Skip to main content
. Author manuscript; available in PMC: 2017 Nov 30.
Published in final edited form as: Org Lett. 2017 Mar 22;19(7):1820–1823. doi: 10.1021/acs.orglett.7b00587

Table 1.

Optimization of aldol reactions using method Aa

graphic file with name nihms921536u2.jpg

entry compd base solvent diastereoselectivityb
1 4a Et3N CH2Cl2 78:7:6:9 (rt)
2 4a Et3N CH2Cl2 80:12:4:4
3 4c Et3N CH2Cl2 78:4:16:2 (rt)
4 4e Et3N CH2Cl2 72:9:10:9 (rt)
5 4f Et3N CH2Cl2 57:27:16 (rt)c
6 4g Et3N CH2Cl2 31:16:53 (rt)c
7 4a BuNH2 CH2Cl2 trace product
8 4a PhNH2 CH2Cl2 no product
9 4a i-Pr2NH CH2Cl2 73:15:4:8
10 4a DIPEAd CH2Cl2 no product
11 4a pyridine CH2Cl2 no product
12 4a DBUe CH2Cl2 no product
13 4a Et3N ClCH2CH2Cl 72:16:7:5
14 4a Et3N EtOAc 76:7:8:9
15 4a Et3N THF 71:2:7:20
16 4a Et3N Et2O 64:6:14:16
17 4a Et3N toluene 57:6:6:31
18 4a Et3N CH3CN no product
a

Unless indicated, all reactions were carried out at 0 °C;

b

Diastereoselectivity was determined by HPLC. See SI for details;

c

Diastereomers were inseparable under this HPLC condition;

d

Diisopropylethylamine;

e

1,8-Diazabicyclo[5.4.0]undec-7-ene.