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Abstract

BACKGROUND—In the Systolic Blood Pressure Intervention Trial (SPRINT), adults at high
risk for cardiovascular disease who received intensive systolic blood-pressure control (target, <120
mm Hg) had significantly lower rates of death and cardiovascular disease events than did those
who received standard control (target, <140 mm Hg). On the basis of these data, we wanted to
determine the lifetime health benefits and health care costs associated with intensive control versus
standard control.

METHODS—We used a microsimulation model to apply SPRINT treatment effects and health
care costs from national sources to a hypothetical cohort of SPRINT-eligible adults. The model
projected lifetime costs of treatment and monitoring in patients with hypertension, cardiovascular
disease events and subsequent treatment costs, treatment-related risks of serious adverse events
and subsequent costs, and quality-adjusted life-years (QALYS) for intensive control versus
standard control of systolic blood pressure.

RESULTS—We determined that the mean number of QALY's would be 0.27 higher among
patients who received intensive control than among those who received standard control and
would cost approximately $47,000 more per QALY gained if there were a reduction in adherence
and treatment effects after 5 years; the cost would be approximately $28,000 more per QALY
gained if the treatment effects persisted for the remaining lifetime of the patient. Most simulation
results indicated that intensive treatment would be cost-effective (51 to 79% below the
willingness-to-pay threshold of $50,000 per QALY and 76 to 93% below the threshold of
$100,000 per QALY), regardless of whether treatment effects were reduced after 5 years or
persisted for the remaining lifetime.

CONCLUSIONS—In this simulation study, intensive systolic blood-pressure control prevented
cardiovascular disease events and prolonged life and did so at levels below common willingness-
to-pay thresholds per QALY, regardless of whether benefits were reduced after 5 years or persisted
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for the patient’s remaining lifetime. (Funded by the National Heart, Lung, and Blood Institute and
others; SPRINT ClinicalTrials.gov number, NCT01206062.)

THE MOST EFFECTIVE BLOOD-PRESSURE goals for treatment with antihypertensive
medications are uncertain. Treating hypertension to standard systolic blood-pressure goals is
cost-saving or cost-effective among patients at high risk for cardiovascular disease in the
United States.! However, until recently, evidence from randomized trials did not clearly
support intensive control of systolic blood pressure.2-4

The Systolic Blood Pressure Intervention Trial (SPRINT) showed significant reductions in
the rates of death and cardiovascular disease events with intensive systolic blood-pressure
control (intensive control; target, <120 mm Hg) versus standard control (target, <140 mm
Hg) among adults at high risk for cardiovascular disease who had no history of diabetes,
stroke, or heart failure.>6 Intensive control may prevent cardiovascular disease events in
high-risk patients and reduce health care costs, as compared with standard control, but these
benefits must be weighed against the increased risk of serious adverse events and higher
implementation costs (e.g., additional office visits, laboratory tests, and medications). The
purpose of this SPRINT cost-effectiveness study was to estimate lifetime health gains and
averted health care costs with intensive control after considering increased treatment costs
and the risks of treatment-related serious adverse events.

METHODS
MICROSIMULATION MODEL

We developed a microsimulation model to estimate costs, clinical outcomes, and quality-
adjusted life-years (QALY's) of systolic blood-pressure control in SPRINT-eligible adults
(Fig. 1; and Figs. S1 and S2 in the Supplementary Appendix, available with the full text of
this article at NEJM.org). The model compared the lifetime incremental cost-effectiveness of
intensive control with that of standard control with the use of 6-month cycles. We accounted
for health gained and lost to society due to intensive control and for payers’ direct health
care costs; patients’ indirect costs were not included.

We used SPRINT results to estimate the risk of death from all causes and from
cardiovascular causes, cardiovascular disease events, and serious adverse events in 10,000
hypothetical patients who shared the same baseline characteristics, inclusion criteria, and
number of intervention medications with SPRINT participants (Table 1, and Table S1 in the
Supplementary Appendix).6 Cardiovascular disease events included acute myocardial
infarction, acute coronary syndrome not resulting in myocardial infarction, stroke, and heart
failure. Serious adverse events of interest were hypotension, syncope, bradycardia,
electrolyte abnormalities, and acute kidney injury.

PROBABILITY OF CLINICAL EVENTS

For the first 5 years of the simulation, we assumed that patients had adhered to medications
as observed in SPRINT and were at risk for treatment-related serious adverse events, first
fatal or nonfatal cardiovascular disease events, and death from causes other than
cardiovascular disease as reported for their assigned study groups. For survivors of incident
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cardiovascular disease events in the base case, we used risk equations of the American
College of Cardiology and the American Heart Association (ACC-AHA) Pooled Cohorts’
to determine the risk of repeated cardiovascular disease events. We varied these estimates in
scenario analyses. Other probabilities were derived from national sources and published
literature (Table 1, and Table S1 in the Supplementary Appendix).

During the initial 5-year period, our estimates of risks and benefits of intensive control
versus standard control reflected the medication adherence of the SPRINT participants.
After the initial 5-year period, we used four post-trial persistence-of-treatment-effect
scenarios to simulate the degree to which the effects of intensive control would persist for
patients’ remaining lifetimes. The four scenarios used different assumptions about the
prevalence and duration of treatment adherence. In all four scenarios, we estimated the risks
of a first cardiovascular disease event or serious adverse event in the subgroup of patients
who were assumed to maintain treatment adherence similar to that of SPRINT participants
on the basis of observed SPRINT estimates for their assigned study group. In this model,
patients who did not adhere to their medication regimen reverted to their baseline, pretrial
systolic blood pressure, and we used the Pooled Cohort risk equations to estimate the risk of
a cardiovascular disease event on the basis of the systolic blood pressure and other
characteristics.” In all the patients, we based the competing risk of death from causes other
than cardiovascular disease on the life tables of the Centers for Disease Control and
Prevention.8

In the first scenario (base case), we simulated the possibility that medication adherence and
therefore treatment effects would be gradually reduced after the first 5 years in the two study
groups until 15 years after baseline, after which all the patients would no longer adhere to
their assigned treatment (Tables S2 and S3 in the Supplementary Appendix). The probability
of treatment adherence after the initial 5 years was stratified according to the number of
antihypertensive medications (i.e., lower adherence was associated with an increased
number of medications).10-12 In the second scenario (worst case), patients stopped adhering
to their medication regimen immediately after the initial 5-year period. In the third scenario
(15-year best case), patients adhered to their medication regimen and had treatment effects
(including those after a cardiovascular disease event) that persisted for 15 years, after which
all the patients immediately did not adhere to the medication regimen. Finally, in the fourth
scenario (lifetime best case), patients had age-stratified SPRINT in-trial adherence and
treatment effects that persisted over their remaining lifetime.

We calculated the total direct medical costs over the remaining lifetime of the patients.
These costs included those associated with the intervention (i.e., medications, office visits,
and laboratory monitoring), with acute and chronic cardiovascular disease events, with acute
serious adverse events, and with background health care for the treatment of
noncardiovascular diseases (Tables S1 and S4 in the Supplementary Appendix). Medication
costs were calculated with the use of a weighted average cost of generic formulary
medications used in SPRINT, the distribution of prescribed medication classes in SPRINT,
and wholesale acquisition costs.®13 We derived the costs of office visits and laboratory
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monitoring from the schedules for physician and laboratory fees from the Centers for

Medicare and Medicaid Services.1415 Other costs were calculated from common sources
and were stratified according to age and separated by cost type.16-18 All cost inputs were
inflated to 2017 U.S. dollars.® Future costs and QALY were discounted at 3% annually.

UTILITY VALUES OF HEALTH STATES

Utility values, an overall assessment of well-being on a scale of 0 (death) to 1 (perfect health
without disability), reflect the severity of disability in health states. We derived utility values
that were specific for patients’ long-term health state from the results on the EuroQol Group
5-Dimension Self-Report Questionnaire (EQ-5D) from the Medical Expenditure Panel
Survey for the base case and EQ-5D results directly measured in SPRINT in a scenario
analysis.20 Disutility and costs were applied for acute cardiovascular disease events and
acute kidney injury for 4 weeks and for other serious adverse events for 2 weeks.1:21.22 After
the occurrence of cardiovascular disease events, disutility penalties and costs were applied
for long-term sequelae.

MODEL VALIDATION

We validated the model quantitatively (i.e., comparing model predictions with the event rates
that were observed in SPRINT) and by visual inspection (i.e., comparing cumulative
incidence curves between SPRINT observations and model predictions). We compared the
predicted and observed cumulative incidence of and hazard ratios for the primary outcome
of a first fatal or nonfatal cardiovascular disease event at the median follow-up (3.3 years) in
SPRINT. For longer-term validation, we visually compared model predictions with the
cumulative incidence of atherosclerotic cardiovascular disease events in the Framingham
Heart Study cohorts.23

SENSITIVITY ANALYSES

We varied each input value in the model over a plausible range in one-way sensitivity
analyses to examine the effect of uncertainty regarding individual values on the results.
Scenario analyses examined the effect of various assumptions with respect to medication
adherence (including self-reported adherence, as measured in SPRINT with the use of an
eight-item Morisky adherence scale?425), a restricted time horizon, the risk of death from
causes other than cardiovascular disease, the number of office and laboratory visits, the risk
of serious adverse events, the costs of antihypertensive medication and background health
care, a substitution of the characteristics of SPRINT-eligible adults in the general U.S.
population,28 alternative utility estimates, and pill-taking disutility (i.e., the overall health
state [utility value] of daily pill-taking) (Tables S3 and S5 in the Supplementary Appendix).
To reassess cost-effectiveness in case the Pooled Cohort risk equations underestimated the
risk of repeated cardiovascular disease events, we included a scenario that substituted a
higher average risk of such events as predicted by the Framingham Recurrent Coronary
Heart Disease calculator.2” To assess whether the Pooled Cohort risk equations
overestimated the risk of incident cardiovascular disease, we adjusted the predicted risk to
reflect the lower average risk of cardiovascular disease of more contemporary cohorts.28 In
probabilistic sensitivity analyses, the model was run 1000 times, each taking random draws
from prespecified uncertainty distributions of all inputs.
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STUDY OVERSIGHT

The authors wrote the manuscript and attest to the completeness and accuracy of the data
and analysis. The manuscript was reviewed and approved by the SPRINT steering
committee and publications subcommittee. In this study, since we were performing
secondary analyses of deidentified data, we sought no approval from institutional review
boards. The institutional review board at each trial site and an independent data and safety
monitoring board reviewed, approved, and monitored the conduct of SPRINT while the
original trial was being performed.

RESULTS
MODEL VALIDATION

The microsimulation model accurately reproduced the risks and cumulative incidence curves
for the primary outcome, components of the primary outcome, and serious adverse events in
SPRINT during the 5-year trial period (Table S6 and Fig. S3 in the Supplementary
Appendix). Base-case simulated incidence rates for the SPRINT primary outcome at 3.3
years were 17.3 events per 1000 person-years in the intensive-control group and 22.2 events
per 1000 person-years in the standard-control group, as compared with 16.5 and 21.9 events
per 1000 person-years, respectively, in the actual trial. The predicted hazard ratio for the
primary outcome in the simulation was 0.78 (95% confidence interval [CI], 0.70 to 0.87), as
compared with the observed hazard ratio of 0.75 (95% CI, 0.64 to 0.89). Long-term
validation of the microsimulation model is shown in Figure S4 in the Supplementary
Appendix.

MAIN ANALYSIS

In the base-case scenario, in which adherence and treatment effects are reduced after 5 years,
the model predicted that intensive control would prevent 170 incident primary outcome
events and 190 deaths from cardiovascular disease over the remaining lifetime of 10,000
patients, as compared with standard treatment (Fig. 2A, and Table S7 and Figs. S5, S6, and
S7 in the Supplementary Appendix). In the best-case scenario, 929 primary outcome events
and 464 deaths from cardiovascular disease would be prevented. Background health care
costs were the largest component of lifetime health care costs (Fig. 2B, and Table S8 and
Fig. S8 in the Supplementary Appendix). The higher costs that were associated with
increased survival, treatment for hypertension, and serious adverse events with intensive
control were offset by decreased costs for the treatment of cardiovascular disease.

In the base case, intensive control cost approximately $47,000 more per QALY gained than
standard control (Table 2). In 1000 probabilistic simulations, there was a 54% probability
that intensive control was cost-effective at a willingness-to-pay threshold of $50,000 per
QALY and a 79% probability at a threshold of $100,000 per QALY. Cost-effectiveness
acceptability curves are provided in Figure 3, and cost-effectiveness scatter plots are shown
in Figure S9 in the Supplementary Appendix. Health gains and cost-effectiveness were
sensitive to whether the benefits of intensive control extended past the 5-year trial period. In
the best-case scenario in which adherence and treatment effects persisted over the patient’s
lifetime, intensive control cost approximately $28,000 per QALY gained; the probability that
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intensive control was cost-effective increased to 79% at $50,000 per QALY and to 93% at
$100,000 per QALY.

All post-trial persistence-of-treatment-effect scenarios had similar incremental cost-
effectiveness ratios (ICERs) at the end of the in-trial period. The cost-effectiveness of
intensive control was maximized at approximately 20 years in the lifetime best-case scenario
and at 10 years in the other persistence-of-treatment-effect scenarios (Fig. S10 in the
Supplementary Appendix). The estimate of the cost-effectiveness of intensive control was
similar to the overall estimate in most subgroups that were examined. The exceptions were
seen in patients who were 75 years of age or older, who had a more favorable ICER
($26,000 per QALY gained); and in women and patients with previous cardiovascular
disease, who had less favorable ICERs ($77,000 and $72,000 per QALY gained,
respectively) (Table S9 in the Supplementary Appendix).

ONE-WAY SENSITIVITY AND SCENARIO ANALYSES

The uncertainty ranges of individual variables had a small-to-moderate effect on cost-
effectiveness (ICER range, $31,000 to $69,000 per QALY) (Fig. S11 in the Supplementary
Appendix). The model was most sensitive to the hazard ratio for cardiovascular disease
events with intensive control, the risk of cardiovascular disease events with standard control,
the risk of end-stage renal disease after chronic kidney disease, the hazard ratio for death
from causes other than cardiovascular disease with intensive control during the first 5 years,
and the risk of chronic kidney disease with standard control. Each of these factors
potentially increased the ICER above $50,000 per QALY (Fig. S11 in the Supplementary
Appendix). Values that were associated with renal outcomes accounted for 4 of the 10 inputs
to which the results were most sensitive. Variation in other values had little effect and
resulted in ICERSs that differed from the base-case ICER by less than $10,000 per QALY.
There was a small-to-moderate difference between the results of 36 separate scenario
analyses and the base-case estimate (ICERs of $37,000 to $76,000 per QALY). Conservative
values for “real world” medication adherence resulted in ICERs ranging from $38,000 to
$50,000 per QALY. When the base-case model was populated with a cohort representing the
characteristics of SPRINT-eligible U.S. adults in the general population, the ICER was
$46,000 per QALY (Table S10 in the Supplementary Appendix).

DISCUSSION

We found that intensive systolic blood-pressure control among adults at high risk for
cardiovascular disease was cost-effective and below common U.S. willingness-to-pay
thresholds in most simulations (51 to 79% below $50,000 per QALY?29:30 and 76 to 93%
below $100,000 per QALY), regardless of whether the benefits were reduced after 5 years or
persisted for the remaining lifetime of the patient. Intensive control entailed more frequent
office visits, laboratory tests, and greater medication use than did standard control, and such
factors were costly early on. However, these costs were balanced by health gains from
prevented cardiovascular disease events and deaths. The predicted cost-effectiveness was
maximized after approximately 10 to 20 years of treatment. Since our analysis time horizon
extended beyond the SPRINT observation period to evaluate the potential value of lifetime
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intensive control, we accounted for a plausible range of possible treatment effects during the
post-trial period, medication adherence, and risks of serious adverse events in the assessment
of cost-effectiveness.

In two previous cost-effectiveness analyses, the investigators projected that intensive control
of blood pressure would be cost-effective among U.S. adults at high risk for cardiovascular
disease.31:32 Moise and colleagues estimated more favorable ICERs for intensive control
than for standard control among U.S. adults at high cardiovascular risk, but they did not
define a high risk of cardiovascular disease strictly according to SPRINT eligibility criteria;
in addition, they simulated only a 10-year time horizon and did not account for the costs of
treating noncardiovascular diseases in their cost-effectiveness calculations.3! Richman et al.
used a lifetime horizon, with their main cost-effectiveness estimate of approximately
$24,000 per QALY gained, which was presumably based on lifetime persistence of the
benefits of intensive control as defined in SPRINT.32 Our base case assumed a reduction in
treatment effects over time on the basis of standard practice for cost-effectiveness analysis of
clinical trials. If we assume similar conditions to those in the analysis by Richman et al.
(apart from allowing for repeated cardiovascular disease events), our model showed an ICER
of approximately $37,000 per QALY gained. As opposed to the Richman et al. approach, in
which the participants reverted to the standard-control group after a first cardiovascular
disease event, we kept participants in their assigned treatment group after a first event, a
method that was consistent with the SPRINT intention-to-treat design. When Richman et al.
restricted the benefits that were reported in SPRINT to the median follow-up period in
SPRINT (3.3 years), intensive control resulted in an ICER of approximately $35,000, a
finding that was consistent with our results when we restricted benefits to 5 years (with an
ICER of approximately $41,000 per QALY gained) (Fig. S10 in the Supplementary
Appendix).

Approximately 17 million U.S. adults meet SPRINT eligibility criteria and stand to benefit
from intensive control of systolic blood pressure.26:33 Recent hypertension guidelines from
Canada and Australia incorporated evidence from SPRINT and recommended the
consideration of intensive control in selected patients who are at high risk for cardiovascular
disease, with close follow-up for serious adverse events.343%> An ACC-AHA statement
recommended that clinical-practice guidelines integrate cost-effectiveness assessments such
as ours.29 Our study contributes to the formulation of hypertension guidelines by showing
the potential lifetime benefits and cost-effectiveness of intensive control of systolic blood
pressure incremental to standard control among high-risk patients. Our results suggest that
the maximized cost-effectiveness of intensive control depends on extending treatment
beyond 5 years. Research is needed on ways to implement and sustain protocols for
intensive control for patients who are most likely to benefit.

This analysis was based on effectiveness, the risk of serious adverse events, medication
adherence, and quality-of-life data gathered in SPRINT and adhered to standards for cost-
effectiveness analyses (Tables S11 and S12 in the Supplementary Appendix).36:37 There
were several limitations. Our simulations represent a range of hypothetical treatment effects
projected beyond the SPRINT trial period, since long-term data on treatment effects of
intensive control versus standard control beyond the end of the trial are not available.
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Methods of blood-pressure measurement in most current clinical practices differ from the
automated blood-pressure approach used in SPRINT. This issue did not come into play in
our analysis, since the effects of intensive control were modeled as relative risks of outcomes
and not as changes in systolic blood pressure. The benefits that were observed in SPRINT
are consistent with aggregate evidence supporting benefits of intensive control among
patients at high risk for cardiovascular disease.38-49 However, because SPRINT excluded
patients with a history of diabetes, stroke, or heart failure, our results should be extended
only with caution to such patients.23

Although there was no significant difference in the rate of combined serious adverse events
between the intensive-control group and the standard-control group in SPRINT, we
conservatively modeled the risk of specific outcomes that were classified as serious adverse
events or as resulting in an emergency department visit. Nonetheless, the risks of serious
adverse events that were observed in SPRINT may not represent such risks that would be
expected if patients who are treated in the community underwent intensive control. We
estimated that the underlying risks of serious adverse events in the two study groups would
need to be 2.75 times the risks observed in SPRINT or that the risks of serious adverse
events in the intensive-control group would need to be 1.64 times the risk in the standard-
control group to push the ICER for intensive control above $50,000 per QALY (Figs. S12
and S13 in the Supplementary Appendix). When we assumed that there was no between-
group difference in the risk of combined serious adverse events (i.e., the overall result in
SPRINT), the ICER was even lower ($34,000 per QALY for the base case) (Fig. S13 in the
Supplementary Appendix).

In conclusion, in this simulation study, we found that intensive control of systolic blood
pressure prevented cardiovascular disease events and prolonged life and did so at a cost that
was below common willingness-to-pay thresholds, regardless of whether the benefits were
reduced after 5 years or persisted for the remaining lifetime of the patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Interventions and Health States
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Figure 1. Structure of the SPRINT Simulation M odel
Shown is the microsimulation model used to estimate costs, clinical outcomes, and quality-

adjusted life-years of intensive control of systolic blood pressure in adults who were eligible
to participate in the Systolic Blood Pressure Intervention Trial (SPRINT). (A complete list
of the eligibility criteria for participation in SPRINT is provided in the Methods section in
the Supplementary Appendix.) Panel A shows the two interventions — intensive control and
standard control of systolic blood pressure — and health states of the patients, and Panel B
shows the three categories of subsequent clinical events: cardiovascular disease (CVD)
events, serious adverse events, and death from causes other than cardiovascular disease. The
blue square indicates the decision node, the point at which a treatment strategy is chosen; the
purple encircled letter “M” indicates the Markov node, with branches indicating the health
states in transition every 6 months; the green circle indicates the chance node, after which
there is a probability of the occurrence of each event; and the red triangle indicates the
terminal node, the end of a pathway within a 6-month cycle. ACS denotes acute coronary
syndrome, and MI myocardial infarction.
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A Cumulative Incidence Rate Ratio for the Primary Outcome
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Figure 2. Incidence Rate Ratios for the Primary Outcome and I ncremental Direct Medical Costs
for Intensive versus Standard Control, According to Four Scenariosfor Medication Adherence
and Treatment Effect

Panel A shows incidence rate ratios for the SPRINT primary outcome (the first occurrence
of myocardial infarction, acute coronary syndrome not resulting in myocardial infarction,
stroke, heart failure, or death from cardiovascular causes) for intensive control versus
standard control of systolic blood pressure during the simulation over different time periods.
The results are shown according to the four post-trial persistence-of-treatment-effect
scenarios: base case (i.e., reduced adherence to the medication regimen and treatment effects
after 5 years until total nonadherence and no treatment effects at 15 years), worst case (i.e.,
nonadherence and no treatment effects after 5 years), best case until 15 years (i.e., in-trial
adherence and persistence of treatment effects for 15 years), and lifetime best case (i.e.,
lifetime in-trial adherence and persistence of treatment effects). Although the assumptions
and input were identical for all four scenarios for the first 5 years of the simulation, there
were small differences in the incidence rate ratios for cardiovascular disease events for the
period from 0 to 5 years that reflect the role of chance in the microsimulation approach. The
| bars indicate 95% confidence intervals. Panel B shows the range of mean cumulative
incremental direct medical costs of intensive control versus standard control of systolic
blood pressure, according to the expenditure — including costs associated with serious
adverse events, treatment, background health care for the treatment of noncardiovascular
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diseases, chronic cardiovascular disease (CVD), or CVD event — in the four post-trial
persistence-of-treatment-effect scenarios over time.
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Figure 3. Probability of Cost-Effectiveness of I ntensive ver sus Standar d Blood-Pressure Control
Shown is the probability of the cost-effectiveness of intensive control of systolic blood

pressure, as compared with standard control, according to a range of willingness-to-pay
thresholds (the cost in dollars per quality-adjusted life-year [QALYY). The curves represent
the four post-trial persistence-of-treatment-effect scenarios. The curves were generated from
the results of the probabilistic analysis in which the model was run 1000 times with the use
of random draws for all model measurements to capture joint uncertainty in the model
results.
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