows:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1
ðIRefi � IModi Þ

q

¼ f ðb1i; b2i; b3iÞ ð18Þ

IRefi is the temporal dynamic of the wall thickness recorded from the experimental data, while

IModi is the intimal thickness dynamic as output of the hybrid model parameterized in β1i, β2i,

β3i. M = 6 is the number of time points in correspondence of which the grafts were harvested

and the intimal thickness was recorded, and i = 1,. . .,5 identifies again the single cluster inside

the network. The goodness of the calibration was evaluated both qualitatively, by plotting in

the same graphic both the experimental evidences and the hybrid model output, and
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quantitatively through the Percentile Root Mean Square (PRMS) deviation calculated between

reference and hybrid model:

PRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j¼1
ðIRefi � IModi Þ

q

� 100 ð19Þ

Finally, after having integrated the DS with the networks dynamic, i.e. after having replaced

(9) and (10) in (2), the hybrid model assumes its final form fully described by:

_ASMC ¼ �

P5

i¼1
b1iw1i GiMitðtÞ

5
�

P5

i¼1
b2iw2i GiApopðtÞ

5

" #

Dt� ASMC

_AECM ¼ �

P5

i¼1
b3iw3i GiECMðtÞ

5

� �

Dt� ASMC; if AECM > 0; and 0 otherwise

ð20Þ

8
>>>><

>>>>:

where all the variables have been already fully described in the previous sections.

In silico gene therapy

1. Gene therapy as a tool to minimize hyperplastic growth of the wall. In general, our

hybrid model offers us the possibility to modify the profile of clusters expression to generate

an impact on the vein graft morphology. The primary goal is to identify a potential modifier of

gene expression (termed gene therapy) that optimally alters the cluster expression such that

there is a reduction in wall cross-sectional area at one month following implantation. A theo-

retical example of these potential scenarios is outlined in Fig 8.

Starting from Fig 8A, which shows the expression of a theoretical cluster in the absence of

any genomic manipulation, we defined as virtual gene therapy any kind of alteration of the

original expression that can alter the trajectory of the hyperplastic growth of the wall. We

examined three different kinds of perturbation:

Fig 8. Gene therapy general concept. With the current analysis, a cluster dynamic (A), is modulated from its

initial condition in three distinct ways: complete inhibition of cluster expression (B), freezing cluster expression

at the initial (baseline) condition (C), and fixed overexpression of the cluster expression (D). The modification

in cluster expression alters the cell or ECM kinetics, leading a new trajectory for hyperplastic growth of the wall

(E)-(G). Dashed line represents the dynamic in absence of therapy and the solid line, the dynamic post-

therapy.

https://doi.org/10.1371/journal.pone.0187606.g008
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• Inhibition (example in Fig 8B), for which the initial level of cluster expression is reduce (to a

minimum value of zero, which corresponds to complete silencing) and maintained constant

for the duration of the simulation;

• Simple modulation (Fig 8C), where the initial level of cluster expression is fixed at its initial

value;

• Overexpression (Fig 8D), that enhanced the cluster expression is enhanced up to 3-fold

greater than its initial value and maintained constant for the duration of the simulation.

The common feature to the three different approaches is that once perturbed the initial

condition, the cluster expression is maintained to a constant level for the entire post-surgical

period. Accordingly, a potential gene therapy of this kind would be implemented in the clinical

ambit by continuously administering to the patient a drug able to alter the level of targeted

gene expressions and to maintain it constant for the entire follow-up. This is of course only a

tentative choice. More therapies implementations will be explored through future develop-

ments of the model. Fig 8E–8G illustrate the potential trajectory of the hyperplastic response

that results from the change in cell and ECM kinetics associated with each virtual gene

therapy.

We simulated computationally the gene therapy by directly acting on the CNs, which gen-

eral form was described in (4). Following the concept illustrated in Fig 8, we examined various

genomic manipulations using the following strategy:

1. Gene therapy model: We applied a specified perturbation on the initial condition of the clus-

ter dynamic maintaining then the level of expression constant for the entire follow-up.

Assuming a collapsed form of (4), the therapy principle translates into the following:

( @

@t
Gi tð Þ ¼ 0

Giðt ¼ 0Þ ¼ di � Giðt ¼ 0Þ

ð21Þ

As already seen in (4), Gi(t) stands for the expression of the i-th cluster. The set of constants

δi defines the entity of the perturbation applied to the initial cluster dynamic, which

remains then constant as the variation of cluster expression is null. Furthermore, δ< 1

indicates a reduction of cluster activity, δ> 1 an increase of cluster activity, and finally δ =

1 a cluster activity unvaried.

2. Single cluster modulation: we initially studied the minimization of thickness of the wall in

case of single cluster alteration, where each cluster has been modified singularly, leaving all

the others unvaried (a total of five gene therapies simulated, one per cluster). Fig 9 provides

a confirmation of the extreme heterogeneity and of the lack of linearity of gene therapy out-

comes.

The figure shows, for each single cluster, the morphology outcome in case of constant mod-

ulation both with complete inhibition (solid line) and maximum overexpression, set at

3-fold over baseline (dashed line). Keeping in mind that the golden standard is to minimize

as much as possible the thickness of the graft wall, it is clear how some clusters might pro-

vide good therapeutic potential if over-expressed at their maximum value, like cluster B and

D, while some others might be efficient if modulated to their lowest value, like cluster A

and cluster E. Also the intrinsic outcome variation among different clusters has to be taken

in consideration. It is clear how some clusters bring with them a wider range of outcome

variation than others, like cluster B compared with cluster A. The impact of the clusters’
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modulation has been evaluated by implementing a Matlab1 code ad hoc and the same is

valid for the coupled clusters modulation about to be introduced.

3. Coupled clusters modulation: Stemming from the concept that there is significant redun-

dancy within the interconnected gene network and multiple targets might be required to

achieve notable improvements in the outcome morphology, an analysis involving the

simultaneous manipulation of two clusters was performed. Two clusters were modulate

within the same range described for the single modulation at the start of the simulation,

leaving the other 3 unvaried, leading to the investigation of 10 new gene therapies.

4. Evaluation of the outcome: In order to evaluate the efficiency of each gene therapy, we

focused both on a visual evaluation comparing the pre-therapy and the post-therapy trend,

but mostly on a numerical evaluation of the intimal area at the end of the post-surgical fol-

low-up comparing pre-therapy and post-therapy. With the goal of reducing the hyperplastic

response of the wall to minimize narrowing of the graft lumen, success of a gene therapy

was defined as the normalized difference in cross-sectional area of the graft at the comple-

tion of the simulation, given by the following expression:

gain% ¼
Apre
i � Apost

i

Apre
i

� 100; ð22Þ

where Apre
i is the area of the intima recorded after 28 days of follow-up in pre-therapy condi-

tions, while Apost
i represents the same morphologic variable, recorded at the same time, but

post-therapy. To constrain the path of the remodeling to biologically plausible solutions, a

penalty factor was added to the GA in order to maintain cell mitosis and apoptosis must

remained positive throughout the 28-day simulation. Solution not conforming to this stan-

dard were discarded and the algorithm reinitiated at the last viable solution. Simulating the

Fig 9. Gene therapy principle. Comparison between thicknesses of the wall dynamic altered with cluster set

at maximum overexpression (dashed line) and complete inhibition (solid line).

https://doi.org/10.1371/journal.pone.0187606.g009
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outcome of a single cluster intervention required an approximately 10 minutes using an

Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz machine run in parallel computing regime.

The choice of altering the clusters dynamic either singularly or in a pairwise way is corrobo-

rated by the need of maintaining a balance between therapy effectiveness and biological feasi-

bility. The overall goal is indeed to reach the best impact on the pathology with a post-surgical

therapy that does not massively revolutionize the subject’s genome. Indeed, by augmenting the

number of gene modifications, we also run the risk of increasing the number of undesired and

uncontrollable side effects that may also lead to different gene-based pathologies.

2. Sensitivity analysis. A minimization algorithm, such a GA, is similar to dynamics of

peptide folding, where a protein in its secondary structure will randomly and stochastically

explore different conformations in order to reach a minimum energy state [42]. Analogous to

a folded protein being locked in a local minimum energy state is the potential that the GA

identifies a local minimum as the optimum solution. A sensitivity analysis to explore the

parameter space around the solution is an effective approach to test the validity of the mini-

mum solution. As such, for each optimum single- and dual-cluster solutions (δmin, defined by

the fixed cluster activity between zero and 3-fold that yielded the maximum reduction in wall

area) a sensitivity analysis was conducted. Solutions were examine through a 50% parameter

space.

Results and discussion

In our formulation, we extensively performed non-linear fittings in order to validate our mul-

tiscale model on experimental data. The validation encompassed various scales, from gene

level to tissue level passing through cellular level. The common denominator has always been

the extensive usage of GAs as described in the correspondent Methods section. For every cali-

bration process, we applied the principle described by Mitchell M [43] in order to ensure the

robustness of the convergence. In our case, this translated into running the GA multiple times

and in choosing among the different solutions the one that carried with it the least percentile

error. A further improvement will consist in the usage of a metaheuristic approach as de-

scribed by Gendrau M [44]. Accordingly, a more robust solution will be achieved by combin-

ing a global minimization algorithm (the GA already used) with a local one, like a Simplex

based method.

1. Clusters interconnectedness

The general model of CN, defined by Eq (3), was calibrated on the experimental data obtained

by simultaneously with the genomic data and describes for cell mitosis (obtaining CN1), cell

apoptosis (CN2), and ECM synthesis (CN3). For each network, by minimizing the associated

objective function [Eq (5)], we retrieved the unknowns of the system which also corresponds

to define the matrix Ajk associated to the specific network. The specific values of Ajk for CN1,

CN2, and CN3 are respectively reported in S2 Table, S3 Table and S4 Table. Also the values of

Bi and Cn are reported for all the cellular events considered respectively in S5 Table and S6

Table. As the network interconnectedness is assumed to be unique for each of the three bio-

logic events, we retrieved an independent solution for each of the three matrices. The network

maps for mitosis, apoptosis, and ECM synthesis are shown in Fig 10.

Notable variability in the relationships among clusters is evident, with some clusters dem-

onstrating a strong impact within one network while these the same clusters show little to no

connectedness within a different network. Not surprisingly, other clusters maintain their
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mutual influence across all the networks, as was noted with cluster D-B interaction where clus-

ter B maintains a maximum influence on cluster B independent of the biologic function. It is

important to note that the relationships among clusters was assumed to be independent of

time, to enforce the concept that the biologic pathways that define interconnectedness are

fixed by the intrinsic biology of the organism.

In order to deal with the potentiality of over fitting, our group is currently exploring some

alternative strategies. A first approach consists in using a non-linear stability analysis in order

to reduce the number of parameters needed to fit the model on the experimental data. A sec-

ond approach focuses on one hand on increasing our dataset with low fidelity data that would

be easier to recover experimentally. This kind of approach has also been nicely described by

Parnassini et al. [45]. On the other hand, we will need to use a more detailed experimental

setup for validation purposes, combining for example low, medium, and high shear stress data.

2. Clusters weights

Critical in our formulation is the linkage between gene cluster interconnectedness and biologic

function. As such, each network must be calibrated to the experimental data that describes

the time-dependent changes of each biologic event. For each network, we defined a vector

! w ¼ fw1;w2; . . . ;w5g, where wi represents the relative impact that the i-th cluster has on

the biologic event associated to the network (Fig 11).

Note that a cluster can have either a positive or a negative influence on an events, indicating

that a cluster can either enhance or prevent that biologic activity. At this stage, interesting pat-

terns that may have important implications for gene therapy opportunities begin to emerge.

For example, manipulation of cluster B may be a promising given that it employs a high impact

Fig 10. Interconnected networks of clusters. Networks mapped to cell mitosis (A), cell apoptosis (B), and

ECM synthesis (C). For illustration purposes the level of interconnectedness between networks was divided in

a range from 0 (dashed line for the cluster self-enhancement and no line for different clusters

interconnectedness representing no impact) to 5 (thick solid line representing the maximum impact).

https://doi.org/10.1371/journal.pone.0187606.g010

Fig 11. Clusters weights. Relative weights of the five clusters on each of the 3 biological processes. Positive

weights are mapped in red and negative weight in blue, with tonality from light (low impact) to dark (high

impact).

https://doi.org/10.1371/journal.pone.0187606.g011
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on all the cellular events. More complex manipulations also begin to emerge where the differ-

ential patterns of activation can be leveraged. This is seen in the clusters B and E, where cluster

B inhibits all events while cluster E inhibits all events except for ECM synthesis, where it has

no notable biologic impact. With the goal to reduce wall thickening by inhibiting cell prolifera-

tion/ECM synthesis and increasing cell death, Cluster D presents an interesting opportunity.

Although its effect on biologic activity is generally less than other biologic clusters, it has a dif-

ferent effect on mitosis/apoptosis and ECM synthesis. Whereas clusters B and E maintain a

similar influence across all the biologic processes, cluster D differentially enhances apoptosis

greater than mitosis, while negatively impacting the rate of ECM synthesis.

The same considerations reported previously about the potential insurgence of over fitting

or about the robustness of the minimization algorithm are still valid for cluster weights too.

3. Calibration of the hybrid model

The integration of the DS with the CNs not only links the gene level to the cellular and tissue

level, but also moves the entire model closer to the experimental reality. The result of the

hybrid model calibration (Fig 12) illustrates how the exponential growth of the wall thickness,

recorded as output of the DS, is only partially representative of the real progression appreciated

from the experimental data. By integrating the sub-models, we changed the time-invariant

character of its driving parameters, providing a mechanism for time-dependence that drives

the hybrid model according to the dynamic gene expression pattern.

From a qualitative perspective, we were able to replicate the experimental evidences with a

high degree of accuracy. Also, through the evaluation of the PRMS between experimental data

and hybrid model, defined with (20), we were able to quantitatively describe the goodness of

our approximation, which is confirmed to be very accurate with a PMRS less than 1%. Finally,

the over fitting issue has been handled as previously described.

4. Gene therapy

We previously described how we simulated several gene therapies by directly minimizing the

intimal thickness, that was function of the variable δ, representing the level of initial alteration

imposed to the cluster dynamic. Using this structure, a therapy was considered effective when

the predicted cross-sectional area of the wall following the manipulation was less than baseline

(i.e. the non-interventional area) 28 days after graft implantation. We examined both single

Fig 12. Calibration of the hybrid model. The temporal dynamic of intimal thickness is recorded as output of

the DS (dotted line), from experimental data (dashed line), and as output of the integrated model (solid line).

https://doi.org/10.1371/journal.pone.0187606.g012
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and coupled cluster modulations, integrating a sensitivity analysis with each prediction in

order to test the robustness of the solution.

Single cluster modulation. A single gene therapy cluster modulation was performed,

where the optimum magnitude of inhibition or overexpression (δ) ranged from zero to 3. Two

clusters (C and D) were identified as promising candidates (Fig 13). These quantitative results

confirm some of the initial observations from our qualitative analysis of the cluster weighting

observations. Cluster C is the most promising, where inhibition to 60% of its initial value (δC =

0.6) and fixing the expression at this level resulted in a 98% reduction in wall area at 28 days.

Cluster D modulation also resulted in notable improvements, with a 300% augmentation of

the initial expression (δD = 3) leading to 33% reduction in the 28 day wall area.

The sensitivity analysis for cluster C (Fig 13B) demonstrates a relatively sharp peak around

0.6, with more potent over- or under-expression leading to a sharp reduction in effectiveness.

In contrast, the solution for cluster D does not represent a local maximum, but was returned

as the optimum solution due to the imposed on maximum over-expression. While this 3-fold

limit was enforced to model the physical reality that there is finite increase in gene over-

expression that can be achieved, it is admittedly arbitrary and will undoubtedly vary for indi-

vidual genes or sets of genes, However, from a systems point of view, an unbounded solution

may induce marked instability and lead to a final morphology that cannot be achieved in phys-

ical reality. Further experimentation and the integration of an expression limit that is tailored

to the biology of cluster D would be required to further define the potential therapeutic utility

of this cluster.

Coupled cluster modulation. Several underlying philosophies guided us in performing

dual cluster modulations: i) single target approaches have universally failed as effective clinical

therapies, in large part secondary to inherent redundancies in the system; ii) by altering two

clusters simultaneously, a wider range of potential therapies (from 5 possibilities to 10) could

be explored; and iii) such an approach can leverage cluster-specific differences in their biologic

effect, resulting in a potential synergy that cannot be achieved by single cluster modulation.

Among the potential emergent behaviors that can be observed with dual-cluster modula-

tion there is an improved stability of the optimum solution. This can be seen with clusters C

and D, which individually were identified as the promising solutions. While the dual cluster

modulation result paralleled the reduction in wall thickness that was observed with One cou-

pled clusters modulation resulted as promising to reduce the restenosis phenomenon, i.e. the

Fig 13. Gene therapy: Single cluster modulation. Reduction of intimal area recorded by singularly

modulating cluster C (panel A) and cluster D (panel C). The corresponding sensitivity analyses are clusters C

and D provided (panel B and D, respectively).

https://doi.org/10.1371/journal.pone.0187606.g013

Linking gene dynamic to vascular hyperplasia

PLOS ONE | https://doi.org/10.1371/journal.pone.0187606 November 30, 2017 20 / 26

https://doi.org/10.1371/journal.pone.0187606.g013
https://doi.org/10.1371/journal.pone.0187606


simultaneous modulation of cluster C (through a new constant δC) and cluster D (through a

new constant δD)), that not surprisingly are the clusters that generated a positive impact if

modulated individually. Fig 14A again shows the comparison between the intimal area

dynamic recorded in absence of therapy and post therapy. Qualitatively the reduction of inti-

mal area at t = 28 days is evident, something that it is confirmed also quantitatively, indeed we

estimated a gain% = 94%, which is a value very close to the single modulation of cluster C case.

The therapy performed considers not anymore a single perturbation, but a couple identified

by (δC, δD), that describes the level of initial perturbation to be applied to cluster C and D

respectively. From our analysis, δC = 0.97, which means that the initial expression of cluster C

has been almost left unvaried, and δD = 2.64. Again, both the clusters’ dynamics have been

modified at time t = 0 and then constantly expressed during all the follow-up.

An interesting consideration is retrievable from Fig 14B and 14C that show respectively the

sensitivity analysis conducted on δC and on δD. Cluster C certainly maintains its robustness as

in the single modulation case, but this time even cluster D shows the same property, with a his-

togram qualitatively very similar to the one appreciated for cluster C in Fig 13B. This confirms

our second hypothesis, for which the simultaneous modulation of cluster C and D makes also

the perturbation of D as robust as C. However, being the gain% associated with the simulta-

neous modulation of C and D lower than the one retrieved with the single modulation of C,

the most promising gene therapy still consists in halving the initial expression of cluster C

maintaining it constant for all the follow-up. In this way we were able both to retrieve the best

gain% and to obtain a robust solution.

Conclusions

The current manuscript presents the architecture for tracking an acute perturbation in a bio-

logic system through a multiscale model that links gene dynamics to cell kinetics, with the

overall goal of predicting tissue adaptation. Given the complexity of the genome, the problem

is made tractable by clustering temporal changes in gene expression into unique patterns.

These cluster elements form the core of an integrated network that serves as the driving force

for the response of the biologic system. In the current analysis, we use the clinical scenario of

vein graft adaptation as an example problem. Vein when placed in the arterial circulation can

develop an aggressive hyperplastic response that narrows the lumen, reduces blood flow, and

Fig 14. Gene therapy: Coupled cluster modulation. Reduction of intimal thickness recorded by modulating

cluster C and D simultaneously (A), with sensitivity analysis associated for cluster C (B) and cluster D (C).

https://doi.org/10.1371/journal.pone.0187606.g014
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induces in situ thrombosis [4,7]. Reducing this hyperplastic response has been a long-standing

but unrealized goal of biologic researchers in the field. With repeated failure of single target

therapies, the redundant response pathways are thought to be a fundamental issue preventing

progress towards a solution. Using the current framework, we demonstrate how theoretical

genomic manipulations can be introduced into the system to shift the adaptation to a more

beneficial phenotype, where the hyperplastic response is mitigated and the risk of thrombosis

reduced. Using this approach, we are able to examine a multitude of potential opportunities

for intervention via gene over-expression or inhibition, delivered in isolation or combination,

and induced early or late in the adaptation process.

In this analysis, we utilize our rabbit vein bypass graft data that was presented previously in

our development of an algorithm to clusters gene expression dynamics in response to environ-

mental signals [26]. Emanating from this work was the identification of five gene clusters that

differentiated the low flow (i.e. pro-hyperplastic) from high flow (i.e. anti-hyperplastic)

response. The current analysis is a direct extension of this work, building on these general

associations between gene expression and a beneficial phenotypic outcome to creation of a

model that identifies those genes sets most likely be of therapeutic benefit.

Critical in any modeling effort is validation of the results outside to specific operating

parameters that were used in its creation. In the current effort, we utilized two distinct pheno-

types (high flow/pro-hyperplastic and low flow/anti-hyperplastic) that were defined as success

or failure. In reality, the biologic response is a continuous spectrum and integration of this

complexity is required. In our formulation, exposing vein bypass grafts to flow conditions

intermediate to the two extremes offers the opportunity to examine the full range of adaptive

responses. Such experimental work has been initiated and will serve as an important extension

and validation of the current analysis. It is anticipated that important non-linearities in the

biologic response will emerge and be carefully integrated into the current architecture.

Also, as discussed in the Results section, the minimization algorithms will be improved in

order to abate the potential lack of robustness and to reduce the insurgence of over fitting phe-

nomena. For the first aspect, a metaheuristic approach will be followed, consisting in the com-

bination of a global minimization method with a local one. For the second aspect, the key will

be to find the right compromise between a reduction in the number of parameters and the

increase of the experimental data.

The next step in this our development pipeline will be to engage the biology of these critical

gene sets. While the current results are informative, the large size of these clusters (ranging

from 30 to 150 genes per cluster) only narrows the field of potential therapeutic candidates.

From a biologic standpoint, controlling an entire cluster of genes is not feasible but provides a

detailed map of how the adaptation response needs to be modified to achieve the desired effect.

We will utilize the known interconnectedness among these critical genes sets to identify a key

set of upstream regulatory elements that control their activity. This has been completed in

another work by our group, and we have identified a core set of upstream regulators that

appear to be cornerstone pieces in this biologic response [41]. Integration of these regulators

into the current architecture should reduce this set a handful of targets that can be realistically

moved towards further experimentation. While it would be tempting to move directly into in

vivo biologic testing, using our rabbit vein graft model, a more conservative approach will be

utilized. In vitro, cell culture experimentation, where vascular cells are exposed to realistic flow

conditions, offers the ability to precisely manipulate gene activity in a well-controlled, repro-

ducible environment. Given the challenges associated with the biologic redundancy of the vein

graft adaptive response, such an experimental approach provides the opportunity to examine

combinatorial therapies, with the goal of identifying unrecognized synergies among these ther-

apeutics and moving these pieces toward final in vitro validation.
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Supporting information

S1 Fig. Calibration of the Cluster Network (CN). The distance between the mathematical

model (replicated with an ODEs system) and the experimental data (from rabbit specific

microprobe) is minimized with a GA and the unknowns of the CN are retrieved.

(TIF)

S2 Fig. Calibration of the clusters weights. A linear combination of clusters dynamics, medi-

ated with the level of activity that each cluster employs on the cellular event, is fitted on the

temporal dynamic of the relative biologic process.

(TIF)

S3 Fig. Calibration of the hybrid model. The distance between the intimal thickness dynamic

recorded from experimental data and the hybrid model is minimized with a GA and the

unknowns of the model are retrieved.

(TIF)

S1 Table. Extended matrix Ajk. Mutual level of interconnectedness among clusters.

(TIF)

S2 Table. Extended matrix Ajk for Mitosis.

(TIF)

S3 Table. Extended matrix Ajk for Apoptosis.

(TIF)

S4 Table. Extended matrix Ajk for ECM synthesis.

(TIF)

S5 Table. Bi values for CN1, CN2, and CN3.

(TIF)

S6 Table. Cn values for CN1, CN2, and CN3.

(TIF)

S7 Table. βi values for CN1, CN2, and CN3.

(TIF)

S1 Data. Gene expression. The temporal dynamic of gene expression is reported gene by gene

and graft by graft. In the main Excel sheet “All Genes_All Cluster” column A and B individuate

the IPA symbol for the single gene, column C indicates the cluster the gene belongs to, col-

umns D-G mark if the gene impact a specific cellular events, column H indicates the area of

activity of the gene, columns I-L correspond to different grafts tested in absence of flow, col-

umns M-BS correspond to the gene expression level for the single graft, at the specific time

point in a specific shear condition among the ones previously described. The sheet “All Gene-

s_All Clusters_SORTED 1” corresponds to the list of genes sorted by clusters and with mean

values associated. The sheet “MeanTrend_ALLClusters_SORTED1” corresponds to the mean

trend of all clusters. The sheet “Mean Trend ALL cluster sorted2” corresponds to the mean

trend of all clusters sorted by cellular events of impact.

(XLSX)

S2 Data. Graft morphology. The temporal dynamic of lumen, IEL, and EEL radius and inti-

mal, medial thickness is recorded at the time of implantation (t = 0) and after 2 hours,

1,3,7,14,28 days along with the Flow rate, Shear Stress and Tension values. The sheet “Com-

piled List of VG Morphology” includes the list of all the grafts used for the analysis, the sheet
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“Sorted List” includes the list of all the grafts used for the analysis with the mean values of all

the significant biological measurements, and the sheet “Final tables” includes the mean values

of all the significant biological measures under high, low, and intermediate shear along with

their correspondent temporal plots.

(XLS)

S3 Data. Cellular events temporal dynamic. The temporal dynamic of the cellular events is

reported in the correspondent Excel sheet. Each event is tracked at 0, 0.08 hours and

1,3,7,14,28 days through different biological measures and under low, high, and intermediate

shear stress conditions: i) Proliferation Rate and ii) Apoptosis Rate is evaluated by measuring

the mitotic/apoptotic density in cells/mm2; iii) Matrix Growth Rate is evaluated by measuring

the Matrix Area Change Rate in mm2/day; iv) EEL Growth Rate (cellular movement) is evalu-

ated by measuring the EEL Area Rate of Change in mm2/day.

(XLS)
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