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Abstract

Enhancement of non-uniformly illuminated images often suffers from over-enhancement and 

produces unnatural results. This paper presents a naturalness preserved enhancement method for 

non-uniformly illuminated images, using a priori multi-layer lightness statistics acquired from 

high-quality images. Our work makes three important contributions: designing a novel multi-layer 

image enhancement model; deriving the multi-layer lightness statistics of high-quality outdoor 

images, which are incorporated into the multi-layer enhancement model; and showing that the 

overall quality rating of enhanced images is consistent with a combination of contrast 

enhancement and naturalness preservation. Two separate human observer evaluation studies were 

conducted on naturalness preservation and overall image quality. The results showed the proposed 

method outperformed four compared state-of-the-art enhancement methods.

Index Terms
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I. INTRODUCTION

As a natural scene is often non-uniformly illuminated, it is common for a natural image 

having different visibility in different local areas. Enhancement of non-uniformly 

illuminated images has been extensively studied, but it is still a challenging problem, in that 

contrast enhancement and naturalness preservation often conflict with each other, while both 

of them are essential to the quality of enhanced images.

Previous studies mainly focused on contrast enhancement, while only a few took naturalness 

preservation into consideration. Since naturalness is closely related to individuals’ 

preferences, there has been no convincing definition of naturalness. A practical way is to 

consider naturalness from some specific aspects, such as details fidelity, lightness inequality 

preservation, and color perception [1]–[6]. For non-uniformly illuminated image 

enhancement, Wang et al. [4] pointed out that the reversal of lightness inequality (for two 

areas of different lightness, the brighter area becomes darker after enhancement) often leads 

to unnatural results. To effectively enhance non-uniformly illuminated images, a good 

method should be able to enhance the contrast as well as preserve the lightness inequality 

between different local areas.
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From the point of view of non-uniformly image enhancement, this section reviews some 

commonly used image enhancement techniques.

1) Histogram specification-based enhancement

Histogram specification is a simple but frequently used technique for image enhancement. 

The basic idea of histogram specification is to render the lightness histogram of an image to 

a specific distribution. Early methods [7], [8] stretched contrast by equally rendering the 

histogram across all gray levels, e.g. histogram equalization, while these methods often over 

stretched the gray levels that have larger histogram bins than others. Later studies proposed 

contrast-limited histogram equalization which prevented over-enhancement by restricting the 

stretch of similar gray levels [9]–[16]. These methods actually make a compromise of 

contrast enhancement between different gray levels. But most key parameters are set 

empirically, which limited the application of these methods.

2) Unsharp masking enhancement

Unsharp masking methods usually enhance images by improving high-frequency bands [17], 

[18]. The flowchart of these methods is often as: decomposing an image into several 

frequency bands, assigning greater enhancement factors to higher frequency bands, and 

summing them up to get the enhanced image. Although these methods are effective in 

highlighting high frequencies, they may fail to enhance a non-uniformly illuminated image, 

for which a high-frequency band needs to be processed differently in different local areas. In 

addition, the parameters of these methods are often set empirically and the enhanced results 

are easily out of the gray level range of an image. To solve the out-of-range problem, some 

recent methods [19] employ non-linear mapping functions, which actually preserve the gray 

level range at the cost of reducing the difference between some gray levels.

3) Retinex-based enhancement

Retinex theory assumes that image lightness depends on illumination and reflectance (the 

illumination is the radiant flux received by the scene, and the reflectance is the effectiveness 

in reflecting radiant energy), and sensations of colors have a strong correlation with 

reflectance [20]. Early Retinex-based methods [21], [22] enhanced an image by removing 

the estimated illumination and the result often looked unnatural. Considering illumination is 

an important factor to the enhanced image quality, many recent methods [4], [23]–[25] 

compress rather than remove the estimated illumination. However, as pointed out by Land et 

al. [20], illumination is often unknown in a natural scene. McCann [26] indicates that 

complete color constancy requires humans to ignore illumination so as to synthesize 

sensations of reflectance, and color constancy is a good assumption in uniform illumination, 

but not true for real natural images. Theoretically, it is an ill-posed problem to decompose an 

image into reflectance and illumination for non-uniformly illuminated images. The 

estimated illumination and reflectance are actually low- and high- frequency components. 

Reducing the variation of the low-frequency component may suppress some details (edges 

or contours).

A fundamental tenet of vision is that visual systems are matched to evolution and 

environments [27]–[30]. A reasonable argument is that an enhanced image looks unnatural is 

Wang and Luo Page 2

IEEE Trans Image Process. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probably because it is not consistent with a priori statistics of natural scenes. For instance, 

the 1/f power law indicates the amplitude spectrum of a natural scene follow a power law 

[31]–[36]. But some methods boost the high frequencies too much and thus drive the 

amplitude spectrum different from the prior. To enhance an image naturally, it may be 

helpful to use a priori statistics of natural scenes. This paper presents a naturalness preserved 

image enhancement method (NPIE-MLLS) using a priori multi-layer lightness statistics of 

high-quality outdoor images. Our work makes three main contributions. First, we propose a 

novel multi-layer model to extract details layer by layer, which is used to solve the problem 

that some details remain in the low-frequency component. Second, we derived a multi-layer 

lightness prior of high-quality outdoor images, which is effective to render the low-

frequency component of non-uniformly illuminated images. Third, we found that the overall 

image quality assessment is correlated with a combination of contrast enhancement and 

naturalness preservation. In addition, we conducted two separate human observer evaluation 

studies on naturalness preservation and overall image quality.

Following this introduction section, section II introduces the related work and the 

motivation. Section III provides an overview of the proposed method, the technical details of 

which are illustrated in sections IV, V, and VI. Section VII presents the processed results and 

performance comparison. Finally, conclusions are drawn in Section VIII.

II. Related Work and Motivation

Retinex theory assumes that the perceived lightness is the product of illumination and 

reflectance, which can be modeled as:

(1)

where I(x, y) indicates an image, F(x, y) is the illumination, R(x, y) is the reflectance, and c 
∈ {r, g, b} is the color channel index.

Early single-scale Retinex-based (SSR) methods [22] typically enhance an image by 

removing the estimated illumination and regard the remaining component, i.e., the estimated 

reflectance, as the enhanced image. Multi-scale Retinex-based (MSR) methods [21] estimate 

reflectance using several filters of different sizes and take the weighted average as the 

enhanced image (Fig. 1(a)). Both SSR and MSR may fail to naturally enhance non-

uniformly illuminated images, because the lightness inequality between different local areas 

is easily reversed after removing the estimated illumination [4]. To preserve the lightness 

inequality, Wang et al. [4] proposed a naturalness preserved enhancement algorithm 

(NPEA), which consists of three steps (Fig. 1(b)): decomposing an image into two 

components, modifying the estimated illumination, and combining the modified illumination 

and the estimated reflectance to obtain the enhanced image.

The estimated illumination is actually the low-frequency component of the original image, 

and the estimated reflectance is the high-frequency component. Because some details (true 

reflectance) may still remain in the estimated illumination, even with the state-of-the-arts 

(Fig. 2) [24], [25], [37], these details cannot be recovered by averaging the reflectance 
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estimated in different scales as it is done in MSR. While NPEA incorporates the illumination 

(a modified version), the contrast of the details in the estimated illumination may be 

perceptually suppressed due to the illumination modification.

One of the reasons why human eyes have much higher dynamic ranges than cameras is 

because the perceived visibility of the image details highly depends on the local luminance 

mean. Since “local” is a relative concept, Peli [38] proposed a multi-layer contrast 

definition, i.e., the perceived contrast of a given image location depends on which frequency 

band the image details are assessed. In other words, the contrast of the image location is 

different for different “local” scales. Specifically, the contrast of each frequency band is 

defined by Peli as the ratio of the bandpass-filtered image at that frequency to the low-pass 

image filtered to an octave below the same frequency. For image enhancement applications, 

we believe there can be some advantages to decompose an image into multiple layers 

(multiple frequency bands) and treat these layers as “local” at different scales.

III. Overview of the Proposed Multi-layer Model

Our method is based on two essential assumptions. Firstly, we assume that details may exist 

in all spatial frequency bands. So the proposed method uses a low-pass filter to decompose 

an image iteratively into multiple layers (multiple frequency bands) until the remaining low-

frequency component is uniform. This scheme is different from the existing MSR model, 

which estimates the reflectance at several scales, with the estimation at a larger scale 

including that at smaller scales. Secondly, we assume that high-quality images have common 

statistical characteristics in lightness that are associated with those multiple layers, and the 

statistical characteristics are different from those of non-uniformly illuminated images. If the 

multi-layer lightness prior of high-quality images is applied to render separate layers, non-

uniformly illuminated images may be manipulated to be like high-quality ones. Thus, the 

enhancement would be based on objective statistics rather than personal experience.

Fig. 3(a) illustrates the image decomposition process of the proposed method. Each 

component Fi(x, y) is further decomposed into a low-frequency component Fi+1(x, y) and a 

high-frequency component Ri+1(x, y). Fi+1(x, y) is computed by filtering Fi(x, y) using a 

low-pass filter, and Ri+1(x, y) = Fi(x, y) / Fi+1(x, y). Thus, the lightness range of the low-

frequency component shrinks as i increases. If the layer number is large enough, the 

lightness of the last layer will be completely uniform. Each Ri(x, y) covers a unique 

frequency band of the original image, which can be integrated into the final enhanced image 

to preserve the details that otherwise may get lost.

In our multi-layer model, an image Ic(x, y) is composed of multiple frequency bands:

(2)
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(3)

where Fi(x, y) indicates the low-frequency component, Ri(x, y) indicates the high-frequency 

component, Fn(x, y) is the low-frequency component of the last layer, and Rc(x, y) is the 

high-frequency component by decomposing the original image Ic(x, y) directly. The 

technical details of image decomposition are given in the next section.

According to Equations (2) and (3), image enhancement can be achieved by modifying 

either the low- or the high-frequency components. Since the high-frequency component is 

more sensitive to the scene reflectance, we choose to modify the low-frequency components:

(4)

where g(·) is a mapping function of the low-frequency component.

Unlike other methods that process the image lightness empirically and therefore may be 

biased to unwanted individual’s preferences, the proposed method renders different layers 

using a priori multi-layer lightness statistics, which is derived from a large number of high-

quality outdoor images. The lightness prior and the details of the mapping function g(·) are 

illustrated in sections V and VI.

In summary, the proposed method consists of three steps as Fig. 3(b) and (c) show: 

decomposing an image into multiple layers; modifying the low-frequency components based 

on the multi-layer lightness prior; combining the modified low-frequency components and 

the high-frequency component to get the enhanced image.

IV. Image Decomposition by the Associative Filter

NPEA uses a bright-pass filter to estimate the low-frequency component [4]. But, the bright-

pass filter preserves too many fine details in the low-frequency component, because it uses 

global statistics to set the filter weight. In [37], an associative filter is used to calculate the 

dark channel, i.e., the weighted average of local minimum, and it is effective in preserving 

edges and removing fine details. Similarly, this paper uses the associative filter to estimate 

the weighted average of local maximum, i.e., the low-frequency component.

In the multi-layer decomposition model (Fig. 3(a)), Fi(x, y) is decomposed into a low-

frequency component Fi+1(x, y) and a high-frequency component Ri+1(x, y), satisfying:

(5)
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where F0(x, y) is obtained by filtering the image lightness L(x, y), which is defined as L(x, 

y) = maxc∈{r,g,b}Ic(x, y) [39]. Fi+1(x, y), i ≥ 0 is computed by filtering Fi(x, y). The 

associative filter is defined as [37]:

(6)

where Ω(x, y) is a 31×31 area centered at (x, y), the value of σ is empirically set to 3, and 

 is the local maximum of Fi(x, y):

(7)

where Ω′(x, y) is a 15×15 area centered at (x, y), and W(x, y) is the normalized factor:

(8)

Each filtering operation removes more details from the low-frequency component and makes 

the low-frequency component smoother. That’s to say the variation of Fi+1(x, y) is less than 

Fi(x, y). As i increases, all pixel values of Fi(x, y) approach the maximum lightness of the 

image. Image decomposition is complete when the low-frequency component has no 

variation.

If the spatial size of the associative filter is constant, the difference between Fi+1(x, y) and 

Fi(x, y) may be very small after several times filtering, so that the decomposition would 

result in many layers. If the filter size increases with i, the computation may be intensive. In 

our experiment, the proposed method keeps the filter size constant, but down-samples the 

low-frequency image after each filtering, with the down-sampling factor empirically set to 

1.25. Thus, the low-frequency image size becomes smaller and smaller during the 

processing. After completing the decomposition, all the low-frequency images are up-

sampled to the size of the original image.

We can see that Fi(x, y) is actually the weighted average of the local maximum of the 

original image lightness, which implies the value of Ri(x, y) is in the interval [0,1], and the 

local scale increases as i increases. Thus, if the function g(·) in Equation (4) preserves the 

lightness inequality of Fi(x, y), our multi-layer model can easily preserve the lightness 

inequality between different local maxima at the same scale [4].
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V. Multi-Layer Lightness Statistics of Natural Images

Natural scene statistics have been extensively studied [1], [40]. For instance, the 1/f power 

law shows that the amplitude spectrum of natural scenes is linear with the reciprocal of 

frequency: Amplitude ∝ Spatial Frequency−1.0 [27], [34]. It is also well known that the 

average lightness and lightness range of an image have strong correlation with image quality 

[3], [4], [41]. Therefore, the processing of the low-frequency component, which controls the 

image lightness, is essential to image enhancement. Existing enhancement methods often 

process the low-frequency component empirically, and thus are prone to be affected by 

unwanted subjective preferences. Unlike previous methods, our method renders the low-

frequency component using a multi-layer lightness prior.

Our multi-layer lightness prior was derived from 1158 high-quality outdoor images. All 

these images have visually pleasant lightness and details, as Fig. 4 shows. We focus on two 

attributes of their low-frequency components, the average lightness and lightness range. 

Each image is decomposed into multiple layers using the associative filter defined in section 

IV. The layer number is empirically set to 26, because the low-frequency component often 

becomes completely uniform before reaching 26 filtering iterations in most cases. For each 

layer i, the average lightness L̄(i) and the lightness range R̄(i), are calculated as:

(9)

(10)

where N is the image number, Lp(i) = mean(Fi(x, y)) is the average lightness of the low-

frequency component Fi(x, y) for the image p, and Rp(i) = max(Fi(x, y)) − min(Fi(x, y)) 

indicates the lightness range.

Fig. 5 shows the average lightness and the lightness range of the low-frequency components 

with respect to the layer for the 1158 images. The standard errors of the mean both for the 

average lightness and the lightness range are very small. So it is reliable to model these two 

attributes based on the statistics. In addition, the maximum lightness of a high-quality image 

is often 255, implying the maximum value of the low-frequency is 255. Thus, the interval of 

Fi(x, y) is [255 − R̄(i), 255].

VI. Image Enhancement Using the Multi-Layer Lightness Statistics

According to the multi-layer lightness statistics of high-quality images, the expected interval 

and average of Fi(x, y) are [255 − R̄(i), 255] and L̄(i), respectively. The proposed method 

modifies Fi(x, y) as:
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(11)

(12)

where the parameter γ is used to tune the low-frequency component to make the average 

lightness satisfy Equation (9), max(Gi(x, y)) and min(Gi(x, y)) indicate the maximum and 

minimum values of Gi(x, y), and Equation (11) maps the low-frequency interval to [255 − 

R̄(i), 255]. Fig. 6 shows the flowchart of the low-frequency mapping.

VII. Enhancement Performance Comparison

We compared the proposed method with four state-of-the-art methods: a naturalness 

preserved enhancement algorithm (NPEA) [4], a multi-scale Retinex-based method (MSR) 

[21], a generalized unsharp masking method (GUM) [17], and a fast hue and range 

preserving histogram specification method (FHRPHS) [9]. These methods were chosen 

because they had different characteristics and their codes were accessible. NPEA is a single-

layer method and shares many similarities with NPIE-MLLS. MSR represents the multi-

scale methods. GUM enhances details effectively. FHRPHS is good at preserving lightness 

inequality. The major parameters were set as follows. MSR: the spatial extents of the three 

Gaussian functions were 20, 80, and 200. GUM: the adaptive gain was utilized with the 

maximum gain set to 5 and the contrast enhancement factor was 0.005. The parameters of 

NPEA and FHRPHS were set exactly as given in their papers.

This section first makes a comprehensive comparison, and then demonstrates the 

performance with several representative images. All these tested images as well as the high-

quality images mentioned previously are available to the public at: https://

shuhangwang.wordpress.com/2016/09/02/ie.

A. Comprehensive Comparison

The comprehensive assessment was carried out on 131 non-uniformly illuminated images. 

We first assessed the quality of the enhanced images from three aspects, i.e., lightness 

inequality preservation, subjective naturalness preservation, and contrast enhancement. 

Then, a measure that combined naturalness preservation and contrast enhancement was 

designed to assess the overall image quality. Finally, we conducted a subjective study for the 

overall image quality assessment. Statistics analyses were conducted using SPSS 11.5. 

Repeated measure ANOVA was performed, followed by post hoc analysis with Bonferroni 

correction to compare different methods. A p-value smaller than 0.05 indicates a statistically 

significant difference.
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Lightness inequality preservation—We used the LOE measure to assess the lightness 

inequality preservation. The LOE value is defined as the average number of pixel pairs, 

whose lightness inequality is reversed after enhancement [4].

(13)

where L(i, j) and Le (x, y) are the pixel lightness before and after image enhancement, m and 

n indicate the image height and width, U(x, y) is the unit step function, ⊕ is the exclusive-or 

operator.

According to the definition, the greater LOE value indicates the poorer lightness inequality 

preservation. The average LOE values for the five methods were 55.9 (MSR), 33.6 (GUM), 

23.7 (NPEA), 9.5 (FHRPHS), and 20.9 (NPIE-MLLS). Repeated measure ANOVA revealed 

that these methods resulted in statistically significant difference in LOE values (F(4, 520)= 

249.081, p<0.001). Post hoc tests found that the five methods were significantly different 

from each other (Table 1). As we can see, the histogram-based method, FHRPHS, is good at 

preserving the lightness inequality. The proposed NPIE-MLLS is the second best for 

lightness inequality preservation.

Naturalness preservation assessment—Naturalness preservation was assessed based 

on 24 observers’ preferences. The observers consisted of 12 males and 12 females, in the 

age range of 20 to 42, and their average age was 30. We explained naturalness preservation 

to them from three frequently mentioned aspects: 1) no serious artifact was introduced, 2) 

color and details were perceptually natural, and 3) lightness of the scene was pleasant [5], 

[6]. The observers were asked to assess the naturalness by their subjective experience and 

preferences.

In the assessment experiment, each enhanced image was displayed together with its original 

image in a random order, and observers pressed ‘Y’ or ‘N’, to indicate the enhanced image 

was natural or not referring to the original image. The naturalness score an observer gives to 

a method (NS_m) is defined as the percentage of its enhanced results the observer marks as 

natural. For a particular enhanced image, the naturalness score (NS_i) is defined as the 

percentage of observers marking it as natural.

The average naturalness scores for the five methods were 0.15 (MSR), 0.14 (GUM), 0.52 

(NPEA), 0.30 (FHRPHS), and 0.67 (NPIE-MLLS). Repeated measure ANOVA revealed that 

these methods resulted in statistically significant difference in naturalness scores (F(4, 88)= 

247.868, p<0.001). Post hoc tests found that every two methods, except MSR vs GUM, were 
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significantly different from each other (Table 2). The images enhanced by NPIE-MLLS were 

rated as natural more frequently than those enhanced by the other four methods.

Contrast enhancement measurement—For contrast enhancement, many measures 

have been proposed [42]–[44]. In our experiment, we assessed the contrast of visible edges 

rather than the difference between pixels. Accordingly, the geometric mean of the ratios of 

the visibility level (GMRVL) was used to objectively assess the contrast enhancement [45].

The ratio of the visibility level is calculated by comparing the visibility level of the enhanced 

image to the original image. GMRVL is defined by:

(14)

where P is the set of visible edges in the enhanced image, n is the number of visible edges 

(refer to [45] for the technique to detect the visible edges), VLo and VLe are the visibility 

levels of the original image and enhanced image, respectively. The visibility level of a target 

is quantified by the coefficient:

(15)

where ΔLthreshold is the threshold of luminance difference at which a target becomes 

perceptible with a high probability, and ΔLactual is the actual luminance difference between 

the target and its background [45].

The average GMRVL values for the five methods were 4.1 (MSR), 4.3 (GUM), 2.4 (NPEA), 

2.6 (FHRPHS), and 2.8 (NPIE-MLLS). Repeated measure ANOVA revealed that these 

methods resulted in statistically significant difference in GMRVL values (F(4, 520)= 

244.073, p<0.001). Post hoc tests found that MSR and GUM were not significantly different, 

and the difference between FHRPHS and NPIE-MLLS approached to significance. Except 

for these two pairs, the other paired comparisons were significantly different (Table 3). The 

GMRVL value of the proposed method is greater than NPEA and FHRPHS, but lower than 

MSR and GUM. Since contrast enhancement normally works against naturalness 

preservation and both of them are important aspects of image enhancement, it is necessary to 

integrate these two factors to assess the overall image quality.

Combination of naturalness preservation and contrast enhancement—By 

sorting the enhanced images in ascending order of the GMRVL value, we define the 

cumulative naturalness score (CNS) with respect to the contrast of the first n images as:

(16)
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where GMRVL(i) and NS_i(i) are the GMRVL value and the naturalness score of the ith 

image, respectively, the minimum image index i is 1, and we set GMRVL(0) = 0.

The CNS describes the naturalness variation with respect to the contrast enhancement. Fig. 7 

shows the CNS of the enhancement methods. Ideally, the CNS should maintain upward 

trend when GMRVL increases. The slope of NPIE-MLLS is the largest, which means that 

the naturalness is best preserved given a GMRVL value. Additionally, the CNS of NPIE-

MLLS is almost linear with respect to GMRVL, which implies that the naturalness is well 

maintained as the contrast increases, unlike the other enhancement methods, whose CNSs 

plateau when GMRVL reaches certain levels, i.e. images no longer look natural as the 

contrast increases.

Subjective quality assessment—To further assess the performance of the proposed 

method, we carried out a subjective assessment on the overall quality of the enhanced 

images with another 24 observers. The observers included 10 males and 14 females, in the 

age range of 20 to 45, and their average age was 33. The assessment test was designed as: a 

pair of enhanced images were randomly selected from the five enhancement versions, and 

shown to an observer in each trial. For a tested image, each version was compared with all 

the others. The purpose of the experiment was masked to the observers by telling them those 

images were captured by different cameras, and they needed to select the image with better 

quality from the two candidates. To avoid misleading the observers, we didn’t give them any 

specific criterion of image quality. The subjective quality score an observer gave to a method 

is defined as the percentage of counts its enhanced results were preferred.

The average subjective quality scores for the five methods were 0.38 (MSR), 0.51 (GUM), 

0.56 (NPEA), 0.40 (FHRPHS), and 0.64 (NPIE-MLLS). Repeated measure ANOVA 

revealed that these methods resulted in statistically significant difference in subjective 

quality scores (F(4, 92)= 20.467, p<0.001). Post hoc tests found that all the paired 

comparisons, except MSR vs FHRPHS and GUM vs NPEA, were significantly different 

(Table 4). The images enhanced by NPIE-MLLS were rated as having better quality more 

frequently than those enhanced by the other four methods.

According to the subjective quality assessment, the rank of the five methods is: NPIE-

MLLS, NPEA, GUM, FHRPHS, and MSR, which is the same as the rank according to CNS 
(Fig. 7). This suggests that the quality of an enhanced image can be mainly assessed from 

two aspects: naturalness preservation and contrast enhancement. It is certainly possible that 

the result could be slightly different by using different contrast enhancement measures.

B. Representative Comparison

Both MSR and GUM can significantly enhance contrast, but may produce unnatural results. 

As Fig. 8–Fig. 12(b) show, MSR unnaturally reduces the lightness in large bright areas, such 

as the sky area, because MSR removes the estimated illumination. GUM is good at 

enhancing details of different scales, but it causes obvious over-enhancement in some areas, 

such as the sky area in Fig. 10(c). In comparison, the proposed method does not have these 

problems.
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As a histogram-based method, FHRPHS is effective in preserving the lightness inequality 

between different local areas. Additionally, FHRPHS is excellent at enlarging the difference 

between large areas. However, it sometimes cannot enhance small areas with lightness that is 

much different from the background, such as the marked area and the bush in Fig. 9(e), and 

the marked area in Fig. 12(e). That is because it may merge similar gray levels together. 

Comparatively, our method is better at enhancing details of similar gray levels, as shown in 

Fig. 9(f) and Fig. 12(f).

NPIE-MLLS and NPEA share many similarities. Both methods can enhance contrast and 

preserve the naturalness well. Comparatively, NPIE-MLLS performs better at presenting 

details. As Fig. 10 shows, NPIE-MLLS preserves the lane markers much better than NPEA. 

The details of the bush in Fig. 9 and the branch covering the bird in Fig. 11 are well 

preserved with NPIE-MLLS but lost with NPEA. In Fig. 12, NPIE-MLLS preserves the 

contrast between the white flowers and the background better than NPEA, while NPEA 

causes contrast loss due to compression of details remaining in the estimated illumination 

image.

In summary, compared with four state-of-the-art methods, the superior performance of the 

proposed method can be seen from both contrast enhancement and naturalness preservation. 

This was verified by the combining measure of contrast enhancement and naturalness 

preservation, as well as the overall subjective image quality assessment.

VIII. Discussion and Conclusion

We have proposed a multi-layer enhancement method for non-uniformly illuminated images. 

Unlike other enhancement methods that improve contrast empirically, the proposed method 

modifies multiple components of an image based on a priori multi-layer lightness statistics 

of high-quality outdoor images. The multi-layer model is effective in extracting details of 

different frequency bands, and the multi-layer lightness prior is helpful for rendering the 

low-frequency components. Two human observer assessment studies showed that the 

proposed method outperformed four other enhancement methods. The reason is probably 

because the proposed method was able to preserve the naturalness as well as improve the 

contrast, as we showed that the combination of naturalness preservation and contrast 

enhancement was in accordance with the overall quality rating by human observers.

The essential concept behind the proposed method is that we assume image details 

(reflectance) may exist in multiple frequency bands. It is unlikely for a single-layer model to 

extract details nicely under all different situations. Researchers, for examples, Guo et al. [24] 

and Fu et al. [25], usually tune their single-layer models for particular applications. Guo et 

al. [24] focused on low light images, and assumed the estimated illumination should be 

smooth, while Fu et al. [25] presented their application for daytime images, and their 

estimated illumination included many details. By testing a number of images, we found that 

Guo et al.’s method can enhance dark areas better than Fu et al.’s method, while Guo et al.’s 

method tends to wash out the details in the bright areas. A representative example is shown 

in Fig. 13. In contrast, our multi-layer model has no clear cut between illumination and 

reflectance, and it extracts details from different frequency bands. When more layers are 
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used, some details of low frequency are put back to the result images. Thus, image spatial 

information in different frequency bands can all be preserved to certain degrees (Fig. 13(d)). 

The multi-layer model is analogous to bell-shaped filter, while the single-layer model is like 

a brick-wall filter, in terms of details extraction. In our opinion, when different spatial 

frequency bands are taken into consideration, the multi-layer model may have relatively less 

chance to fail.

While the proposed method is designed to process outdoor images of non-uniform 

illumination, it has the potential to be applied to a wide variety of images, as long as the 

lightness statistics can be established for a given type of high-quality images. This is an area 

that needs further research.

The proposed multi-layer method doesn’t always perform better than all other methods. 

Usually that is when the range and the average value of the estimated illumination for each 

layer happen to be similar to the lightness statistics prior. In this case, if there is a dark area 

that some observers prefer to enhance (usually not very dark, otherwise the illumination 

range will not be similar to the high-quality image prior), the multi-layer model may appear 

to barely enhance the image.

The contrast measure used in this paper is just one of many contrast metrics. It will be of 

interest to investigate whether other contrast metrics also result in CNS consistent with 

overall image quality ratings. The findings may help us to understand how contrast is taken 

into consideration in the perception of image quality.
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Fig. 1. 
Existing Retinex-based image enhancement models. (a) Multi-scale Retinex-based method 

[21]. (b) Naturalness preserved enhancement algorithm(NPEA) [4]. D indicates image 

decomposition, C indicates image combination, and M is illumination mapping.
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Fig. 2. 
Illustration of details remaining in the estimated illumination. (a) Original image. (b) 

Estimated Illumination by [37]. (c) Estimated Illumination by [25]. (d) Estimated 

Illumination by [24].
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Fig. 3. 
Illustration of the multi-layer model. (a) Image decomposition process. (b) Image 

enhancement model. Ic(x, y) represents an original image, Fi(x, y) indicates the low-

frequency component, Ri(x, y) indicates the high-frequency component,  indicates 

the enhanced image, D indicates image decomposition, C indicates image combination, and 

g(·) is a mapping function. (c) An example of image decomposition and enhancement using 

the multi-layer model. For simplicity, the operation symbols are not presented in (c).
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Fig. 4. 
Images from our high-quality outdoor image database.

Wang and Luo Page 20

IEEE Trans Image Process. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Statistics of 1158 high-quality images’ lightness attributes in different layers. (a) Average 

lightness. (b) Lightness range. Error bars indicate the standard error of the mean.
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Fig. 6. 
Flowchart of the low-frequency component mapping.
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Fig. 7. 
The cumulative naturalness score versus the increasing GMRVL value. NPIE-MLLS 

maintains upward trend as the GMRVL value increases, but MSR, GUM, and FHRPHS 

plateau when the GMRVL value reaches certain levels.
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Fig. 8. 
Enhancement result for Bird image. (a) Original image. (b) Enhanced image of MSR. (c) 

Enhanced image of GUM. (d) Enhanced image of NPEA. (e) Enhanced image of FHRPHS. 

(f) Enhanced image of NPIE-MLLS.
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Fig. 9. 
Enhancement result for Autumn image. (a) Original image. (b) Enhanced image of MSR. (c) 

Enhanced image of GUM. (d) Enhanced image of NPEA. (e) Enhanced image of FHRPHS. 

(f) Enhanced image of NPIE-MLLS.
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Fig. 10. 
Enhancement result for Lane Markers image. (a) Original image. (b) Enhanced image of 

MSR. (c) Enhanced image of GUM. (d) Enhanced image of NPEA. (e) Enhanced image of 

FHRPHS. (f) Enhanced image of NPIE-MLLS.
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Fig. 11. 
Enhancement results for Single Bird image. (a) Original image. (b) Enhanced image of 

MSR. (c) Enhanced image of GUM. (d) Enhanced image of NPEA. (e) Enhanced image of 

FHRPHS. (f) Enhanced image of NPIE-MLLS.
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Fig. 12. 
Enhancement results for Small Flowers image. (a) Original image. (b) Enhanced image of 

MSR. (c) Enhanced image of GUM. (d) Enhanced image of NPEA. (e) Enhanced image of 

FHRPHS. (f) Enhanced image of NPIE-MLLS.
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Fig. 13. 
Enhancement results for indoor image. (a) Original image. (b) Enhanced image of Fu et al.’s 

method [25]. (c) Enhanced image of Guo et al.’s method [24]. (d) Enhanced image of NPIE-

MLLS. Fu et al.’s method didn’t enhance the flowers and trees very well, while Guo et al.’s 

method washed out the details on the cup, the plate, and the newspaper. NPIE-MLLS 

appeared to handle both dark and bright areas well.
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