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Abstract

Objective—To examine the patterns of cause-specific mortality and relationship between internal 

exposure to uranium and specific causes in a pooled cohort of 29,303 workers employed at three 

former uranium enrichment facilities in the United States with follow-up through 2011.

Methods—Cause-specific standardized mortality ratios (SMRs) for the full cohort were 

calculated with the U.S. population as referent. Internal comparison of the dose-response relation 

between selected outcomes and estimated organ doses was evaluated using regression models.

Results—External comparison with the U.S. population showed significantly lower SMRs in 

most diseases in the pooled cohort. Internal comparison showed positive associations of absorbed 

organ doses with multiple myeloma, and to a lesser degree with kidney cancer.

Conclusion—In general, these gaseous diffusion plant workers had significantly lower SMRs 

than the U.S. population. The internal comparison however, showed associations between internal 

organ doses and diseases associated with uranium exposure in previous studies.
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INTRODUCTION

Commercial nuclear power production in the United States is currently experiencing 

resurgence with associated expansion in commercial fuel cycle industries including mining, 

milling, uranium enrichment, and fuel fabrication. Operation of these fuel cycle facilities 

presents a potential for worker exposures to various uranium compounds that are known or 

suspected to cause adverse human health effects. The purpose of this study was to examine 

the patterns of cause-specific mortality in a pooled cohort of workers employed at three 

former uranium enrichment facilities in the United States. All three facilities were gaseous 

diffusion plants (GDP) with various years in operation beginning in the 1940s [Anderson 

and Apostoaei, 2015]: the Oak Ridge Gaseous Diffusion Plant (also known as K-25) in Oak 

Ridge, Tennessee (TN), the Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio 

(OH), and the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky (KY).

The process of uranium enrichment is described in Anderson and Apostoaei [2015]. The 

primary chemical form of uranium used in gaseous diffusion is uranium hexafluoride (UF6), 

which does not react with oxygen, nitrogen, carbon dioxide, or dry air. UF6 does react 

violently with water or moisture in the atmosphere, resulting in uranyl fluoride (UO2F2), a 

soluble uranium compound and the primary exposure of interest in this study. Internally 

deposited uranium accumulates primarily in the kidneys and skeleton when soluble 

compounds are inhaled, whereas insoluble forms are retained in the lung [Eidson, 1994]. 

Compared with other ionizing radiation sources, the available epidemiologic research on the 

health effects of uranium is sparse and study findings are inconsistent. A few studies have 

found significant increases in the risk of respiratory tract and hematopoietic cancers in 

workers exposed internally to uranium [Dupree et al., 1987; Ritz et al., 2000; Pinkerton et 

al., 2004; Canu et al., 2008]. A recently published study of the French uranium enrichment 

cohort found these workers healthier than the general population with substantially lower 

mortality rates for call causes and all cancers. The only significant excess in mortality was 

reported for pleural cancer but based on only nine deaths [Zhivin et al., 2016]. The 

variability in the reported risks associated with internal uranium exposure is largely due to 

several limitations, including low statistical power due to smaller cohort size of shorter 

follow-up period, and imprecise methods of internal exposure assessment. Furthermore, few 

studies have focused on a specific stage of the fuel cycle (e.g., uranium enrichment), and 

those that have not are subject to the effects of the variability in organ doses per unit intake 

resulting from exposures to differing uranium compounds [Canu et al., 2008; Zhivin et al., 

2014].

Previous analyses have been conducted for the K-25, PORTS, and PGDP workers included 

in the current study. A case-control study of 581 workers at K-25 found a small but 

statistically significant elevation in risk of mortality from multiple myeloma [Yiin et al., 
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2009]. That study showed a weak association of multiple myeloma and absorbed bone 

marrow dose from internal exposure to uranium. The National Institute for Occupational 

Safety and Health (NIOSH) performed a mortality study of a cohort of workers at PORTS 

which included 8,877 workers employed for at least one day between September 1, 1954 and 

December 31, 1991. Vital status of that cohort was ascertained through December 31, 1991, 

at which time approximately 88% of the cohort was still alive. The study found no 

statistically significant excess in cause-specific mortality, although there was a non-

significant excess of mortality from stomach cancer [NIOSH, 2001]. Another recently 

completed mortality study of workers at PGDP reported modest excess mortality from 

lymphatic and hematopoietic cancers, although standardized mortality ratios (SMRs) were 

not statistically significant [Chan et al., 2010].

The current study examines the patterns of cause-specific mortality with extended vital 

status follow-up and combined cohorts to increase statistical power. In addition to external 

comparisons using SMRs, the dose–response relationship within the study population was 

examined using regression models between mortality of selected outcomes and our main 

exposure of interest, the individual absorbed organ dose from internally deposited soluble 

uranium. The potential impact of external radiation exposure including work-related medical 

X-ray examinations on the estimates of internal uranium exposure was also investigated. The 

non-radiological exposures in GDP under consideration included in the study were nickel 

and trichloroethylene (TCE).

METHODS

Study Cohort

The study subjects were drawn from a pooled cohort of production workers from the three 

uranium enrichment facilities. Eligible workers were limited to those who worked for at 

least 1 year continuously at K-25 between January 1, 1948 and December 31, 1985, PORTS 

between March 1, 1956 and May 31, 2001, or PGDP between September 1, 1952 and 

December 31, 2003. The beginning dates of eligibility represent the start of operations for 

PORTS and PGDP. K-25 facility construction continued concurrently with operations into 

the late 1940s. During this time, K-25 workers comprised a mixture of process and 

construction workers that was difficult to disentangle. To limit recruitment to uranium 

workers, we set the employment year ahead to 1948, which essentially excluded 

approximately 60% of short-term and construction workers who left K-25 employment at 

the end of major facility construction.

Vital status was updated through 2011 using the National Death Index, Social Security 

Administration mortality database, and Internal Revenue Service records. Underlying cause 

of death information was coded according to the International Classification of Diseases 

revision in effect at the time of death.

Internal Uranium Exposure

A detailed description of the methods is found in the paper by Anderson et al. [2016]. 

Briefly, uranium gravimetric and radioactivity concentration for >600,000 urine samples was 
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abstracted from facility bioassay records. Department- and facility-specific enrichment 

levels were estimated using the ratio of activity concentration to gravimetric concentration 

and department numbers reported for each urine sample. Novel methods were used to 

estimate effective enrichment to which each individual worker was chronically exposed by 

combining department numbers from work history records with department- and facility-

specific enrichments. Gravimetric uranium concentration (in mg L−1) for each urine sample 

was converted to 24-hr activity excretion (becquerel (Bq) d−1) by multiplying the by the 24-

hr urinary excretion rate (1.6 L d−1) and the department- or facility-specific uranium specific 

activity. For each study subject with at least one positive bioassay sample (i.e., greater than 

the facility detection limit or administrative limit, L), data points recorded as zero or less 

than L were assigned an imputed value, GM:

where GM represents the geometric mean of the distribution of urine samples below L and f 

is the fraction of samples below L [Anderson and Apostoaei, 2015]. Bioassay data were 

imputed for study subjects with no reported data using department-specific uranium 

concentration combined with department numbers from each individual’s work history. 

Study subjects with all bioassay data points reported or imputed as zero or below the 

detection level and who had worked in jobs with uranium exposure potential, or who had no 

reported bioassay data and worked in jobs with no uranium exposure potential, were 

assumed to be unexposed and assigned intakes and doses of zero. Reported and imputed 

bioassay data were used to calculate intakes assuming a chronic exposure to a 5-μm activity 

median aerodynamic diameter aerosol of a soluble uranium compound (Absorption Type F). 

The intakes were then used in combination with the effective enrichment to calculate 

absorbed organ doses to the lungs, bone surface, red bone marrow, kidneys, and liver, which 

were selected a priori because of the tendency for these organs to take up uranium. Annual 

absorbed organ doses were calculated and accumulated for each worker until the date of last 

observation (i.e., date of death, date lost to follow-up, or the study end date of December 31, 

2011).

Ionizing Radiation Exposure from External Sources

Workers had a risk of exposure to external ionizing radiation due to relatively low-level 

radioactive emissions associated with uranium products and wastes in contaminated 

equipment and systems. Measurements obtained from personal monitors (i.e., film badges 

and thermoluminescent dosimeters) were abstracted from facility records, the U.S. 

Department of Energy’s (DOE) Radiation Exposure Monitoring System, the Nuclear 

Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System, 

and previous study records. Potentially overlapping information was resolved by manual 

review, with preference given to facility records, followed by national dose registries, and 

then other sources such as previous study records. Monitoring protocols, work history 

information (job titles and departments), and exposure distributions among monitored 

workers were used to create job-exposure matrices for estimating exposures during periods 

of incomplete personal monitoring. Records of positive neutron and tritium exposures were 

available for a small number of subjects. However, this information was not included in 
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analyses because the contribution to total dose was negligible. Given low linear energy 

transfer (low-LET) radiations, external exposure values were considered reasonable 

approximations of personal dose equivalent. These doses were further adjusted using 

International Commission on Radiological Protection conversion coefficients [Petoussi-

Henss et al., 2010] to produce final estimates of absorbed dose to organs of interest (i.e., 

lungs, bone surface, red bone marrow, kidneys, and liver).

Work-Related Medical X-Rays

Routine physical examinations that included stereo photofluorographic posterior-to-anterior 

chest X-rays were performed at K-25 from mid-1945 through 1956 [Yiin et al., 2009]. Chest 

photofluorography was common in this period as a means of tuberculosis screening. These 

exams were a condition of employment and the dose received as a result of these exams was 

non-trivial relative to other occupational dose from other sources. Therefore, organ doses 

were estimated using methods similar to those described in Anderson and Daniels [2006]. 

Briefly, dose per procedure was calculated for each organ of interest and were assigned to 

K-25 study subjects on their hire date (pre-employment screening) and once every year 

thereafter from 1945 through 1956. The exposure from X-ray examinations was then added 

to the external radiation dose estimates. Records suggest that photofluorographic X-ray 

examinations were rarely used at PORTS or PGDP, so no doses were assigned for 

employment at those facilities.

Non-Radiological Exposure

Due to the nickel content of gaseous diffusion process equipment and piping, and the 

historic use of TCE as a degreasing agent for this equipment, these two chemicals were 

selected for exposure assessment. The exothermic reaction requires that UF6 be handled in 

leak-tight containers and processing equipment to prevent reaction with water vapor in air. 

The corrosive effects of UF6 require that certain non-reactive metals be used in gaseous 

diffusion plant processing equipment. Nickel is primarily used to form alloys which are 

corrosion and heat resistant [ATSDR, 2005]. TCE is used primarily as a solvent for 

degreasing metal parts, although it is also a component in paint thinners and adhesives 

[ATSDR, 1997].

A modified job-exposure matrix approach that incorporated available chemical hazard 

information to link study subjects with historic potential for nickel and TCE exposure was 

the basis of the chemical exposure assessment. The exposure matrix included a factor based 

on professional judgement that represented an estimate of the exposed fraction of time per 

day for each unique department number and job title combination, ranging from 

administrative titles assigned a factor of zero, to workers performing the exposure activity 

assigned a factor of one. An algorithm was developed to calculate modified cumulative 

exposure duration (days) for nickel and TCE for each study subject as follows:
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where: D is the number of days the subject worked in a department associated with an 

exposure activity work area i, during work history period j; f is a factor representing the 

relative fraction of time/day the subject spent in the exposure activity work area i, during 

work history period j.

For this study, the modified cumulative exposure duration provided a relative measure of 

exposure to nickel and TCE for each study subject being evaluated. As a semi-quantitative 

estimate, these durations are not comparable to any absolute exposure values or occupational 

health limits. Workers not employed in an exposure-associated department during their 

tenure at these facilities were considered unexposed.

Statistical Analysis

The NIOSH Life Table Analysis System (LTAS.NET) was used to calculate SMRs with the 

U.S. rates as referent. Observed deaths were classified into 1 of 92 cause-of-death categories 

[Robinson et al., 2006]. The expected numbers of deaths were estimated for all-deaths 

combined, all-cancer deaths combined, and each cause-specific death category as the 

product of U.S. population death rates and the person years at risk of dying (PYARS) in 

strata of sex, race (White, others), age (15–19, … 85+ years in 5-year categories), and 

calendar time (in 5-year periods starting with 1940–44) [Schubauer-Berigan et al., 2011]. 

Observed deaths and PYARS were accumulated from the date of cohort inclusion through 

the end of the study (December 31, 2011), date last observed, or the date of death, whichever 

occurred first. Numbers of deaths observed for each cause were divided by the expected 

number of deaths to calculate standardized mortality ratios. Two-sided 95% confidence 

intervals (CI) were calculated as described elsewhere [Steenland et al., 1990]. A sensitivity 

analysis was conducted to generate SMRs based on state general population mortality rates 

(TN for K-25, Ohio for PORTS, and Kentucky for PGDP, and three states combined for the 

pooled cohort).

For internal comparisons, regression models were used to evaluate the relation between 

selected outcomes and estimated internal organ doses. The a priori outcomes of interest 

included lung cancer [Checkoway et al., 1988; Dupree et al., 1995; Loomis and Wolf, 1996], 

kidney, and bone cancers where internally deposited uranium primarily accumulates 

[Eidson, 1994], hematopoietic cancers (non-Hodgkin lymphoma (NHL), leukemia, and 

multiple myeloma) [Ritz et al., 2000; Pinkerton et al., 2004; Yiin et al., 2009] and non-

malignant respiratory disease [Pinkerton et al., 2004]. Additionally, because the kidney is a 

uranium target organ, chronic and unspecified nephritis and renal disease (minor 70 as 

defined in NIOSH-92 rate file [NIOSH, 2013]) was investigated. Diseases with significant 

excess in SMRs were also explored further.

For each selected outcome, risk sets were drawn from the study cohort using incidence 

density matching on gender, race, attained age, birth date (within 5 years) of the case, and 

plant [Beaumont et al., 1989; Langholz and Goldstein, 1996]. General relative risk models 

using methods analogous to the Cox proportional hazards analysis were developed [Callas et 

al., 1998; Langholz and Richardson 2010]. A linear excess relative risk (ERR) model was 

used to describe the effects of internal soluble uranium exposure as it is preferred in 

radiation research. ERR per milligray (mGy) of absorbed internal organ dose and 
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corresponding 95% profile likelihood-based CI were derived with restriction to workers with 

less than the 95th percentile of exposure. Risk heterogeneity by facility was examined by 

likelihood ratio test. A lag discounting exposures 10 years prior to attained age was used, 

although analyses with a 5- and 15-year lags were also conducted to explore the effect of 

latency periods between exposure and mortality. Dose–response was also explored using 

categorical models with the non-exposed after lagging as reference (Q1). Cut-points for the 

exposed were selected by dividing the deceased with positive cumulative internal organ dose 

estimates into three groups (Q2, Q3, and Q4) with an approximately equal number of 

observed deaths in each group. The impact of potential confounders such as external 

radiation with or without X-ray, nickel, TCE, and employment duration was investigated by 

including one covariate at a time in the model and examining the percent change relative to 

the width of the confidence interval. All regression modeling analyses on internal 

comparisons were conducted using SAS software [SAS Institute Inc., 2002–2010].

RESULTS

The study included 29,303 eligible workers who worked for at least 1 year continuously 

within the specified time periods at the three uranium enrichment facilities. A primary site 

was associated with a worker in which he or she became eligible (i.e., the facility where the 

worker first worked 1 or more years continuously within the eligibility period). Most 

workers (72%) worked at only one of these facilities and 23% worked at K-25 and 

surrounding sites. The cohort is predominantly male (81%) and White (93%). A total of 

1,099,370 person-years were accumulated: 655,550 from 16,978 K-25 workers, 251,201 

from 6,935 PORTS workers, and 192,619 from 5,390 PGDP workers. Less than 0.1% of the 

total person-years from 17 workers were lost to follow-up. Males contributed 81% of the 

person-years and Whites 94%, similar to the proportions of male and White workers in the 

cohort. Over half of the workers were hired in their 20s (54%) and the mean age at hire was 

29.2 years. The years of hire varied among facilities due to differences in facility operations. 

The mean duration of employment ranged from 11.6 years at PORTS to 15.1 years at K-25. 

Approximately, 45% (n = 13,267) of the cohort was deceased. Because K-25 was an older 

facility with more early years in operation, more deaths were observed for those workers 

(52%) than those at the other two facilities (35–36%) (Table I).

Bioassay data were available for 58% of the cohort and were imputed for an additional 33%. 

The remaining 9% had no reported data. Approximately 29% of the cohort was considered 

to be unexposed because of bioassay data reported or imputed to be zero or less than the 

facility administrative limit or because of a combination of work history and no reported or 

imputed data. Estimated internal organ doses were highest in bone surface with mean of 2.4 

mGy and lowest in lungs with mean of 0.07 mGy. All internal organ doses were highest 

among K-25 workers likely due to earliest operation and longest duration (Table II). Overall 

the doses were low but not unexpected compared to exposure at other facilities. For 

example, median organ absorbed doses estimated were 0.053, 0.0015, and 0.0044 mGy for 

lung, red bone marrow, and kidney, respectively for the Fernald cohort [Anderson et al., 

2012]. The median lung, red bone marrow, and kidney organ absorbed doses, respectively in 

our cohort were 0.0204, 0.0878, and 0.2995 mGy. The average cumulative external dose 

ranged from 13 mGy in kidneys to 40 mGy in lungs. External dose were also highest among 
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K-25 workers due to dose from work-related medical X-ray examinations administered as a 

condition of work in the early years, and lowest among PORTS workers, which did not have 

significant exposures from work-related medical X-rays.

Correlation analysis showed that employment duration was weakly to moderately associated 

with estimated internal organ doses, while the association with estimated external organ 

doses was marginally stronger. It was expected as external organ doses for most workers 

were mainly based on work history/employment duration, while internal doses were 

accumulated beyond last employment date until the last observation date of each study 

subject. There was no association between internal dose estimates and X-ray among K-25 

workers.

Nickel and TCE exposure duration-days were estimated but only a limited number of 

workers were exposed. In correlation analysis, nickel and TCE, whether treated 

dichotomously or as continuous variables representing exposure-days, were poorly 

correlated with internal organ dose and were thus unlikely to confound radiation effects in 

this study.

SMR Analysis

These gaseous diffusion plant workers had significantly decreased mortality from all-causes 

(SMR=0.83, 95%CI 0.82–0.85, n = 13,267) as well as from all-cancers (SMR = 0.87, 

95%CI 0.84–0.90, n=3,530) and from various cancers comparing to the U.S. population 

referent (Table III). For the a priori outcomes, kidney (SMR=1.10, 95%CI 0.90–1.32, n = 

110) and bone cancers (SMR= 1.23, 95%CI 0.61–2.20, n = 11) were slightly but not 

statistically elevated. There was significantly decreased mortality from lung cancer (SMR = 

0.88, 95%CI 0.83–0.94, n=1,172) and diseases of the respiratory system (SMR 0.85, 95%CI 

0.80–0.90, n = 1,194). Mortality from hematopoietic cancers (SMR = 0.91, 95%CI 0.82–

1.01, n=362) including multiple myeloma (SMR = 0.98, 95%CI 0.77–1.24, n=69) were non-

significantly decreased. In addition to non-malignant respiratory diseases including chronic 

obstructive pulmonary disease (COPD; SMR = 0.83, 95%CI 0.77–0.90, n = 634), mortality 

was also significantly decreased in other outcomes that may be related to healthy worker 

selection and survivor effects, such as diabetes mellitus (SMR=0.76, 95% CI 0.67–0.86, n = 

277), diseases of the heart (SMR= 0.81, 95%CI 0.78–0.83, n=4,247) including ischemic 

heart disease (SMR = 0.83, 95%CI 0.80–0.86, n=3,488), cerebrovascular disease (SMR = 

0.86, 95%CI 0.80–0.92, n = 746), and alcoholism (SMR = 0.38, 95%CI 0.24–0.57, n = 23). 

Mortality from diseases of the digestive system (SMR = 0.64, 95%CI 0.58–0.70, n=412) and 

genitourinary system (SMR=0.81, 95%CI 0.71–0.92, n=234) was also significantly lower 

than that of the U.S. population. The only significant elevation in disease-specific mortality 

observed in the cohort was malignant mesothelioma with 25 deaths (SMR = 2.21, 95%CI 

1.43–3.27).

Mortality results based on the combined three-state (TN, OH, and KY) population mortality 

rates for the full cohort are shown in Supplemental Table SI, and for each facility in Tables 

SII–IV. Results for all-cause, all-cancer, and cause-specific diseases in general followed the 

same pattern of those based on U.S. mortality rates, in terms of direction and significance. 

Using corresponding state rates as reference, all-cause and all-cancer mortality in each 
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facility remained significantly lower than that in the state population. Kidney cancer was 

statistically significantly higher at K-25 (SMR = 1.30, 95%CI 1.03–1.61, n = 82), 

significantly lower at PORTS (SMR = 0.48, 95%CI 0.24–0.85, n=11), and at the population 

level at PGDP (SMR=0.95, 95%CI 0.55–1.52, n = 17). Mesothelioma was statistically 

significantly higher at K-25 (SMR = 3.02, 95%CI 1.73–4.91, n = 16) and non-significantly 

higher at the other two facilities (SMR 2.27 and n = 7 at PORTS and SMR=1.33 and n= 2 at 

PGDP with 95%CI including one at both sites). The SMR for symptoms and ill-defined 

conditions was significantly elevated (SMR = 1.45, 95%CI 1.27–1.65, n = 234) with U.S. 

rates but became non-significant (SMR = 1.03, 95%CI 0.90–1.17) with combined state rates. 

As this category is reserved for coding non-specific causes of death listed on the death 

certificate, it suggests that the increased SMR is likely due to an increased number of earlier 

unattended deaths among K-25 workers who resided in a predominantly rural area of 

Tennessee.

Exposure-Response Analysis

Table IV shows the exposure-response of selected mortality and absorbed organ dose from 

internally deposited soluble uranium with a 10-year lag. The categorical model included full 

cohort, but the ERR estimates included workers with less than the 95th percentile of 

exposure to avoid underestimating risk at the lower doses. Each of the exposed categories 

showed elevated risk compared to the non-exposed (baseline) for lung cancer, kidney cancer, 

mesothelioma, leukemia, and chronic and unspecified nephritis and renal failure in the 

categorical model. The workers in the highest internal red bone marrow dose category had 

significantly higher risk for multiple myeloma than those with no exposure. The ERR 

models show positive non-significant associations between internal absorbed organ doses 

and mortality of kidney cancer, mesothelioma, hematopoietic cancers, leukemia, and chronic 

and unspecified nephritis and renal failure. The ERR estimates were almost zero for 

respiratory diseases and non-significantly negative for lung cancer, NHL, and COPD. The 

association between internal red bone marrow dose and multiple myeloma mortality was 

statistically significant with ERR of 2.92 (95%CI 0.51–7.86) per mGy of exposure, and 

there was no evidence of heterogeneity among facilities (P=0.46).

The impact of potential confounders was investigated by the percent change relative to the 

width of the confidence interval. Employment duration had more impact (72–79% change) 

for respiratory diseases and COPD but less (up to 33% change) on other a priori outcomes. 

For external radiation with or without X-ray, the impact was minimal with the largest 

changes of 26% on COPD and 18–23% on kidney cancer. The changes were smaller or not 

calculable for nickel and TCE.

Analyses with 5- and 15-year lags had similar findings with a 10-year lag, with each of the 

exposed categories showing elevated risk compared to the non-exposed for lung cancer, 

kidney cancer, mesothelioma, and chronic and unspecified nephritis and renal failure in the 

categorical model (Supplemental Tables SV–VI). The results also show elevated risk in 

every exposed category for bone cancer, hematopoietic cancers, and multiple myeloma with 

positive ERR estimates with a 15-year lag and for leukemia with a 5-year lag. The models 

with a 10-year lag fit best for lung cancer, kidney cancer, leukemia, respiratory diseases, and 
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chronic and unspecified nephritis and renal failure, while those with a 15-year lag best for 

NHL, COPD, and mesothelioma, and 5-year lag for bone cancer, hematopoietic cancers, and 

multiple myeloma. The difference in fit statistics among models with various lags; however, 

are small (0.16–2.45) and not statistically significant. The association between internal red 

bone marrow dose and multiple myeloma mortality remained positive and statistically 

significant with either a 5- or 15-year lag and the ERR estimates increase with longer lag. 

The impact of potential confounders using a 15-year lag was similar to that using a 10-year 

lag for mortality with positive ERR estimates.

DISCUSSION

The NRC currently regulates 14 uranium fuel cycle facilities, including uranium enrichment 

facilities, in 10 states [NRC, 2011]. This study examined the patterns of cause-specific 

mortality in a pooled cohort of workers employed at three previously studied uranium 

enrichment facilities in the United States. This study was designed to overcome the common 

limitations encountered in past studies of health effects in uranium workers by assembling a 

large pooled cohort of workers for increased power, focusing on one stage of the uranium 

fuel production cycle, and improving the assessment of internal uranium exposure by 

calculating organ absorbed dose from urinary uranium results.

Our results from external comparisons were similar to those reported in previous studies of 

the PORTS [NIOSH, 2001] and PGDP [Chan et al., 2010] cohorts, as well as the French 

uranium enrichment workers in terms of lower mortality than the reference population 

[Zhivin et al., 2016]. Deficits in mortality risk were observed for most outcomes in our 

cohort, the strongest of which were for outcomes most associated with lifestyle factors. 

Therefore, there is substantial evidence of healthy worker effects. Deficits were also 

observed among most a priori outcomes. However, there was evidence of modest excess 

mortality from cancers of the kidney and bone compared to the U.S. population. Examining 

individual facilities, the kidney cancer mortality was statistically significantly elevated in 

K-25, but not in the other two facilities. Heterogeneity tests also show significant differences 

in kidney cancer mortality among facilities (P < 0.01). The causes of facility differences are 

unknown; however, we note that estimated kidney doses were highest among K-25 workers 

compared to others.

The French uranium enrichment cohort reported a near twofold increase (SMR=1.9) in 

mesothelioma mortality compared to the French general population [Zhivin et al., 2016]. We 

also observed a twofold increase in malignant mesothelioma mortality compared with the 

U.S. population. The SMRs differed among facilities, which corresponded to differing 

follow-up times (35 years at K-25 with SMR of 3.02, 31 years at PORTS with SMR of 2.27 

and 24 years at PGDP with SMR of 1.33). Malignant mesothelioma is primarily attributable 

to asbestos exposure and has extremely long latency [Mossman and Gee, 1989; Burdorf et 

al., 2003]. McGeoghegan and Binks [2000] previously reported strong relationship between 

exposure to asbestos and risk of mesothelioma among uranium enrichment workers. The 

longer follow-up time may partially explain higher mesothelioma mortality at K-25 and 

PORTS. A study of construction and craft workers intermittently employed by 

subcontractors at the DOE sites that included the three GDP sites in our study found 
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significantly elevated SMRs for mesothelioma [Ringen et al., 2015]. Similar results have 

been reported elsewhere [Tsai et al., 1996]. Evidence suggests that the association of 

mesothelioma with work involving certain mineral species of asbestos (e.g., crocidolite and 

amosite) is far greater than with other species (e.g., chrysotile) [ACGIH, 2001]. Large 

amounts of asbestos-containing-materials were installed at these GDP production facilities 

during construction and work was likely performed by subcontracted workers. Subsequent 

facility additions, upgrades and removals also likely involved installation and/ or handling of 

asbestos-containing-material. Some work activities (e.g., routine maintenance and repair 

work on asbestos-containing-materials in process systems, equipment and facilities) were 

performed during all of the years of GDP site operations and these activities would likely 

have involved workers included in this study.

We found a significantly positive association between absorbed dose from internal uranium 

deposition and multiple myeloma mortality in these workers. This finding is consistent with 

the study by Yiin et al. [2009], who previously reported a weak association between multiple 

myeloma and internal absorbed bone marrow dose among K-25 workers. Other studies with 

internal exposure; however, found no excess mortality from multiple myeloma [Faber, 1979; 

Stebbings et al., 1984]. We also found positive but not statistically significant dose–response 

relation for kidney cancer and chronic nephritis and renal failure, conditions associated with 

exposure to soluble uranium [Leggett, 1989]. Additionally the associations between 

absorbed doses and hematopoietic cancers and mesothelioma mortality were also positive 

but non-significant.

Exposure to nickel via inhalation has been shown to increase risk of lung and nasal cancer in 

cohorts of nickel refinery workers [Doll et al., 1977; Enterline and Marsh, 1982; Andersen et 

al., 1996; Anttila et al., 1998; Grimsrud et al., 2003]. However, studies of other nickel 

workers, such as those employed in mining and smelting [Shannon et al., 1984; Shannon et 

al., 1991], and nickel-alloy [Enterline and Marsh, 1982] and barrier production facilities 

[Godbold and Tompkins, 1979; Cragle et al., 1984] have found no significant increases in 

respiratory tract cancers. Exposure to TCE can occur through inhalation, ingestion, or 

absorption through skin. Several studies of workers occupationally exposed to TCE have 

suggested increased risk of mortality from multiple myeloma, NHL, kidney, and liver cancer 

[Axelson et al., 1978; Shindell and Ulrich, 1985; Spirtas et al., 1991; Axelson et al., 1994; 

Lipworth et al., 2011; Scott and Jinot, 2011]. The International Agency for Research on 

Cancer (IARC) classifies TCE as a probable human carcinogen (Group 2A) based on limited 

evidence in humans and sufficient evidence in experimental animals for the carcinogenicity 

of TCE [IARC, 1995]. In the current study, there were limited workers with estimated nickel 

and TCE exposure and these non-radiological chemicals were too poorly correlated with 

internal organ dose to confound radiation effects.

Exposure to hydrofluoric acid was a unique exposure at all three sites. An exposure 

assessment; however, was determined to not be feasible. It was not performed for the 

following reasons to avoid the likelihood of large potential for misclassification: (i) work 

history data (e.g., department-job) could not be clearly associated with processes with 

potential for hydrofluoric acid exposure to allow identification or meaningful categorization 

of potentially exposed workers; (ii) industrial hygiene air monitoring results for hydrofluoric 
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acid were very sparse; and (iii) industrial hygiene air monitoring results for fluoride, and 

urine bioassay results for fluoride were available but could not be used to distinguish 

hydrofluoric acid exposure from other fluoride exposures, which were more common at the 

GDP sites. Workers with potential for uranium exposure generally also had potential for 

exposure to fluorine-containing compounds that occurred at the GDP sites. As sufficient data 

were not available to categorize and assess workers’ exposure potential to specific fluorine-

containing compounds (i.e., those which have the potential to result in acid gas exposure—

e.g., hydrofluoric acid, hydrogen fluoride gas, and fluorine gas), this limited the ability to 

evaluate any possible effects of these compounds on respiratory system or related mortality 

outcomes.

Asbestos was not identified a priori as an important exposure agent so asbestos exposure 

was not assessed. In retrospect, the lack of asbestos exposure data was a limitation in our 

study as the SMR for mesothelioma was elevated. The asbestos literature is extensive and 

any future GDP asbestos exposure assessment should consider the potential for exposure to 

the individual mineral species of asbestos that have been associated with mesothelioma (e.g., 

crocidolite and amosite) [ACGIH, 2001].

Internal exposures to uranium from employment at facilities not recorded in the work history 

were not quantified which may impact the results. Also, significant uncertainty is associated 

with intake and dose calculations [Anderson et al., 2016] which are not accounted for in the 

epidemiological analyses. The largest sources of uncertainty in the intake calculations are 

due to variation in the enrichment of uranium to which the workers are exposed and inter- 

and intra-individual variability in 24-hr urine excretion by volume. Particle size and 

solubility contribute to uncertainty to a lesser extent.

Although, our internal and external dose estimates improved the dose–response analysis, 

major factors to cancer risk such as family history of cancer, socioeconomic status, and 

lifestyle factors such as diet, smoking, and alcohol consumption, were still lacking. 

Additionally, because of better diagnostic capability and medical treatment, the survivability 

of many cancers has improved. Therefore, a cancer incidence study in this pooled cohort is 

underway to evaluate health effects in this cohort not revealed in the mortality analysis.

CONCLUSION

We pooled information from previously studied uranium worker cohorts and extended 

follow-up to examine mortality patterns in the largest group of uranium enrichment workers 

assembled. Despite evidence of strong “healthy worker effects,” there was weak evidence 

suggesting excess mortality from kidney and bone cancers in these workers compared to the 

U.S. population. Furthermore, positive but not statistically significant dose–response 

relations between absorbed kidney dose from internally deposited soluble uranium and 

kidney cancer and chronic non-malignant kidney diseases were observed. We also observed 

statistically significantly positive association between red bone marrow dose and multiple 

myeloma. These findings improve our understanding of the relationship between protracted 

exposures to uranium compounds and cancer. Continued follow-up of these uranium cohorts 
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may help to clarify exposure-response relationships and thus be useful in evaluating current 

levels of protection for workers in the uranium fuel cycle.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TABLE I

Demographics of Gaseous Diffusion Plant Workers With Follow-Up Through December 31, 2011

Primary site

K-25 PORTS PGDP All sites

Characteristics n (%) or Mean (SD) n (%) or Mean (SD) n (%) or Mean (SD) n (%) or Mean (SD)

Sex

 Male 13,529 (80%) 5,772 (83%) 4,450 (83%) 23,751 (81%)

 Female 3,449 (20%) 1,163 (17%) 940 (17%) 5,552 (19%)

Race

 White 15,931 (94%) 6,489 (94%) 4,861 (90%) 27,281 (93%)

 Other race 1,046 (6%) 441 (6%) 529 (10%) 2,016 (7%)

 Unknowna 1 (0%) 5 (0%) 0 (0%) 6 (0%)

Age at hire

 <20 1,682 (10%) 663 (10%) 273 (5%) 2,618 (9%)

 20 to <25 5,023 (30%) 2,074 (30%) 1,653 (31%) 8,750 (30%)

 25 to <30 4,090 (24%) 1,610 (23%) 1,469 (27%) 7,169 (24%)

 30 to <35 2,523 (15%) 1,063 (15%) 855 (16%) 4,441 (15%)

 35 to <40 1,571 (9%) 718 (10%) 505 (9%) 2,794 (10%)

 40 to <50 1,613 (10%) 601 (9%) 492 (9%) 2,706 (9%)

 50+ 476 (3%) 206 (3%) 143 (3%) 825 (3%)

Age at hire (years) 29.1 (8.5) 29.2 (8.5) 29.5 (8.1) 29.2 (8.4)

Year of hire

 <1950 5,656 (33%) 60 (1%) 2 (0%) 5,718 (20%)

 1950–1959 4,133 (24%) 2,787 (40%) 2,102 (39%) 9,022 (31%)

 1960–1969 1,750 (10%) 341 (5%) 372 (7%) 2,463 (8%)

 1970–1979 4,913 (29%) 2,427 (35%) 1,793 (33%) 9,133 (31%)

 1980+ 526 (3%) 1,320 (19%) 1,121 (21%) 2,967 (10%)

Duration of employment (years) 15.1 (11.1) 11.6 (9.8) 13.3 (10.7) 13.9 (10.8)

Age at last follow-up (years)b 70.6 (12.1) 67.1 (12.3) 66.2 (13.1) 69.0 (12.5)

Vital status (as of 12/31/2011)

 Alive 8,087 (48%) 4,458 (64%) 3,491 (65%) 16,036 (55%)

 Deceased 8,891 (52%) 2,477 (36%) 1,899 (35%) 13,267 (45%)

K-25, Oak Ridge gaseous diffusion plant, Tennessee; PORTS, Portsmouth gaseous diffusion plant in Piketon, Ohio; PGDP, Paducah gaseous 
diffusion plant, Kentucky; SD, standard deviation.

a
Assigned to White in analyses.

b
Age at lost to follow-up, death or study end, whichever is the earliest.
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TABLE II

Exposure Estimate Summary Statistics:Mean (Standard Deviation)

Primary site

K-25 PORTS PGDP All sites

Exposure estimate n =16,978 n = 6,935 n = 5,390 n = 29,303

Internal uranium absorbed organ dose (mGy)

 Lungs 0.10 (0.78) 0.02 (0.12) 0.05 (0.12) 0.07 (0.60)

 Bone surface 3.22 (22.7) 0.82 (4.34) 1.68 (3.86) 2.37 (17.5)

 Red bone marrow 0.38 (2.63) 0.09 (0.49) 0.20 (0.47) 0.28 (2.03)

 Kidneys 1.28 (8.50) 0.33 (1.79) 0.69 (1.57) 0.95 (6.57)

 Liver 0.44 (3.12) 0.11 (0.61) 0.23 (0.53) 0.33 (2.41)

External organ dose (mGy)a

 Lungs  67 (73)/4.8 (16) 2.6 (5.3) 5.7 (15)  40 (64)/4.5 (14)

 Bone surface  58 (64)/5.4 (18) 3.0 (5.9) 6.4 (16)  35 (56)/5.0 (16)

 Red bone marrow  25 (29)/4.8 (16) 2.6 (5.3) 5.7 (15)  16 (25)/4.5 (14)

 Kidneys  21 (24)/3.8 (12) 2.1 (4.1) 4.5 (11)  13 (21)/3.5 (11)

 Liver  26 (30)/4.5 (15) 2.5 (5.0) 5.4 (14)  17 (26)/4.2 (13)

Nickel (Exposure duration—days)

821 (1717) 651 (1479) 549 (1712) 731 (1666)

Trichloroethylene (Exposure duration—days)

419 (1247) 238 (761) 464 (1298) 385 (1164)

K-25, Oak Ridge gaseous diffusion plant, Tennessee; PORTS: Portsmouth gaseous diffusion plant in Piketon, Ohio; PGDP, Paducah gaseous 
diffusion plant, Kentucky; mGy, milligray.

a
External organ dose including gamma radiation, and for K-25 and all sites, with or without exposure to X-radiation from work-required 

photofluorographic chest X-rays.
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TABLE III

Select Mortality Among Gaseous Diffusion Plant Workers With Follow-Up Through December 31, 2011 

Using U.S. Referent Rates

Underlying cause of death Observed SMR 95% CL

All causes 13,267 0.83** (0.82, 0.85)

All cancers 3,530 0.87** (0.84, 0.90)

MN of buccal cavity and pharynx 46 0.56** (0.41, 0.75)

 MN of tongue 8 0.42** (0.18, 0.83)

 MN of pharynx 21 0.52** (0.32, 0.80)

MN of digestive organs and peritoneum 780 0.79** (0.74, 0.85)

 MN of esophagus 74 0.67** (0.52, 0.84)

 MN of stomach 84 0.73** (0.58, 0.91)

 MN of intestine except rectum 300 0.87** (0.78, 0.98)

 MN of rectum 55 0.73* (0.55, 0.95)

 MN of biliary passages and liver 70 0.60** (0.47, 0.76)

 MN of pancreas 187 0.89 (0.76, 1.02)

MN of respiratory system 1,224 0.89** (0.84, 0.94)

 MN of larynx 38 0.89 (0.63, 1.23)

 MN of trachea, bronchus, and lung 1,172 0.88** (0.83, 0.94)

 MN of pleura 7 2.25 (0.90, 4.63)

MN of breast 92 0.92 (0.74, 1.12)

MN of female genital organs 55 0.91 (0.69,1.19)

MN of male genital organs 287 0.86** (0.76, 0.97)

 MN of prostate 282 0.87* (0.77, 0.98)

MN of urinary organs 198 0.93 (0.81, 1.07)

MN of kidney 110 1.10 (0.90, 1.32)

MN of bladder and other urinary organs 88 0.78** (0.63, 0.96)

MN of other and unspecified sites 486 0.93 (0.85, 1.02)

 MN of skin 72 0.84 (0.66, 1.06)

 Mesothelioma 25 2.21** (1.43, 3.27)

 MN of brain and other parts of nervous system 105 1.05 (0.86, 1.27)

 MN of bone 11 1.23 (0.61, 2.20)

 MN of connective tissue 17 0.78 (0.45, 1.25)

 MN of other and unspecified sites 249 0.88 (0.78, 1.00)

Neoplasms of lymphatic and hematopoietic tissue 362 0.91 (0.82, 1.01)

 Non-Hodgkin’s Lymphoma 163 1.06 (0.90, 1.23)

 Leukemia and aleukemia 117 0.76** (0.63, 0.91)

 Multiple myeloma 69 0.98 (0.77, 1.24)

Benign and unspecified neoplasms 45 0.85 (0.62, 1.13)
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Underlying cause of death Observed SMR 95% CL

Diabetes mellitus 277 0.76** (0.67, 0.86)

Diseases of the blood and blood forming organs 63 0.93 (0.72, 1.19)

Mental, psychoneurotic, and personality disorders 211 0.77** (0.67, 0.88)

 Alcoholism 23 0.38** (0.24, 0.57)

 Other mental disorders 188 0.88 (0.76, 1.01)

Disorders of the nervous system and sense organs 456 1.07 (0.97, 1.17)

 Multiple sclerosis 15 0.90 (0.51, 1.49)

 Other diseases of the nervous system and sense organs 441 1.08 (0.98, 1.18)

Diseases of the heart 4,247 0.81** (0.78, 0.83)

 Rheumatic heart disease, including fever 34 0.54** (0.37, 0.75)

 Ischemic heart disease 3,488 0.83** (0.80, 0.86)

 Chronic disease of endocardium 64 0.70** (0.54, 0.89)

 Hypertension with heart disease 75 0.47** (0.37, 0.59)

 Other diseases of the heart 586 0.80** (0.74, 0.87)

Other diseases of the circulatory system 1,147 0.86** (0.81, 0.91)

 Hypertension without heart disease 62 0.74* (0.57, 0.95)

 Cerebrovascular disease 746 0.86** (0.80, 0.92)

 Diseases of the arteries, veins and pulmonary circulation 339 0.89* (0.80, 0.99)

Diseases of the respiratory system 1,194 0.85** (0.80, 0.90)

 Pneumonia (except newborn) 300 0.79** (0.70, 0.89)

 Chronic obstructive pulmonary disease 634 0.83** (0.77, 0.90)

 Asthma 10 0.44** (0.21, 0.81)

 Pneumoconioses and other respiratory diseases 238 1.03 (0.90,1.17)

Diseases of the digestive system 412 0.64** (0.58, 0.70)

 Diseases of the stomach and duodenum 32 0.57** (0.39, 0.80)

 Hernia and intestinal obstruction 23 0.62* (0.39, 0.93)

 Cirrhosis and other chronic liver disease 157 0.53** (0.45, 0.62)

 Other diseases of digestive system 200 0.77** (0.67, 0.89)

Diseases of the genitourinary system 234 0.81** (0.71, 0.92)

 Acute glomerulonephritis, nephrotic syndrome and acute renal failure 31 0.95 (0.64, 1.34)

 Chronic and unspecified nephritis and renal failure 117 0.72** (0.60, 0.86)

 Infection of kidney 9 0.82 (0.37, 1.55)

 Other genitourinary system diseases 68 0.98 (0.76, 1.24)

Diseases of the skin and subcutaneous tissue 9 0.57 (0.26, 1.08)

Diseases of the musculoskeletal system and connective tissue 53 1.11 (0.83, 1.45)

Arthritis and spondylitis 22 1.23 (0.77, 1.87)

Other diseases of musculoskeletal system 28 1.16 (0.77, 1.67)

Symptoms and ill-defined conditions 234 1.45** (1.27, 1.65)
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Underlying cause of death Observed SMR 95% CL

Accidents 561 0.80** (0.74, 0.87)

 Transportation accidents 262 0.83** (0.73, 0.93)

 Accidental poisoning 22 0.43** (0.27, 0.65)

 Accident falls 99 0.85 (0.69, 1.04)

 Other accidents 166 0.84* (0.72, 0.98)

Violence 242 0.70** (0.62, 0.80)

 Suicide 198 0.78** (0.68, 0.90)

 Homicide 44 0.49** (0.35, 0.65)

Other and unspecified causes 344 0.79** (0.71, 0.87)

MN, malignant neoplasm; SMR, standardized mortality ratio; 95% CL, 95% confidence limits.

*
Two-sided P < 0.05;

**
Two-sided P < 0.01.
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