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Abstract

Graph theoretic analyses applied to examine the brain at rest have played a critical role in 

clarifying the foundations of the brain’s intrinsic and task-related activity. There are many 

opportunities for clinical scientists to describe and predict dysfunction using a network 

perspective. This primer describes the theoretical basis and practical application of graph theoretic 

analysis to resting state functional magnetic resonance imaging data. Major practices, concepts, 

and findings are concisely reviewed. The theoretical and practical frontiers are highlighted with 

observations about major avenues for opportunity in theoretical development and clinical 

translation.
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Introduction

Given its complexity [1], the brain is perhaps the quintessential example of a network. 

Neural elements are interconnected by a large number of connections that can be studied 

across several orders of spatio-temporal magnitude. We are apt to seek a framework that can 

help us describe and understand brain organization, dynamics, and cognitive-behavioral 

phenomena. From the perspective of network science[2], the brain is a special case of a 

larger space of natural and possible networks [3]. The mathematical basis in which we can 

represent and study networks is graph theory, which provides fundamental mathematical 

knowledge and a generalizable basis in which to study networks.

In human brain networks, we can apply graph theoretic analysis to anatomical or functional 
networks at multiple scales to study the connectome [4]. An essential tool in our effort to 

understand functional brain networks is functional magnetic resonance imaging (BOLD 
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fMRI), which allows us to indirectly study neural activity using the hemodynamic 

relationship between blood flow and neural firing in the brain [5]. BOLD fMRI is often used 

to examine contrasts between different cognitive conditions to examine changes in 

functional signal amplitudes and connectivity associated with behavior. In addition, and the 

focus of the current review, it can be used to understand the intrinsic [6] organization of 

functional brain networks to study the brain at rest [7] and its relationship with cognition and 

behavior.

To say that a living brain is ever at “rest” is incorrect; indeed, brains persistently bustle with 

complex neural and metabolic activity. “Resting state” fMRI (rsfMRI) is broadly used to 

refer to data acquired when subjects are instructed to look at a crosshair fixation or engage in 

no task in particular while in the scanner [7]. In contrast to studies that involve tightly 

controlled experimental paradigms, rsfMRI studies involve data that represent any number 

of cognitive-emotional mental activities that participants may engage in while at rest. 

Indeed, rsfMRI is used to investigate processes such as mind-wandering [8], introspection 

[9], and imaginative thought [10]. For these reasons, it has been suggested that less leading 

terminology such as “intrinsic connectivity” may be preferable in referring to “resting state” 

data [11]. Broadly, we can examine properties of network organization observable within 

rsfMRI to identify correlates of other cognitive variables and markers of dysfunction. While 

care should be applied when interpreting rsfMRI connectomes, we know that rsfMRI 

networks and network statistics are overall reliable enough to afford robust analysis of 

connectomic organization to examine major systems [12, 13]. Here, I review major 

approaches to and findings from graph theoretic analysis of rsfMRI data.

Data collection and preprocessing

Data collection for rsfMRI typically involves asking subjects to lie in the scanner with eyes 

open, closed, or fixated on a target in the center of participants’ visual field over several 

minutes of fMRI data acquisition [14] (see “Not all rsfMRI is equal”, below). 

“Preprocessing” techniques to ensure that data meet several assumptions prior to analysis. 

The most standard steps to preprocessing rsfMRI data include slice timing correction [15], 

motion correction ([16, 17]), realignment [18], coregistration of anatomical and functional 

images [19], spatial normalization [20], and smoothing [21]. Smoothing increases signal to 

noise, normalizing error distributions, and accomodates anatomical and functional variation 

between subjects. In addition, global signal regression (GSR), which refers to the statistical 

removal of the average signal across all voxels in the brain, is a contentious issue in rsfMRI 

analysis [22, 23]. On the one hand, GSR can increase the detection of localized neural 

signals and improve functional connectivity analysis specificity [24, 25]. On the other, GSR 

introduces negative correlations mean-centered around zero and may exclude important 

neural signatures [26, 22, 27, 28]. Finally, rsfMRI time series are often examined after 

applying a bandpass filter to BOLD data to reduce influences of nonphysiological and 

physiological nuisance signals (often between 0.01 Hz to 0.1 Hz or similar). Because no 

model can perfectly separate physiological nuisance variables from neurally-related signals, 

we must be cautious in our selection of GSR and bandpassing preprocessing techniques and 

appropriately discuss the limitations of each selection in empirical work. Readers are 
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encouraged to consult primary sources for in depth empirical analysis and discussion of 

preprocessing issues.

Graph theoretic analysis of rsfMRI data

Once data are obtained and preprocessed, any number of techniques can be applied to 

examine the organization of rsfMRI data. The primary conceptual distinction between graph 

theoretic analysis of rsfMRI and other approaches is that the former directly links rsfMRI to 

much broader efforts with deep mathematical foundations in graph theory. This allows us to 

share concepts and language with investigators interested in other types of networks and 

encourages the potential for innovative crosstalk. In this section, I provide basic intuition for 

major ideas in graph theory analysis for rsfMRI data and findings from applied analysis.

Graphs in rsfMRI analysis

Graph theoretic analysis is a specific approach to analyzing brain networks in which the 

brain network is represented in the mathematical “graph”. A graph G is composed of N 
nodes (or vertices) and E edges (region-region relationships). The graph G can be encoded in 

an adjacency matrix, A, whose (i,j)th element represents the weight of the edge between 

node i and node j. The edges of a graph can be binary (including only 0’s and 1’s) or 

weighted (including a range of other values). Graphs can be undirected, where the 

association between regions is bidirectional, or directed, where the association between 

regions may vary across directions. In rsfMRI analysis, the elements of the adjacency matrix 

A most often include full correlation coefficients representing the strength of functional 

communication between two regions. The elements can alternatively include covariance, 

partial correlation, coherence, and mutualized information shared between pairs of brain 

regions.

To construct A, one must define the nodes between which edges are calculated. This is 

typically achieved by selecting a parcellation of rsfMRI data voxels into coarse-grained units 

called parcels, which reduces the number of nodes in the system for simplicity, statistical 

economy, and computational efficiency. Several notable parcellations are available defined 

by functionally [29, 30, 12] or anatomically validated features. The proliferation of and 

continued interest in developing parcellations highlights the fact that there is no “perfect” 

parcellation established to date. Indeed, each parcellation relies on statistical optimization or 

anatomically-based boundary definitions paired with our intuitions about what matters in 

brain organization. It is essential to note that the absolute value of statistics in rsfMRI 

network analysis vary depending on the parcellation [31]. Thus, caution should be used in 

inter-parcellation comparisons and we should be well aware of the nature of the parcellation 

we select and rationale for selecting it.

Once the adjacency matrix is defined, we can apply a rich range of concepts and tools from 

graph theory to examine brain networks (See Fig. 1). In the following sections, I introduce 

commonly applied network statistics across scales of network organization. The reader is 

also referred to other excellent reviews concerning graph theoretic analysis in general [32] 

and specific to brain networks [33, 34].
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Micro, meso, and macroscale network analysis

One of the advantages of applying a graph theoretic perspective is that it gives the ability to 

study intermediate and high levels of organization across the network as a whole. This is a 

fundamental distinction between rsfMRI and other approaches to functional brain network 

analysis: by allowing us to examine higher level statistics, we can identify properties of 

networks that are not evident in any particular node or edge and potentially what cognitive-

behavioral processes they may support. The scales of network analysis can coarsely be 

separated into micro, meso, and macroscale, representing the configuration of the elements 

of the network, their modular configuration, and the overall topology of the network as a 

whole, respectively.

Microscale

The micro scale refers to the organization of nodes and edges in the network. In rsfMRI 

data, each node statistic emphasizes complementary information about brain region roles in 

the functional connectome. One major notion in networks is that hubs serve central roles in 

network organization and information processing. To represent this, hub coefficients [35, 36] 

constructed from measures of node centrality have been used to quantify nodes’ 

connectedness in the network (degree or strength in weighted networks; see 2), involvement 

in short paths across the network (betweenness centrality), connectedness with local 

neighbors (clustering coefficient or local efficiency), connectedness to important nodes in 

the network (eigenvector centrality), and interactions with multiple communities in the 

functional network (participation coefficient). Each of these statistics emphasizes a distinct 

aspect of nodes’ varying roles in organizing information procecssing across the brain. In 

rsfMRI data, we can examine variation in node centrality across the brain and distinct 

groups to identify characteristic roles for nodes.

Perhaps the simplest measure of node centrality is degree. In binary networks, degree is 

defined as the number of edges connected to a node. In weighted networks, the weighted 
degree (or strength) is the sum of edge weights connected to a node. Nodes of high degree or 

strength centrality are thought to be particularly influential on the network’s function. In 

rsfMRI networks, nodes with high degree are referred to as network hubs, and are thought to 

be critical for general information transmission and circuit-level computing [37, 38].

Other centrality statistics capture a node’s role in network organization beyond node-to-node 

connections. Commonly used examples include betweenness centrality, closeness centrality, 

and eigenvector centrality. Betweenness centrality quantifies the extent to which a node 

participates in shortest paths throughout the network. A shortest path is the path between 

node i and node j that traverses the fewest (or in weighted networks the fewest high-weight) 

edges. Nodes with high betweenness centrality are thought to be particularly influential 

across different efficient pathways of the network as a whole rather than just local direct 

connections. Closeness centrality quantifies the average shortest path between a given node 

and all other nodes in the graph. As a result, closeness centrality is used as a measure of a 

node’s ability to communicate quite broadly to every node in the network. Eigenvector 

centrality uses the eigenspectrum of the adjacency matrix to quantify the influence of a node 

based on its connectedness with other high-scoring nodes in a network (See Fig. 3). This 

Medaglia Page 4

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistic recursively captures the importance of a node: nodes that are connected to important 

nodes will rank higher in eigenvector centrality. Because each of these statistics putatively 

identify highly central nodes, nodes that score high on these statistics are sometimes referred 

to as hubs given their theoretical role in network function [39].

Some node statistics are designed to capture the role of nearby neighbors in the 

neighborhood (one step in topological distance) around the node. The clustering coefficient, 

which describes how close its nearest neighbors are to being a completely connected 

subgraph or clique). One specific example is the local clustering coefficient, which can be 

defined as the number of triangles in the network containing a node, divided by the number 

of connected triples containing that same node [40]. With this definition, the local clustering 

coefficient gives the density of local connections involving a given node and is often used to 

probe the node’s ability to participate in local information integration. A complementary 

notion is that of node “efficiency”, which assesses the connectedness of the edges among 

neighbors of a given node, thus offering a notion of the network’s local robustness to a 

node’s removal [41].

In addition to quantifying features of a node and its role in the network, one might also be 

interested in quantifying features of an edge. Perhaps the simplest statistic for an edge is its 

weight, which provides information about the strength of the relationship between two 

nodes. Moving beyond pairwise information, one can also compute something like the edge 

betweenness centrality, which measures the number of shortest paths between all possible 

pairs of nodes that pass through the edge of interest. Similar to the betweenness centrality of 

a node, the betweenness centrality of an edge is thought to represent its importance in 

efficient information transfer in networks. These are just a couple of examples of useful 

statistics for edges that can help one to understand the role of a node-node relationship in the 

broader network.

Mesoscale

Mesoscale organization refers to the arrangement of nodes into modules or communities. 

Mesoscale structure is that which is not easily characterized at either the local (node and 

edge) or global (entire network) scales. Networks may exhibit varying degrees and qualities 

of modular structure – also known as community organization – which refers to high within- 

and low between- module connectivity. A network exhibits a varying degree of modularity 
that can be quantified as the extent to which nodes exhibit non-trivial community 

organization relative to network null models [42].

A contrasting mesoscale organization in networks is core-periphery structure, which refers 

to the tendency for a network to have a core of densely interconnected nodes surrounded by 

a periphery of nodes that connect to the core but not to one another. Put differently, an 

extreme of thiswould be a single large module with more sparsely connected individual 

nodes attached to the module. More modular networks theoretically maintain a balance of 

information integration within and segregation between modules, while core-periphery 

structure can offer relatively more centralized processing [43].
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In natural networks, mesoscale networks can exhibit community organization in which 

individual modules have mixtures of characteristic modular, core-periphery, or assortative 
organization. An assortative network is one in which like-degree nodes tend to connect to 

one another, and a disassortative network is one in which unlike-degree nodes tend to 

connect to one another. In some networks, assortativity can be a marker of robustness: the 

removal of one high-degree node can be overcome by the interconnectedness of the others 

[44, 45]. Promising techniques such as stochastic block models [46] allow us to identify the 

organization of network communities along these organizational subtypes and describe their 

potential diversity of network function.

Macroscale

Another key notion in graph theory is that networks can be represented holistically, 

potentially described with single scalar values representing a property of the network. This is 

a form of emergent feature of a system that is not represented in any particular part. To 

represent this, global statistics are important to characterize overarching network 

organizational principles. Perhaps the simplest statistic is a network’s density: the number of 

existing edges relative to the number of possible edges. Many natural networks exhibit low 

density because edges are costly [47]. Relatedly, one often studied characteristic of a 

network is the shape of its degree (or strength) distribution. Long-tailed degree distributions 

indicate that unexpectedly large hubs exist. As within individual modules, it is often 

interesting to ask whether these hubs preferentially connect to one another across the entire 

network, forming a basis for macroscale assortativity analysis [44].

In addition, we can examine whether a network is scale-free, which means that a network 

has a degree distribution that follows a power law [48]. Scale-free networks can emerge 

from theoretical mechanisms including preferential attachment [49] and node fitness [50], or 

rules that copy a fraction of links to existent nodes [51]. Regardless of the mechanism of 

generation, scale-free networks are notable because they represent relatively economical 

architectures for information transmission [47]. They are also robust against random damage 

but especially vulnerable to targeted attack to high-degree nodes [52]. Many natural 

networks demonstrate approximately scale-free degree distributions [53] that are 

characterized by power laws over some regimes of their degree distribution [54].

Another way to describe macroscale organization is to average the values of nodal statistics. 

For example, a network’s global clustering coefficient is equal to the average clustering 

coefficient of that network’s nodes. High global clustering in a network indicates that nodes 

tend to be highly connected across all possible cliques larger than two nodes. The 

characteristic path length refers to the average shortest path between all pairs of nodes in the 

network. A short characteristic path length is thought to represent the potential for high 

integration across the network [55]. Global efficiency is a notion that is complementary to 

the characteristic path length, and can be calculated as the inverse of the harmonic mean of 

the shortest paths in the network [41, 56]. A network with a smaller characteristic path 

length has a higher global efficiency, indicating a theoretical ability to communicate quickly 

across the network as a whole [57].
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A composite statistic representing a network’s tendency to exhibit higher than expected 

clustering and shorter than expected path lengths is famously known as small-worldness 
[55]. Small-world network organization theoretically supports a balance of local segregated 

information processing in modules in conjunction with long distance integrating processing 

across modules. Many small-world networks are also scale-free [58]. One problem with 

calling a network “small-world” is that all networks fall on a continuum of this property and 

it is not often robustly defined in network analysis [59]. Because small-worldness is a 

continuous property that is defined by the clustering and path length in networks, it is 

important to interpret the contribution of both of these statistics to the small-worldness of the 

system. A statistically rigorous definition of small-worldness for weighted networks is small 
world propensity, which has been validated but not yet widely applied in brain network 

analysis [59].

If one is interested in studying not just the shortest path but also longer paths or walks 

through the network, then one might examine a generalization of network communicability 

[60]. Communicability describes all shortest paths as well as all walks – steps along the 

network including revisitations to nodes and edges – connecting two nodes. This accounts 

for the possibility that communication can occur in a network involving both the shortest 

path as well as longer and indirect paths across the network. This property may be 

interesting as a complement to other measures associated with network resilience. For 

example, nodes and networks with increased communicability may exhibit more robustness 

to the loss of specific edges because multiple pathways for communication exist across the 

nodes.

One feature of global network organization is the minimum spanning tree (MST), which is a 

subset of edges in a connected, weighted, undirected graph that connects all nodes together 

without any cycles and the minimum possible total edge weight [61]. Thus, the MST of a 

graph represents the least total cost architecture associating all nodes to one another with no 

redundancy. The size and configuration of a graph’s MST can be analyzed to identify 

efficient organization in network topology and its temporal and cross-sectional variation.

In practical network analysis, it is important to note that raw measures of global network 

organization are heavily influenced by the network’s density (or total node strength), and it 

is therefore important to normalize or statistically control for graph density (strength) prior 

to making statistical inferences across networks or in relation to extrinsic variables such as 

clinical status or cognition in the context of rsfMRI analysis. This allows us to examine the 

unique contributions of network topology above and beyond simple network density.

Major findings in rsfMRI graph theoretic analysis

Graph theoretic analysis has been applied broadly in rsfMRI in healthy and clinical 

populations to examine intrinsic network organization and how variations in intrinsic graph 

properties relate to cognition and clinical syndromes. From these studies, it is known that (1) 

not all rsfMRI is created equal (2) that human rsfMRI networks exhibit a complex 

organization that supports cognitive activity and (3) is altered in clinical populations.
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Not all rsfMRI is equal

As alluded to previously, “resting state” fMRI is a misnomer given that the brain is a 

persistently active system with a rich cognitive repertoire. Neurophysiologically, the link 

between neural field potentials and BOLD is greater in eyes closed relative to open 

conditions in animal models, suggesting that visual and attention-related cognitive demands 

modulate hemodynamic coupling [26, 62]. In addition, important differences in connectivity 

can be observed across eyes closed, eyes open, and fixation cross rsfMRI collection designs. 

In eyes closed conditions, connectivity within the auditory network is higher than the other 

conditions. Connectivity within default-mode, attention, and auditory networks are more 

reliable when eyes are fixated on a cross. In an eyes open condition without a fixation cross, 

visual network connectivity is most reliable [14]. This highlights the fact that while rsfMRI 

data are thought to be relatively “task-free”, differences in how the rsfMRI paradigm is 

administered are associated with different network configurations, presumably as a function 

of differences in cognitive processing demands across the conditions. In addition, not all 

rsfMRI represents waking brain activity: as much as 30% of rsfMRI data may be acquired 

during transient or sustained periods of sleep in the scanner [14]. While eyes open and 

especially fixation cross designs reduce the incidence of sleep, it is an important potential 

confound to all rsfMRI analysis [14]. Thus, we should consider using fixation paradigms to 

help reduce the incidence of sleep in the scanner. We can also use technologies such as eye 

tracking, self report, and machine learning procedures to identify potential sleep in the 

scanner [14].

Human brain organization maintains a complex balance between 

randomness, small worldness, and modularity

In healthy humans, some major findings have resulted from rsfMRI network analysis. At a 

high level of organization, it is clear that healthy human brain networks exhibit economical 

sparse connectivity [47] and maintain a balance along extremes on dimensions of order, 

degree diversity, and heirarchy [47, 63]. Relatively high order is reflected by the high 

clustering and modularity of brain networks, but the presence of some randomness is 

reflected in short path lengths that connect modules [55, 64]. rsfMRI networks exhibit 

truncated power law distributions [31], demonstrating the presence of scale-free organization 

through some of the network’s regime with a pronounced “rich-club” of hubs that are highly 

connected to one another [65]. Hubs are variably defined in the literature, but are typically 

characterized by an unexpectedly high number of connections given all connections 

observed in the entire network, within specific modules, and/or between modules [36], and 

are thought to play key roles in regulating information processing across the network [36]. 

Interestingly, step-wise functional connectivity analyses in rsfMRI data corroborate the view 

that the brain is organized hierarchically, involving connections spreading from regions in 

primary and secondary sensorimotor regions to multimodal integration regions and finally 

converging on cognitive hubs in the cortex. This suggests that classically defined 

neuropsychological functions across these regions are represented in a low-cost hierarchy 

that privileges dense communication between cognitive control and default mode regions 

and the rest of the brain.
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Resting state networks form a stable organization supporting cognitive 

function within and between individuals

rsfMRI studies demonstrate a rich mesoscale organization involving reliably detectable 

intrinsic networks that can be observed during rest [29] (See Fig. 7). These are often thought 

to represent systems with distinct cognitive roles, including fronto-parietal and cingulo-

opercular control networks, dorsal and ventral attention networks, a salience network, a 

default mode network, primary somato-motor systems, and subcortical systems. The 

cognitive relevance of these networks is suggested by the fact that they co-activate as units 

during distinct cognitive tasks [68]. Notably, connections between the fronto-parietal control 

and other networks reconfigure most prominently across tasks, most notably in the left 

dorsolateral prefrontal cortex [68]. In addition, functional connections across the brain 

robustly predict cognitive activations among these systems during various tasks, suggesting 

that these systems form basic building blocks in high-level cognitive organization [69]. 

Interestingly, patterns of connectivity can be used to accurately identify individuals and 

intersubject variability in intelligence from rsfMRI data connectivity “fingerprints” [70], 

demonstrating a high information content in the brain’s intrinsic profile.

From Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. 

Generation and evaluation of a cortical area parcellation from resting-state correlations. 

Cerebral cortex. 2014;p. bhu239.

Resting state network graph characteristics are altered in numerous clinical 

populations

While major networks and organization can be identified in healthy rsfMRI analyses, we can 

also examine whether graph theoretic analysis contribute to our characterization and 

understanding of clinical syndromes. A major review is outside the focus of this primer, and 

the reader is encouraged to consult several excellent reviews concerning graph theoretic 

analysis in neurological and psychiatric syndromes [71, 63, 72, 73, 74]. So far, early studies 

span a wide range of syndromes with developmental, psychiatric, and neurological 

mechanisms of origin. Findings indicate that rsfMRI analysis can indeed identify altered 

network topology in clinical syndromes over the lifespan. Emerging findings from rsfMRI 

analysis suggest that psychiatric and neurological disorders across the lifespan are associated 

with altered intrinsic network organization. Across syndromes, disruptions in hub node 

activity are frequently identified, with common disruptions in cognitive control and default 

mode systems but notable differences in specific nodes across disorders [63, 73]. Network 

efficiency is often disrupted via alterations of path length and mesoscale community 

organization [73, 47]. Cognitively, general conscious activity may be supported by 

segregated information processing facilitated by specific functional hub organization [75, 

76], and global cognitive function may depend on key long distance connections [77, 78, 79] 

and “connector” hubs that communicate between systems [80]. Emotionally, disrupted 

connectivity involving subcortical and frontal are associated with mood and anxiety 

syndromes and symptom profiles [81, 82]. While the number of studies for any specific 
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disorder remains limited, it appears clear that rsfMRI can contribute a network-level 

perspective to characterize features associated with clinical diseases and disorders.

Open frontiers in rsfMRI analysis

With the increase in rsfMRI analysis and its early promise in identifying correlates of 

clinical syndromes and symptoms, it is useful to clarify important theoretical frontiers and 

opportunities. We can potentially make great strides by studying the neural basis of rsfMRI 

graph organization, its theoretical contributions to cognitive and clinical neuroscience, its 

clinical utility, and integration with other techniques.

What does rsfMRI graph organization represent?

It is prudent to reflect on the nature of rsfMRI data to evaluate its epistemological value. 

Because rsfMRI analysis is based on the BOLD signal, there are fundamental limits to its 

neural interpretation from the micro- to macroscale. rsfMRI data are thought to represent 

high and low frequency local field potentials [26]. Beyond hemodynamic responses, how 

can we understand the specific network configurations we observe in healthy brains? The 

fact that rsfMRI topology represents major cognitive systems may have a basis in 

environmental influences over development. There is evidence that rsfMRI network 

organization is a result of experience-dependent plasticity in humans following co-activation 

between brain regions [83]. This feature appears to persist in mature brain networks, where a 

relatively simple connectivity model of activity flow among brain regions predicts network-

level activation [69]. Combined with observations about the neurovascular coupling that 

drives widespread rsfMRI activity, it is speculatively possible that intrinsic network 

organization is truly a robust marker of gross neurocognitive organization within and 

between individuals. This may be why cognitive variability can be associated with intrinsic 

network activity. However, we must still be wary about drawing inferences about any 

specific cognitive activity during any particular scanning session.

One prevailing limitation in many studies is that BOLD-based graph edges are demonstrably 

low-dimensional when computed along entire time series and thus very limited in their 

ability to represent brain interactions [84]. However, time-varying graph [85] and trial-wise 

analysis [86] are promising open areas that may add new dimensions of information to 

potentially link clinical nosology to brain network dynamics (See Fig. 8). As these efforts 

develop, it will remain critical to pair rsfMRI analysis with good experimental designs, 

genetic and environmental analyses, and replication and cross-validation studies.

Adapted from Mattar MG, Betzel RF, Bassett DS. The flexible brain. Brain. 2016;139(8):

2110–2112.

The unique theoretical value of graph theory rsfMRI analysis is at present unknown. Do the 

quantities afforded to us represent something cognitively meaningful in principle? Can they 

provide us theoretical or predictive information we otherwise would not see? It is clear that 

we can continue to study brain organization and dysfunction without using graph theory. It is 

also possible, as it commonly done, to rely heavily on reverse inference [87, 88] to interpret 

the graph statistics we observe and previously known ideas from cognitive neuroscience. To 
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identify specific value of graph theory, we should search for consilience between graph 

theoretic analysis and other neuroscientific approaches [89].

Optimism for clinical identification, prediction, and translation

Nevertheless, cautiously optimistic view of rsfMRI for some clinical purposes is justified if 

we maintain several priorities. The features that distinguish useful clinical research include 

problem base, context placement, information gain, pragmatism, patient centeredness, value 

for money, feasibility, and transparency [90]. Many studies do not satisfy these features and 

fail to provide value because of their design. It has been suggested that a major reform could 

address the forces that drive this problem, and the reader is strongly encouraged to consult 

one particularly incisive perspective [90]. As it stands, careful hypothesis testing for specific 

clinical end-goals should increase in general [90].

Toward applied clinical utility, rsfMRI graph statistics analyzed can be combined with 

machine learning to build models that identify autism [91], Alzheimer’s disease [92, 93], 

schizophrenia [94] depression [95], relative to controls, in some cases with very high 

sensitivity and specificity. In general, the opportunities to apply machine learning to any 

type of neuroimaging data or derived measure are enormous and can provide novel 

observations [96]. The challenge in rsfMRI analysis is that in order to have clinical value, 

these approaches must be valid and replicable, portable to clinical environments, and either 

equally accurate to but cheaper than existing techniques, or demonstrably more accurate.

Integrated multimodal strategies offer potential value for treatment. For example, rsfMRI 

connectivity has been evaluated to guide or predict outcomes in neurosurgical approaches in 

brain injury [97], brain tumors [98], and epilepsy [99], and deep brain stimulation [100]. In 

addition, the effects of noninvasive brain stimulation have been linked to the connectivity 

profiles of intrinsic networks across many diseases. Specifically, suppressive transcranial 

magnetic stimulation (TMS) is effective if the site of stimulation is positively connected with 

the target, whereas facilitative TMS is effective in the opposite case [101]. Importantly, 

rsfMRI graph theoretic analyses have not been systematically linked to brain stimulation 

approaches to provide either neurocognitive criteria (e.g., target brain network states for 

stimulation) or surgical or brain stimulation targeting methods. This is substantial potential 

for development on this front. It is possible that computer simulation models that use 

simplifications of neural dynamics in anatomical networks to predict rsfMRI connectivity 

[102, 103, 104] and the effects of stimulation [105] may contribute to this effort.

Conclusion

Graph theoretic analyses in rsfMRI are becoming a significant tool for describing the human 

brain and characterizing clinical syndromes. It is becoming clear that clinical syndromes are 

marked by dysfunction in major brain networks and distinct hubs in intrinsic functional 

connectivity patterns. The specific contributions of rsfMRI to clinical nosology and 

translation will likely be understood with the benefits of hindsight. At present, our challenge 

is to embrace opportunities to robustly characterize network dysfunction and search for a 

meaningful framework to connect rsfMRI network analysis to clinical practice.
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KEY POINTS

- Graph theory is the mathematical basis of network science and is now widely 

applied to study rsfMRI networks

- Several major themes have emerged in applied rsfMRI graph theoretic 

analysis

- rsfMRI graph theoretic analysis has revealed several key principles of healthy 

and dysfunctional brain network organization

- Open frontiers in rsfMRI graph theoretic analysis include evaluating the 

contributions of graph theory and potential for direct clinical applications
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SYNOPSIS

Graph theoretic analyses applied to examine the brain at rest have played a critical role in 

clarifying the foundations of the brain's intrinsic and task-related activity. There are many 

opportunities for clinical scientists to describe and predict dysfunction using a network 

perspective. This primer describes the theoretical basis and practical application of graph 

theoretic analysis to resting state functional magnetic resonance imaging data. Major 

practices, concepts, and findings are concisely reviewed. The theoretical and practical 

frontiers are highlighted with observations about major avenues for opportunity in 

theoretical development and clinical translation.
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Figure 1. Schematic flow for graph theoretic analysis of rsfMRI data
(A) Nodes are established with a parcellation representing distinct parts of the brain. (B) 
After preprocessing, time series of BOLD measurements from nodes (regions) R1 to RN are 

extracted along time for time points TR1 to TRN. Then (C) then adjacency matrix A can be 

constructed to represent measures of connectivity such as the Pearson’s correlation 

coefficient. Finally (D) we can compute measures representing the role of nodes and edges, 

community organization, and global characteristics of the A matrix.
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Figure 2. Notions of hubs in networks
Provincial hubs are high-degree nodes that primarily connect to nodes in the same module. 

This provincial hub is also a hub of high degree overall because it has a high number of 

connections relative to other nodes in the network and contributes to many paths through the 

network. Connector hubs are high-degree nodes that show a diverse connectivity profile by 

connecting to several different modules within the network (see also [36]).
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Figure 3. Example microscale statistics
The red node in each image denotes the node of interest. (A) A node’s degree is the number 

of edges emanating from a node. (B) The node has a high clustering coefficient because the 

node’s neighbors are also connected to each other. (C) The red node has high betweenness 

centrality because it participates in many paths. In this case, the red node also has high 

eigenvector centrality because it is connected three other nodes with high importance in the 

network. (D) In this illustration, the local efficiency for the node of interest is low because 

few connections exist among the immediate neighbors of the node of interest. (E) The red 

edge has high betweenness centrality because of its position along a high number of paths 

across the network.
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Figure 4. Example mesoscale statistics
(A) A core-periphery organization involves a low number of primary modules (here marked 

by a single module of nodes sharing teal edges) and a number of sparsely connected 

peripheral nodes. (B) In contrast, a modular organization involves a few modules connected 

by a few intermediating nodes. In this example there is a single node that serves as a so-

called “connector hub” between the modules. This network is also assortative because the 

highly connected nodes tend to connect to one another. (C) A disassorative network does not 

exhibit a high degree of connectivity among like nodes, and tends to be non-modular
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Figure 5. Example macroscale statistics
(A) A lattice network is a regular network that has an example of high clustering but a 

relatively long path length. (B) A random network tends to lack distinct modular 

organization but has short path lengths due to random connections across the network. (C) A 

small-world network has both clustering and short path lengths due to the presence of 

clusters and long distance connections.
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Figure 6. Hubs and heirarchy in rsfMRI data
(A) rsfMRI studies report hubs with high density of functional connectivity in the 

precuneus/posterior cingulate cortex, lateral inferior parietal cortex, medial orbitofrontal 

cortex, and medial superior frontal cortex. (B) Step-wise functional connectivity analyses 

reveal a heirarchical progression of edges from primary motor and secondary sensorimotor 

regions to multimodal regions and finally hubs in the cortex. (A) Adapted from Zuo XN, 

Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, et al. Network centrality in the 

human functional connectome. Cerebral cortex. 2012;22(8):1862–1875. (B) Adapted from 

Sepulcre J. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal 

Organization of the Human Brain. Journal of Neuroscience. 2012;32:10649–10661
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Figure 7. Intrinsic brain networks
The network organization of intrinsic fMRI networks forms a mesoscale organization 

replicated in two studies. Top: Colors represent different communities identified with an 

“Infomap” community detection procedure using the boundary map-derived parcels as 

network nodes and an independent sample for cross-validation [12]. Middle: Colors 

represent different communities calculated using every voxel as a network node [29]. 

Bottom: spatial overlap of the two community assignments demonstrate that systems 

demonstrate variable but generally high overlap.

Medaglia Page 25

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Dynamic Network Analysis
(A) The BOLD fMRI signal displays region-specific variability. (B) Windowing time series 

and estimating the functional connectivity (FC) between pairs of regions reveals dynamic FC 

matrices. Each edge describes the statistical relationship (strength of connectivity) between 

two brain regions. The organization of FC matrices changes over time. (C) Dynamic FC 

matrices can be used as input to community detection algorithms to generate estimates of the 

network’s modular structure at each time point. Modules, in this case, refer to collections of 

mutually-correlated brain regions that, as a group, are weakly correlated with the rest of the 

network. We can characterize the dynamics of community structure both in terms of 

individual brain regions and at the level of the whole network with the measure flexibility. 

Network flexibility indicates the extent to which brain regions change their community 

affiliation over time.
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