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Abstract

Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the 

underlying data relationship in exploratory studies, such as brain research. Despite its success in 

modeling the probability distribution of variables, BN is naturally a generative model, which is not 

necessarily discriminative. This may cause the ignorance of subtle but critical network changes 

that are of investigation values across populations. In this paper, we propose to improve the 

discriminative power of BN models for continuous variables from two different perspectives. This 

brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In 

the first framework, we employ Fisher kernel to bridge the generative models of GBN and the 

discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel 

learning via minimizing a generalization error bound of SVMs. In the second framework, we 

employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the 

classification performance of the GBNs. The advantages and disadvantages of the two frameworks 

are discussed and experimentally compared. Both of them demonstrate strong power in learning 

discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as 

maintaining reasonable representation capacity. The contributions of this paper also include a new 

Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity 

of GBN.
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1 Introduction

As an important probabilistic graphical model, Bayesian network (BN) has been used to 

model the probability distribution of a set of random variables for a wide spectrum of 

applications, e.g., diagnosis, troubleshooting, web mining, meteorology and bioinformatics. 

It combines graph representation with Bayesian analysis, providing an effective way to 

model and infer the conditional dependency of the variables. A BN has to be a directed 

acyclic graph (DAG). Two factors characterize a BN, i.e., the structure of the network (the 

presence/absence of edges in the graph) and the parameters of the probability distribution. 

Recent research of BN focuses on how to learn the structure and the parameters of BN 

directly from the data.

The approaches of learning BN structures can be roughly categorized into the constraint-

based, the score-based, and the hybrid approaches. The constraint-based approaches use a 

serie of conditional independence testing to ensure the model structure is consistent with the 

conditional independency entailed by the observations. Methods in this class include the IC 

algorithm [1], PC algorithm [2], and more recent methods [3], [4]. Score-based approaches 

define a scoring function over the space of candidate DAGs and optimize this function 

through certain search strategies. Methods in this class vary with scoring criteria, e.g., the 

posterior probability [5], [6], [7] and the minimum description length [8], or vary with 

search strategies, e.g., the heuristic search [9] and the Monte Carlo methods [5]. Hybrid 

approaches usually employ constraint-based methods to prune the search space of DAG 

structures and consequently restrict a subsequent score-based search [10], [11]. Many 

existing BN learning methods, such as LIMB-DAG [12], MMHC [10], TC and TC-bw [13], 

comprise of two stages: the identification of candidate parent sets in the first stage and the 

further pruning of them based on certain criteria in the second stage. Despite the mitigation 

of computational complexity, a drawback arises that if a parent node is missed in the first 

stage, it will never be recovered in the second stage [14]. To address this issue, one-stage 

learning process has been preferred in recent research work [14], [15]. In these studies, 

based on Gaussian Bayesian network (GBN), the parent sets of all variables are learned 

together to optimize a LASSO-based score function in a single stage. The related 

optimization problems are solved either approximately [14] or exactly [15]. They have 

demonstrated improved reliability of BN edge identification over traditional two stage 

methods.

Although BN is naturally a generative method, it has also been used in classification tasks 

for diagnostic or predictive purposes. A straightforward usage is to train each class a BN and 

classify a new sample into the class with the highest likelihood value [14]. Another kind of 

approaches trains “Bayesian network classifiers” with discriminative objective functions 

[16], [17], [18]. In these approaches, usually a single BN is learned to optimize the 

discrimination performance. Either the structure or the parameters of the BN are adjusted to 

reflect the class difference for better classification. Therefore, the resulting BN does not 

model the distribution of any individual class. The “Bayesian network classifiers” in [16], 

[17], [18] are designed for discrete variables of multinomial distribution. They still inherit 

the two-stage learning process, i.e., have to predefine candidate parent sets as mentioned 

above.
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Learning BN from the data faces new challenges in exploratory domains, such as brain 

research, where the mechanism of brain and mental diseases remain unclear and need to be 

explored. These domains usually cater for both interpretation and discrimination. 

“Interpretation” requires interpretable models of the data and the findings explained by 

domain language rather than mathematical terms. This requirement comes from the demand 

of understanding the domain problems. “Discrimination” requires the models to have 

sufficient discriminative power to distinguish groups of interest (such as identifying the 

diseased from the healthy), for the purpose of prediction. To some extent, a high accuracy of 

the predictive model also provides a measure of the amount of information captured by that 

model.

Being a generative method, BN represents the distribution of the data and is naturally 

amenable for interpretation. However, it is known that generative methods are not 

necessarily discriminative. They are prone to emphasizing major structures that are shared 

within each group, and neglecting the subtle but critical changes across groups. The latter, 

unfortunately, often happens, for example, in disease-induced brain changes across clinical 

groups. Consequently, generative methods are usually inferior in prediction compared with 

the discriminative methods that target only the boundary of classes (such as Support Vector 

Machines (SVMs)). On the other hand, discriminative methods often encounter the difficulty 

of interpretation, which is critical in exploratory research aimed at both the understanding 

and the prediction. Thus, this paper is motivated by the advantages that can be gained by 

learning BNs that are both representative and discriminative. Different from the Bayesian 

network classifiers in [16], [17], [18] that address discrete variables, we learn discriminative 

BNs for continuous variables, which is often needed in many domains including 

neuroimaging-based brain research. Moreover, we learn for each class a BN with enhanced 

discrimination and maintain the BN representation of each individual class for 

interpretation1. To achieve our goal, we propose two discriminative learning frameworks 

based on sparse Gaussian Bayesian network (SGBN).

In the first framework (termed KL-SGBN), we employ Fisher kernel [19] to link the 

generative models of SGBN to the discriminative classifiers of SVMs, and convert the 

SGBN parameter learning to Fisher kernel learning via maximizing a generalization bound 

of SVMs. The contributions of this framework include the following. i) By inducing Fisher 

kernel on SGBN models, we provide a way to obtain sample-specific SGBN-induced feature 

vectors that can be used by the discriminative classifiers such as SVMs. Through this, we 

bridge the generative models and the discriminative classifiers. ii) We propose a kernel 

learning approach to discriminatively learn the parameters of SGBNs by optimizing the 

performance of SVM. iii) As a by-product, the manipulation of Fisher kernel on SGBN 

provides a new way of variable selection for SGBNs. This framework has a computational 

advantage: through the mapping of Fisher kernel, the SGBN-induced feature vectors become 

1In this paper, we deal with the scenario that maintaining the BN representation of individual class is critical for the understanding of 
domain problems, such as the brain network models for the healthy and the diseased groups. However, it is not difficulty to see our 
discriminative learning frameworks could be slightly modified to learn only a single BN as the existing “Bayesian network classifiers” 
for continuous variables. However, this deviates from our motivation and therefore is not unfolded in this paper.
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linear functions of the SGBN parameters, which significantly simplifies the optimization 

problem in the learning process.

Unlike KL-SGBN where the discrimination is obtained by optimizing the classification 

performance of SVMs, in the second learning framework (termed MM-SGBN), we propose 

to optimize a criterion directly built upon the classification performance of SGBNs. The 

motivation is that optimizing the performance of SVMs may not necessarily guarantee an 

equivalent improvement on SGBNs when SGBNs are the goal of applications. The 

contribution of this framework is a max-margin based method to jointly learn SGBNs, one 

for each class, for both representation and discrimination.

In addition to the two discriminative SGBN learning frameworks, our contributions in this 

paper also include a new DAG constraint of SGBN based on topological ordering to ensure 

the validity of the graph. This new DAG constraint circumvents the awkward hard 

binarization of SGBN parameters in the process of optimization in [14], and simplifies the 

related optimization problems. This consequently makes it possible to optimize all the 

SGBN parameters together to avoid the influence of feature ordering encountered in the 

Block Coordinate Descent (BCD) optimization in [14]. Moreover, this new DAG constraint 

also circumvents the need for presetting candidate parent sets as in [17].

Although the discriminative learning frameworks proposed in this paper are general 

methods, we focus on their applications in neuroimaging analysis for the early diagnosis of 

mental diseases. A newly emerging field in the imaging-based neuroscience, called brain 

network analysis, attempts to model the brain as a complex network and study the 

interactions of brain regions via imaging-based features [20]. Such research is important 

because brain network change is often found to be a response of the brain to damages. Due 

to its causal semantics, BN has been employed to model the “effective connectivity” of the 

brain [14], [21], [22]. The directionality of the connections may disclose the pathways of 

how one brain region affects another. The discoveries may lend further credence to the 

evidence of causal relationship changes found in many mental diseases, such as the 

Alzheimer’s disease (AD) [23], [14], [24], [22], and uncover novel connectivity-based 

biomarkers for disease diagnosis. The proposed learning frameworks has been tested on 

multiple neuroimaging data sets. As demonstrated, our methods can significantly improve 

the discriminative power of the obtained SGBNs, as well as maintaining their representation 

capacity.

Early conference versions of this work were published in [25], [26]. In this paper, a 

significant extension has been made on the following aspects. First, we analyze the problems 

of the DAG constraint used in [25], [26], [14], and propose a new constraint with 

theoretically guaranteed DAG property to overcome those drawbacks. Second, we 

experimentally verify the new DAG constraint on benchmark Bayesian network data sets for 

network structure learning, and compare our method with another eight competing methods 

in the literature. Third, we update our two discriminative learning frameworks with the new 

DAG constraint and redo all the experiments in our early work [25], [26]. Fourth, we 

analyze the connections and differences between the two proposed discriminative learning 
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frameworks, and conduct more comprehensive experiments to explore the characteristics of 

our frameworks with varied parameters, which has not been done in [25], [26].

The rest of the paper is organized as follows. Section 2 reviews SGBN and introduces the 

background of brain network analysis. Sections 3 elaborates two frameworks to learn 

discriminative and representative SGBNs from continuous data. Section 4 revisits the 

problem of the existing DAG constraint of SGBN, and proposes a new one based on 

topological ordering. The proposed two learning frameworks with the new DAG constraint 

are experimentally tested in Section 5. This paper is concluded in Section 6. The notations of 

symbols frequently occurring in this paper are summarized in Table 1.

2 Background

To make this paper self-contained, we introduce the background for both the methodology 

and its application to brain network analysis. Please note that the methodology could be 

generalized to applications beyond the example given in this paper.

2.1 Sparse Gaussian Bayesian Network (SGBN)

Because this paper is based on SGBN model, in the following, we review the fundamentals 

of SGBN in [14]. All the symbols are defined in Table 1.

A Bayesian network (BN)  is a directed acyclic graph (DAG), i.e. there is no closed path 

within the graph. It expresses the factorization property of a joint distribution 

. The conditional probability p(xi|Pai) is assumed to follow a 

Gaussian distribution in Gaussian Bayesian Network (GBN). Each node xi is regressed over 

its parent nodes , where the vector θi is the regression coefficients, and 

. The structure of BN could be characterized by the m × m matrix G or P 
(defined in Table 1), representing the edges/paths in the graph, respectively.

Identifying parent sets is critical for BN learning. Traditional methods often consist of two 

stages: the candidate parent sets are initially identified in the first stage and further pruned 

by some criteria in the second stage. A drawback arises that when a true parent is missing in 

the first stage, it will never be recovered in the second stage. The work in [14] proposed a 

different approach based on sparse GBN (SGBN), denoted as H-SGBN in this paper. In H-

SGBN, each node xi is regressed over all the other nodes, and its parent set is implicitly 

selected by the regression coefficients θi that are estimated through a constrained LASSO 

regression. The following optimization is solved in [14]:

(2.1)

A challenge for BN learning is how to enforce the DAG property, i.e., avoiding directed 

cycles in the graph. A sufficient and necessary condition for being a DAG is proposed in 
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[14], which requires Θji × Pij = 0 for all i and j. Note that Pij is an implicit function of Θji 

(i.e., P = expm(Θ), the matrix exponential function of Θ, as in [14]). Eqn. (2.1) is difficult to 

solve. In [14], a block coordinate descent (BCD) method is employed to solve a LASSO-like 

problem efficiently. The whole Θ is optimized column-wisely and iteratively. In each 

iteration t, only one column of Θ, say Θ:,j, is optimized with P fixed as P(t−1) in the last 

iteration. Then Θ(t), with the updated column Θ:,j, is binarized to obtain G(t), based on 

which, P(t) is recalculated by a Breadth-first search with xi being the root node. The process 

is repeated until convergence. H-SGBN simultaneously obtains the structure and the 

parameters of an SGBN via learning Θ, e.g., there is no edge i → j if Θij is zero. It has been 

demonstrated to outperform the conventional two-stage methods in network edge recovery.

2.2 Brain Network Analysis

Neuroimaging modalities and analysis techniques can provide more sensitive and consistent 

measurements than traditional cognitive assessment for the early diagnosis of disease. Many 

mental disorders are found associated with subtle abnormalities distributed over the entire 

brain, rather than an individual brain region. The “distributive” nature of mental disorders 

suggests the alteration of interactions between brain regions (neuronal systems) and thus the 

necessity of studying the brain as a complex network. Brain networks are mathematically 

represented by graphical models, which can be constructed from neuroimaging data as 

follows. The brain images belonging to different subjects are first spatially aligned to a 

common stereotaxic space by affine or deformable transformation, and then partitioned into 

regions of interest (ROI), i.e., clusters of imaging voxels, using either data-driven methods or 

predefined brain atlas. A brain network is then modeled by a graph with each node 

corresponding to a brain region and each edge corresponding to the connectivity between 

regions. Brain network analysis studies three kinds of brain connectivity. In this paper, we 

focus on the “effective connectivity” that describes the influence one brain region exert upon 

another. Some early works in this field require a prior model of brain connectivity and most 

have only considered a small number (≤ 10) of brain regions using techniques such as 

structural equation modeling [27] and dynamic causal modeling [28]. More recently, models 

such as BN and Granger Causality have also been introduced into this field. It is suggested 

that BN may have advantages over those lag-based methods for brain network analysis by an 

experimental fMRI study [21]. Among BN-related methods, it is worth noting that the work 

in [14] is completely data-driven, which recovers SGBN from more than 40 brain regions in 

fluorodeoxyglucose PET (FDG-PET) images. The method employs the strategy of sparsity 

constraint to handle relatively larger scale BN construction, and circumvents the traditional 

two-stage procedure for identifying parent sets in many sparse BN learning methods [12], 

[10].

3 Proposed Discriminative Learning of Generative SGBN

BN models are by definition generative models, focusing on how the data could be 

generated through an underlying process. In the context of neuroimage analysis, these 

models represent the effective brain connectivity of the given population. When used for 

classification, e.g., identifying AD patients from the healthy, the SGBN models are trained 

for each class separately. A new sample xi is then assigned to the class with the higher 
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likelihood of SGBN. This may ignore some subtle but critical network differences that 

distinguish the classes. Therefore, we argue that the parameters of the generative model 

should be learned from the two classes jointly to keep the essential discrimination.

Integrating generative and discriminative models is an important research topic in machine 

learning. In [29], the related approaches are roughly divided into three categories: blending, 

staging and iterative methods. In blending methods, both the discriminative and the 

generative terms are incorporated into the same objective function. In staging methods, the 

discriminative model is trained on features provided by the generative model. In iterative 

methods, the generative and the discriminative models are trained iteratively to influence 

each other. In this paper, we propose two kinds of discriminative learning frameworks to 

achieve our goal. One is a staging method, called Fisher-kernel-induced discriminative 

learning (KL-SGBN). It extracts sample-based features from SGBN by Fisher kernel to 

optimize the classification performance of SVM. The other is a blending method, called 

max-margin-based discriminative learning (MMSGBN). It directly optimizes the 

classification performance of SGBNs subject to maintaining SGBN’s representation 

capacity. The two frameworks are elaborated in the following sections, respectively.

3.1 Proposed Fisher-kernel-induced Discriminative Learning (KL-SGBN)

We first introduce the Fisher-kernel-induced discriminative learning of SGBN, i.e., KL-

SGBN. The algorithm is illustrated in Fig. 1 and overviewed as follows. Given two classes 

in comparison, two SGBN models (with the parameters of Θ1 and Θ2) are learned, one for 

each individual class. The original samples are then mapped into the gradient space of the 

SGBN parameters Θ1 and Θ2 by Fisher kernel (Section 3.1.1). Through this mapping, each 

sample is represented by a new feature vector (called Fisher vector [19]) that is a function of 

Θ = [Θ1,Θ2]. These sample-specific feature vectors are then fed into an SVM classifier to 

minimize its generalization errors by adjusting Θ (Section 3.1.2). The obtained optimal 

and  encode the discriminative information and therefore improve the original SGBNs. In 

this way, we convert the discriminative learning of SGBN parameters to the discriminative 

learning of Fisher kernels.

3.1.1 Induction of Fisher vectors from SGBN—Below we introduce how to use 

Fisher kernel on SGBNs to obtain feature vectors required for kernel learning.

Fisher kernel [19] provides a way to compare samples induced by a generative model. It 

maps a sample to a feature vector in the gradient space of the model parameters. The 

intuition is that similar objects induce similar log-likelihood gradients of the model 

parameters. Fisher kernel is computed as , where the Fisher vector gx = 

∇θ log(p(x|θ)) describes the changing direction of parameters to better fit the model. The 

Fisher information metric U weights the similarity measure, but is often set as an identity 

matrix in practice [19].

Fisher kernel has recently witnessed successful applications in image categorization [30], 

[31] for inducing feature vectors from Gaussian Mixture Model (GMM) of a visual 

vocabulary. Despite its success, in the applications above, Fisher kernel is mainly used as a 
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feature extractor2. It has not been applied to learning the parameters of probability 

distributions before the early work of this paper in [25]. The advantage of learning 

discriminative Fisher kernel has also been confirmed by a recent study that maximizes the 

class separability [33] of samples based on Fisher kernel, which is developed with different 

context and different criteria from ours.

Following [14], we only consider Θ as parameters and predefine σ. Let ℒ(x|Θ) = log(p(x|Θ)) 

denote the log-likelihood. Our Fisher vector for each sample x is

where Θ1 and Θ2 are the parameters of the SGBNs for the two classes (y = 1, 2), 

respectively. Recall that, using a BN, the probability p(x|Θ) can be factorized as 

. Therefore, for GBN it can be shown that

(3.1)

Taking partial derivative over θi, we have

(3.2)

where S(xi) is a squared matrix and s0(xi) is a vector. As shown, both S(xi) and s0(xi) are 

constant with respect to Θ. Therefore, the Fisher vector ΦΘ(x) is a linear function of Θ. This 

simple form of ΦΘ(x) significantly facilitates our further kernel learning.

3.1.2 Discriminative Fisher kernel learning via SVM—As each Fisher vector is a 

function of the SGBN parameters, discriminatively learning these parameters can thus be 

converted to learning discriminative Fisher kernels. We require that the learned SGBN 

models possess the following properties. Firstly, the Fisher vectors induced by the learned 

SGBN model should be well separated between classes. Secondly, the learned SGBN 

models should maintain reasonable capacity of representation. Thirdly, the learned SGBN 

models should not violate DAG.

We use the following strategies to achieve our goal. Firstly, to obtain a discriminative Fisher 

kernel, we jointly learn the parameters of SGBN and the separating hyper-plane of SVMs 

2An exception [32] is discussed in “Generalization” in Section 3.3, which is published after our work [25].
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with Fisher kernel. Radiusmargin bound, the upper bound of the Leave-One-Out error, is 

minimized to keep good generalization of the SVMs. Secondly, to maintain reasonable 

representation, we explicitly control the fitting (regression) errors of the learned model 

during optimization. Recall that GBN learns the network by minimizing the regression 

errors of each node over its parent nodes. Thirdly, we enforce the DAG constraint to ensure 

the validity of the graph. Our method is developed as follows.

In order to use radius-margin bound, ℒ2-SVM with soft margin is be employed [34]3, which 

optimizes

(3.3)

Following the convention in SVMs, w is the normal of the separating plane, b the bias term, 

ξ the slack variables and C the regularization parameter. Here yi is the class label of the i-th 

sample. ℒ2-SVM can be rewritten as SVM with hard margin by slightly modifying the 

kernel K := K + I/C, where I is identity matrix. For convenience, in the following, we 

redefine  and . The vector ei has the 

value of 1 at the i-th element, and 0 elsewhere.

Incorporating radius information leads to solving

(3.4)

where R2 denotes the radius of Minimal Enclosing Ball (MEB). It has been observed that 

when the sample size is small, the estimation of R2 may become noisy and unstable [35]. 

Therefore, it has been proposed to use the trace of the total scatter matrix instead for such 

cases [35], [36]. We finally solve the following optimization problem:

(3.5)

Here tr(ST ) is the trace of the total scatter matrix ST, where 

, and m is the mean of total n samples in the kernel-

induced space. It can be shown that tr(ST) = tr(K) − 1⊤K1/n, where 1 denotes a vector 

3Radius-margin bound is rooted in hard-margin SVM. ℒ2-SVM with soft-margin can be rewritten as SVM with hard margin.
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whose elements are all 1, and K the kernel matrix. Fisher vector ΦΘ(xi) is obtained as in 

Section 3.1.1. The function h(·) measures the squared fitting errors of the corresponding 

SGBNs for the data X1 and X2 from the two classes. It is defined as

(3.6)

The two user-defined parameters T1 and T2 explicitly control the degree of fitting during the 

learning. Adding these constraints also avoids the scaling problem of Θ.

The DAG constraint in H-SGBN could be employed to enforce the validity of the graph. 

However, here we adopt a new DAG constraint proposed in Section 4 due to its advantages 

over that of H-SGBN. The new DAG constraint employs a set of topological ordering 

variables (o,ϒ) to guarantee DAG. It is a bilinear function of the ordering variables (o,ϒ) and 

the SGBN parameters Θ. An elaboration is given in Section 4. At the moment, let us 

temporarily skip the details of this DAG constraint and concentrate on the discriminative 

learning.

One possible approach for solving Eqn. (3.5) is to alternately optimize the separating 

hyperplane w and the parameter Θ. That is,

(3.7)

where

(3.8)

Note that for a given Θ, the term tr(ST ) is constant in Eqn. (3.8). Due to the strong duality in 

SVM optimization, we solve the term  by

(3.9)

where αi is the Lagrangian multiplier and KΘ(xi, xj) = 〈ΦΘ(xi),ΦΘ(xj )〉.
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Algorithm 1

KL-SGBN: Discriminative Learning

Input: data X1,X2 ∈ ℝn×m, label y ∈ ℝn×1

 Denote Θ = [Θ1,Θ2]

Initialize Θ(0), o(0),ϒ(0) by Algorithm 3 for each class.

Let Θ(t−1) = Θ(0), o(t−1) = o(0), ϒ(t−1) = ϒ(0)

repeat

1
Compute  and  by Eqn. (3.2)

2
Compute 

3 Solve J0(Θ(t−1)) and α★ by Eqn. (3.9)

4 J(Θ(t−1)) = J0(Θ(t−1)) × tr(ST )(t−1)

6 Minimize Eqn. (3.7) with α★ and obtain Θ(t):

6.1Let o = o(t−1),ϒ = ϒ(t−1), solve Θ(t) by Eqn. (3.7);

6.2Let Θ = Θ(t), solve o(t),ϒ(t) by Eqn. (4.2).

7 Let Θ(t−1) = Θ(t), o(t−1) = o(t), ϒ(t−1) = ϒ(t)

until convergence/max number of iterations

Output: Θ★ = Θ(t)

As mentioned above, the DAG constraint is a bilinear function of (o,ϒ) and Θ. Many 

quadratic programming packages could be used to solve Eqn. (3.7). We use fmincon-SQP 

(sequential quadratic programming) in Matlab. Gradient information is required by many 

optimization algorithms (including fmincon-SQP) to speed up the line search. It is not 

difficult to find that the gradient of KΘ(xi, xj) is just a linear function of Θ, making the 

evaluation of gradient ∇ΘJ easy. Our learning process is summarized in Algorithm 1.

3.2 Proposed Max-margin-based Discriminative Learning (MM-SGBN)

KL-SGBN introduces group discrimination into SGBNs by optimizing the performance of 

SVM classifiers with SGBN-induced features. Although this leads to a relatively simple 

optimization problem, optimizing the performance of SVMs does not necessarily imply 

optimizing the discrimination of SGBNs. We believe that, the discrimination of SGBNs can 

be further improved if we directly optimize their (instead of SVMs’) classification 

performance. Therefore we propose a new learning framework based on max-margin 

formulation directly built on SGBNs. We call this method MM-SGBN.

For binary classification, maximizing the minimum margin between two classes can be 

obtained by maximizing the minimum conditional likelihood ratio (MCLR) [18]:
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Without loss of generality, yi and ȳi ∈ {−1, 1}, representing the true and false labels for the 

i-th sample, respectively. The parameter Θyi = Θ1 if yi = 1, or Θyi = Θ2 if yi = −1. We can see 

that MCLR identifies the most confusing sample whose probability of the true class 

assignment is close to or even less than that of the false class assignment. Hence, 

maximizing MCLR targets the maximal separation of the most confusing samples in the two 

classes. It is not difficult to see that MCLR can naturally handle multi-class case when 

replacing the denominator by the maximal probability induced by all false class 

assignments. Let Θ = [Θ1,Θ2]. Taking log-likelihood of MCLR, we have

(3.10)

where the prior probabilities of P(yi) and P(ȳi) that are irrelevant to Θ are absorbed into the 

constant term. Eqn. (3.10) can be shown to be a quadratic function of Θ in the case of 

SGBN. In order to maximize MCLR, we require the difference of log-likelihood function in 

Eqn. (3.10) be larger than a margin for all samples, r, and maximize the margin r. To deal 

with hard separations, we employ a soft margin formulation as follows.

(3.11)

(3.11a)

(3.11b)

(3.11c)

(3.11d)

The constraints in (3.11a) enforce the likelihood of xi to its true class larger than that to its 

false class by a margin r. The variables ξi are slack variables indicating the intrusion of the 

margin. The function ℒ(·) denotes the log-likelihood, defined in Eqn. (3.1). We require 

ℒ(Θ1, xi) larger than ℒ(Θ2, xi) when yi = 1, and ℒ(Θ2, xi) larger than ℒ(Θ1, xi) when yi = 

−1.
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Algorithm 2

MM-SGBN: Discriminative Learning

Input: data X1,X2 ∈ ℝn×m, label y ∈ ℝn×1

 Denote Θ = [Θ1,Θ2]

Initialize Θ(0), o(0),ϒ(0) by Algorithm 3 for each class.

Fix Θ = Θ(0) and estimate r(0) and  by Eqn. (3.11)

only with the two constraints (3.11a) and (3.11b).

Initialize t = 1.

repeat

Step 1: Fixing o = o(t−1) and ϒ = ϒ(t−1), optimize Eqn. (3.11) with the constraints (3.11a ~ 3.11c) to update Θ(t), 

r(t) and ;

Step 2: Fixing Θ(t), optimize Eqn. (4.2) to update o(t) and ϒ(t) to enforce DAG.

Let t = t + 1

until convergence/max number of iterations

Output: Θ★ = Θ(t)

The constraints in (3.11c) control the fitting errors, same to that used in KL-SGBN, and the 

function h(·) is defined in Eqn. (3.6).

The constraints in (3.11d) are the DAG constraint proposed in Section 4, Eqn. (4.1). To 

enforce the validity of DAG on both graphs, we introduce a set of order variables o = {o1, 
o2, · · ·, om} and ϒ for each class separately, and employ the constraints stated in Eqn. (4.1). 

Please refer to Eqn. (4.1) for details.

The optimization in Eqn. (3.11) can be solved iteratively by optimizing (Θ, ξi, r) and (o,ϒ) 

alternately, as summarized in Algorithm 2. In Step 1, we solve a linear objective function 

with n non-convex and two convex quadratic constraints by fmincon-SQP (sequential 

quadratic programming) in Matlab. In Step 2, we solve the linear programming by the 

package of CVX4.

It is worthy noting that, we learn an SGBN model for each individual class in order to meet 

the requirement of both interpretation and discrimination in exploratory research. For 

example, each SGBN may model the brain network of the healthy or the diseased class, as 

well as carrying the essential class discrimination. Both the network modelling and the 

discrimination are of interest in such cases. Our method is different from the conventional 

BN classifers [16], [17], [18] that solely focus on classification. In those methods, only a 

single BN is learned to reflect the “difference” of the two classes. It does not model any 

individual class as our method does, and hence deviates from our purpose of both 

representing and discriminating brain networks. Moreover, the works in [16], [17], [18] 

4http://cvxr.com/cvx/
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cannot handle the continuous variables of brain imaging measures, and inherit the 

drawbacks of the traditional two-stage methods.

3.3 Discussion and Analysis

In the following, some issues regarding the two proposed discriminative learning 

frameworks are discussed.

Classifiers: The proposed discriminative learning frameworks produce a set of jointly 

learned SGBN models, one for each class. Based on these SGBN models, two kinds of 

classifiers can be constructed, i.e., the SGBN classifier and the SVM classifier. The SGBN 

classifier categorizes a sample by comparing the sample’s likelihood according to each 

SGBN model. The SVM classifier is trained by the sample-specific Fisher vectors induced 

from the SGBN models. These two classifiers are tightly coupled by the underlying SGBN 

models. Specifically, more discriminative SGBN models directly lead to a better SGBN 

classifier, and can provide discriminative Fisher vectors to SVM for better classification. 

Rooted in this relationship, both the KL-SGBN and the MMSGBN can improve the 

classification performance of these two classifiers simultaneously. Put simply, KLSGBN 

explicitly optimizes the SVM classifier and in turn implicitly improves the SGBN classifier; 

while MMSGBN explicitly optimizes the SGBN classifier, bringing an implicit 

improvement of the SVM classifier as well. When evaluating the discriminative power of the 

learned SGBN models by the SGBN classifier (a direct measurement), it is therefore 

expected that MM-SGBN can outperform KL-SGBN. However, KL-SGBN has some 

computational advantages and provides a new perspective to manipulate BN models, 

analyzed as follows.

Computational Issues: Compared with KL-SGBN, MM-SGBN requires to solve more 

complicated optimization problems, which may become problematic when the number of 

training samples increase. Let us compare Eqn. (3.7) for KL-SGBN and Eqn. (3.11) for 

MMSGBN. For KL-SGBN, Eqn. (3.7) optimizes J(Θ) with two convex quadratic constraints 

of data fitting and two DAG constraints, which are independent of the number of training 

samples n. The evaluation of J(Θ) needs to solve an SVM-like problem in Eqn. (3.8), taking 

just n linear constraints of Θ, which could be efficiently solved by off-the-shelf SVM 

packages. For MM-SGBN, in addition to the data fitting and DAG constraints as in Eqn. 

(3.7), the optimization problem in Eqn. (3.11) also has to satisfy n non-convex quadratic 

constraints. When n increases to a medium or large value, the optimization problem could be 

quite hard to solve.

Edge Selection: In addition to the discriminative learning of SGBN, the employment of 

Fisher kernel in KL-SGBN also provides a new perspective of edge selection for GBN. As 

introduced in Section 3.1.1, applying Fisher kernel on GBN produces sample-specific 

feature vectors whose component is the gradient of the log likelihood, i.e., . In other 

words, each feature now corresponds to an edge Θij in the SGBN. This makes it possible to 

convert the SGBN edge selection to a more traditional feature selection problem that has 

been well studied and has a large body of options in the literature. Edge selection has been 
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employed in our work to deal with the “small sample size” problem that is often encountered 

in medical applications. For example, it is common to have only 100 training samples but 

3200 parameters (for SGBNs of 40 nodes from two classes) to learn in brain network 

analysis. To handle this issue, we keep using the whole Θ for computing KΘ, but only 

optimize a selected subset Θs. There are many options to determine Θs. We just compute the 

Fisher vector ΦΘ for each sample, calculate the Pearson correlation between each 

component of ΦΘ and the class labels on the training data, and select the top θi with the 

highest correlations. To keep our problem simple, only the parameters associated with edges 

present in the graph are optimized to avoid the violation of DAG. It is remarkable that even 

this simple selection process has significantly improved the discrimination for both KL-

SGBN and MM-SGBN. Note that this edge selection step is essentially different from that of 

the traditional two-stage methods. It is just an empirical method to handle the small sample 

size problem and will become unnecessary when sufficient training data are available. In 

contrast, identifying the candidate-parent sets is an indispensable step in two-stage methods 

to obtain computationally tractable solutions.

Generalization: We would like to point out that our learning framework of KL-SGBN could 

be easily generalized. It could be used to discriminatively learn the parameters of 

distributions other than that represented by GBN by just simply switching GBN to the target 

distribution, such as Gaussian Mixture Model (GMM). Indeed, this has been seen in [32], 

after our work [25]. However, as shown in this paper, the Fisher vector of GBN is a linear 

function of the model parameters, which significantly simplifies the learning problem. This 

favorable property may not be guaranteed with other distributions, including GMM.

4 Proposed DAG Constraint

In this section, we revisit H-SGBN and propose a new DAG constraint that could simplify 

the optimization problems in SGBN and its discriminative learning process as introduced in 

Sections 3.1 and 3.2.

4.1 H-SGBN Revisited

Recall that, the DAG constraint in H-SGBN (Section 2.1) utilizes the matrix P, an implicit 

function of Θ, which significantly complicates the optimization problem in Eqn. (2.1). In 

[14], for simplicity, in each optimization iteration, P is first treated as a constant while 

optimizing Θ, and then recalculated by searching on the binarized new Θ. This hard 

binarization could introduce high discontinuity of Θ into the optimization. Solving Θ 
column-wisely by BCD may mitigate this problem since only one column of Θ is changed in 

each iteration, inducing less discontinuity. However, we observe that the solution of BCD 

depends on which column of Θ to be optimized first. In other words, if we randomly 

permute the ordering of features (the columns in X), we will obtain different SGBNs, which 

impairs the interpretability of the SGBN model. The optimization ordering matters because 

the matrix P used in the DAG constraint changes with the ordering. This problem has been 

demonstrated in our experiment. Moreover, we find experimentally that if P is solved as a 

whole instead of BCD, the optimization in Eqn. (2.1) will not converge but oscillate between 

some non-DAG solutions, possibly due to the high discontinuity mentioned above 5. Early 
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stop cannot help because no premature solution satisfies DAG. These optimization 

difficulties motivate our work of proposing a new DAG constraint that is much simpler for 

SGBN, as described below.

4.2 Proposed DAG constraint

It is known that, a BN is equivalent to a topological ordering (Page 362 in [37]). Therefore, 

we propose a new DAG constraint applicable to continuous variables with GBN based on 

this equivalence. With a few linear inequalities and variables separable from Θ, the new 

DAG constraint significantly simplifies that used in [14]. Specifically, given a directed graph 

 and the parameters Θ, a real-valued order variable oi is assigned to each node i, where 0 ≤ 

oi ≤ Δ, and Δ is a predefined arbitrary positive number. We propose a sufficient and 

necessary condition for  to be DAG as in Proposition 1.

Proposition 1: Given a sparse Gaussian Bayesian Network parameterized by Θ and its 

associated directed graph  with m nodes, the graph  is DAG if and only if there exist some 

oi (i = 1, ···, m) and ϒ ∈ ℝm×m, such that for arbitrary Δ > 0, the following constraints are 

satisfied:

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Eqn.(4.1) leads to a topological ordering equivalent to DAG. The topological ordering means 

that if node j comes after node i in the ordering (oj > oi), there cannot be a link from node j 
to node i, which guarantees the acyclicity. The proof of Proposition 1 is given in Appendix.

By Proposition 1, we remove the awkward hard binarization for computing P in [14]. The 

inequalities of (4.1a, 4.1b, 4.1d) are linear to the ordering variables oi and ϒ. The equation 

(4.1c) differs from the equation Θji × Pij = 0 in [14] in that the variable ϒij is now separable 

from Θij (while Pij is not) and does not require the binarization of Θ. This makes it tractable 

to solve Θ as a whole instead of BCD (to avoid the feature ordering problem).

5Please note that, solving Θ column-wisely without updating P in each iteration will only lead to non-DAG solutions
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It is worth noting that, provided Θ is sparse, the number of constraints in Eqn. (4.1) could be 

significantly reduced. As can be seen, for any Θij = 0, as long as we set the corresponding 

ϒij an arbitary value greater than , all the conditions in Eqn. (4.1) will be 

automatically satisfied. Therefore, we only need to consider the constraints related to Θij ≠ 0.

The idea of topological ordering is also used to design DAG constraint for the discrete 

variables in [38]. However, the work in [38] addresses the multinominal distribution of 

discrete variables, while here we target the Gaussian distribution of continuous variables. It 

is worthy noting that the constraint in [38] has to predefine candidate parent-node sets. 

Therefore, it inherits the drawbacks of the two-stage methods as pointed out in Section 1. 

This has been circumvented in our proposed DAG constraint for SGBN.

4.3 Estimation of SGBN from A Single Class

With our DAG constraint proposed in Eqn. (4.1), we could estimate SGBN from a single 

class as the initial solution to our discriminative learning of KL-SGBN or MM-SGBN. In 

particular, we optimize

(4.2)

where εi is the i-th column of the matrix ϒ, and |θi| the component-wise absolute value of θi. 

This optimization problem is solved in an iterative way with two alternate steps in each 

iteration: i) optimize o and ϒ (with Θ fixed) and ii) optimize Θ (with o and ϒ fixed). This 

process is repeated until convergence. We call this proposed method OR-SGBN (Algorithm 

3).

When the coefficient λdag is sufficiently large, the alternate optimization strategy of Eqn. 

(4.2) will converge to a DAG solution, as shown in Proposition 2 in Appendix. In practice, 

for numerical stability, we adopt a “warm start” strategy as in [14], that is, to gradually 

increase the values of λdag until the resulting  becomes DAG. Specifically, we use a set of 

values of  to solve Eqn. (4.2) (Algorithm 3).

We use a bias variable x0 = 1 in the regression model to improve data fitting, thus 

. In the following part, we denote  and 

. The bias term θ0 is learned together with other θi. This equals to 

introducing a bias node into the graph. It has no parent but is the parent of all the other 

nodes. If the original graph is a DAG, this does not cause the violation of DAG.

It is interesting yet challenging to analyze the network consistency of OR-SGBN. It is noted 

that Eqn. (4.2) can be reorganized into a weighted LASSO problem, which can be 

conceptually linked to “adaptive LASSO” in the literature [39], [40], [41]. The analysis 

framework provided by these works is suggestive of promising strategies to analyze the 

network consistency for L1-penalized Gaussian networks. However, a complete treatment of 
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this analysis for OR-SGBN requires a deep investigation. Considering the significant amount 

of the required workload and its importance, we will explore this problem in a separate 

paper in our future work.

Algorithm 3

OR-SGBN: SGBN from a single class

Input: data X ∈ ℝn×m

Initialize Θ(0) by least square fitting.

Initialize o(0) and ϒ(0) by solving Eqn. (4.2) with Θ = Θ(0).

Let T = 1.

repeat

 Fixing ϒ = ϒ(T−1) and o = o(T−1).

 Let t = 1, Θ(T−1,t=0) = Θ(T−1).

 for  to  do

  Optimize Eqn. (4.2) with the initial solution Θ(T−1,t−1) to obtain Θ(T−1,t).

  Let t=t+1.

 end for

 Let Θ(T) = Θ(T−1,M).

 Fixing Θ(T), optimize Eqn. (4.2) to update o(T) and ϒ(T) to enforce DAG.

 Let T = T + 1.

until convergence/max number of iterations

Output: Θ★ = Θ(T)

5 Experiment

In this section, we investigate the properties of our proposed methods from three aspects: the 

DAG constraint, the discriminative learning process, and the resulting connectivity for brain 

network analysis. Four experiments are conducted, summarized in Table 2. The data sets and 

the experiments are elaborated as follows.

5.1 Neuroimaging Data Sets

We conduct our experiment on the publicly accessible ADNI [42] database to analyze brain 

effective connectivity for the Alzheimer’s disease. Three data sets are used from two 

imaging modalities of MRI and FDG-PET downloaded from ADNI. They are elaborated as 

follows.

MRI data set includes 120 T1-weighted MR images belonging to 50 mild cognitive 

impairment (MCI) patients and 70 normal controls (NC). These images are preprocessed by 

the typical procedure of intensity correction, skull stripping, and cerebellum removal. We 

segment the images into gray matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF) using the standard FSL6 package, and parcellate them into 93 Region of Interest 

6http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(ROI) based on an ROI atlas [43] after spatial normalization. The GM volume of each ROI is 

used as the imaging feature to characterize each network node. Forty ROIs are included in 

this study, following [14]. They have higher correlation with the disease and are mainly 

located in the temporal lobe and subcortical region. Studying brain morphology as a network 

can take the advantage of statistical tools from graph theory. Moreover, it has been reported 

that the covariation of gray matter morphology might be related to the anatomical 

connectivity [44].

PET data set includes 103 FDG-PET images (and their corresponding MR images) of 51 

AD patients and 52 NC. The MR images belonging to different subjects are co-registered 

and partitioned into ROIs as before. The ROI partitions are copied onto their corresponding 

PET images by a rigid transformation. The average tracer uptakes within each ROI is used as 

the imaging feature to characterize each network node. Forty ROIs discriminative to the 

disease are used in the study. The retention of tracer in FDG-PET is analogous to the glucose 

uptake, thus reflecting the tissue metabolic activity.

MRI-II data set is similar to the MRI data set but using 40 different ROIs covering the 

typical brain regions spread over the frontal, parietal, occipital and temporal lobes.

We randomly partition each data set into 30 groups of training-test pairs. Each group 

includes 80 training and 40 test samples in MRI and MRI-II, or 60 training and 43 test 

samples in PET.

5.2 DAG Constraint

With our proposed DAG constraint, the SGBN model for an individual class can be learned 

with all the parameters Θ optimized together (OR-SGBN), instead of column-wisely as did 

in [14], [25], [26]. To explore the properties of our DAG constraint, we test three 

experimental configurations, namely, OR-SGBN (WHOLE), H-SGBN (BCD) and H-SGBN 

(WHOLE). The word in the parenthesis is used to explicitly indicate whether the parameters 

Θ are optimized together (WHOLE) or column-wisely (BCD). OR-SGBN (WHOLE) is our 

SGBN learning method for a single class in Algorithm 3, implemented with the package of 

CVX. H-SGBN (BCD) is the column-wise method in [14] and implemented with the code 

downloaded from the authors’ website. H-SGBN (WHOLE) is our attempt to optimize Θ 
together for the objective function of H-SGBN in [14], which is implemented with the 

package of CVX7. The same Θ that is computed by a sparse least square fitting of the 

training set is provided to all the methods to initialize the optimizations. The “warm-start” 

strategy is applied wherever applicable in all methods.

It is found that when solving all Θ as a whole, H-SGBN (WHOLE) that uses the DAG 

constraint in [14] does not converge: the optimization is trapped to oscillate between a few 

solutions that are not DAG. Therefore, from now on, we only consider H-SGBN (BCD) and 

OR-SGBN (WHOLE).

7The optimization problem is solved by a series of convex subproblems.
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Exp-I: In this experiment, we compare the solutions of OR-SGBN (WHOLE) and H-SGBN 

(BCD) with respect to the change of feature ordering. To do that, for the neuroimaging data 

sets, we randomly permute the feature ordering for 100 times. The estimated Θ of the 

resulting 100 SGBNs are re-arranged according to the initial feature ordering and then 

averaged as in Fig. 2. As shown, the averaged result from OR-SGBN (WHOLE) (Fig. 2(d)) 

is almost identical to the result using the original feature ordering (Fig. 2(c)), reflecting its 

robustness to feature ordering. In contrast, H-SGBN (BCD) generates SGBNs with large 

variations when the feature ordering changes ((Fig. 2(a) versus (b)). To give a quantitative 

evaluation, the Euclidean distance and the correlation between the averaged Θ and the 

original Θ are presented in Table 3. Consistently, the solutions from OR-SGBN (WHOLE) 

are much less affected by the ordering permutation, indicating the advantage of solving Θ as 

a whole via the proposed DAG constraint.

Exp-II: In this experiment, we test the ability of OR-SGBN (WHOLE) at identifying 

network structures from data. Since no ground-truth is available for the three neuroimaging 

data sets due to the unknown mechanism of the disease, we conduct experiments on nine 

benchmark network data sets mostly coming from the Bayesian Network Repository [45] as 

was done in the literature [12], [46]. The nine benchmark data sets are: Factors (27 nodes, 68 

arcs), Alarm (37 nodes, 46 arcs), Barley (48 nodes, 84 arcs), Carpo (61 nodes, 74 arcs), 

Chain (7 nodes, 6 arcs), Hailfinder (56 nodes, 66 arcs), Insurance (27 nodes, 52 arcs), 

Mildew (35 nodes, 46 arcs) and Water (32 nodes, 66 arcs). We compare the OR-SGBN 

(WHOLE) with another eight BN learning methods, including L1MB [12], GS [47], TC and 

its variant TC-bw [13] and three variants of IAMB [48]. The experiment is repeated for 50 

simulations. In each simulation, for each network, we randomly sample 1000 samples from 

±Uniform(0.5, 1) for the regression coefficients of each variable on its parents. The 

parameters of the eight methods to be compared are set according to [14]. A predefined λ 
that controls the sparsity of OR-SGBN is uniformly applied to all the nine data sets, which 

simply brings the number of the resulting edges to a reasonable range 8. We use the first 

stage estimate of L1MB as the initial solution of OR-SGBN. Table 4 shows the total 

numbers of mis-identified edges (including both the false and the missing edges), while 

Table 5 shows the numbers of falsely identified edges (false positive). In addition, Table 6 

lists the numbers of falsely identified PDAG structures. PDAG structures are statistically 

indistinguishable structures, i.e., representing the same statistical dependency. The PDAG of 

BN is obtained by the method in [49]. From Tables 4 ~ 6, it can be seen that OR-SGBN 

shows significantly smaller errors on six data sets (Factors, Alarm, Barley, Carpo, Hailfinder 

and Insurance) in identifying both edges and PDAG structures. For the data sets of Mildew 

and Water, OR-SGBN performs similarly to the other methods. It only performs relatively 

inferior on Chain. This experiment demonstrates that the proposed DAG constraint for 

SGBN can perform effectively for BN structure identification. Its relatively low risk of mis-

edge identification is a favorable property for exploratory research.

8The Bayesian Information Criterion is used to select λ in [14]. However, it did not behave well in our experiment.
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5.3 Comparison of Discrimination

After testing the effectiveness of the proposed DAG constraint, we now investigate the 

theme of this paper: the discriminative learning frameworks. We consider two kinds of 

classifiers: i) the SGBN classifier (with two SGBN models, one for each class), and ii) the 

SVM classifier learned by the Fisher vectors induced from the SGBN models.

Exp-III: In this experiment, we test whether our learning methods (KL-SGBN and MM-

SGBN) can improve the discriminative power on both kinds of classifiers for the real 

neuroimaging data sets. The initial SGBN models are obtained by our proposed OR-SGBN 

(WHOLE), since it has been shown more robust to feature ordering than H-SGBN as above. 

For the SGBN classifier, assuming equal prior, we assign a test sample to the class with a 

higher likelihood. For the SVM classifier, we use ℒ2-SVM with Fisher kernels. In order to 

maintain representation capability, we allow maximal 1% additional squared fitting errors 

(that is, Ti = 1.01 × Ti0, (i = 1, 2), where Ti0 is the squared fitting error of the initial solution) 

to be introduced during the learning process of KL-SGBN or MM-SGBN.

The test accuracies are averaged over the 30 randomly partitioned training-test groups. The 

classification performances of SGBN and SVM classifiers are evaluated with the varied 

parameter λ that controls the sparsity level and the number of edges optimized in the 

learning process in Fig. 3. The results of our proposed KL-SGBN and MM-SGBN are 

plotted by the green and the red lines, respectively. The results of the individually learned 

OR-SGBN and H-SGBN are plotted by the blue and the black lines, respectively. The top 

two rows in Fig. 3 correspond to the results from the SGBN classifiers, while the bottom two 

rows correspond to those from the SVM classifiers. From Fig. 3, we have the following 

observations.

i. Both KL-SGBN and MM-SGBN can significantly improve the discriminative 

power of the individually learned SGBNs (Fig. 3, the top two rows), as well as 

their associated SVM classifiers (Fig. 3, the third row). Such improvements are 

consistent over the three neuroimaging data sets and different parameter settings, 

and could reach the significant increases of 10% ~ 20% on most occasions. 

When the network becomes more sparse, the classification performance of the 

individually learned SGBNs (H-SGBN and OR-SGBN) drops significantly 

possibly due to the insufficient modeling of data. However, under such 

circumstances, KL-SGBN and MM-SGBN can still maintain high classification 

accuracies, which may indicate the necessity and effectiveness of the 

discriminative learning in classification scenarios.

ii. When using SGBN classifiers, for all the three data sets, MM-SGBN consistently 

achieves higher test accuracies at all sparsity levels (Fig. 3, the first row) with 

different numbers of optimized edges than KL-SGBN (Fig. 3, the second row). 

The advantage of MM-SGBN over KL-SGBN comes from explicitly optimizing 

the discriminative power of SGBNs, instead of getting help from optimizing the 

performance of SVM on SGBN-induced features.
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iii. When using SVM classifiers, the SVM built upon KL-SGBN-induced features 

performs slightly better than that built upon MM-SGBN-induced features at all 

sparsity levels (Fig. 3, the third row). This is expected since KL-SGBN optimizes 

the performance of its associated SVM classifier.

iv. When cross-referencing the first and the third rows in Fig. 3, it is noticed that 

SVM classifiers in general perform worse than the discriminatively learned 

SGBN classifiers. These may be because our Fisher vectors have very high 

dimensionality, which causes serious overfitting of data in SVM classifiers. Such 

situation might be somewhat improved for SGBN-classifiers since the simple 

Gaussian model may “regularize” the model fitting. Based on this assumption, 

we further select a number of leading features from Fisher vectors by computing 

the Pearson correlation of the features and the labels, and use the selected 

features to construct the Fisher kernel for the SVM classifiers. As shown in the 

fourth row of Fig. 3, the simple feature selection step can further significantly 

improve the classification performance of the Fisher-kernel based SVM.

v. The individually learned OR-SGBN and H-SGBN perform similarly for 

classification. However, as mentioned above, OR-SGBN has an additional 

advantage of being invariant to the feature ordering.

vi. Recall that these improvement on discrimination are achieved with no more than 

1% increase of squared fitting errors, which is explicitly controlled through the 

user defined parameters T1 and T2. Note that the rate of 1% is application 

dependent. More tolerance of fitting errors can potentially bring more 

discrimination.

5.4 Comparison of Connectivity

We also conduct an investigation to gain some insights into the learned brain networks for 

the diseased and the healthy populations, respectively.

Exp-IV: In this experiment, we visualize the learned brain networks and compare the 

connectivity patterns obtained by different methods and from different populations. MRI-II 

data set is used for this study since it covers regions spread over the four lobes of brain.

The structures of the brain networks recovered from NC and MCI groups are displayed in 

Fig. 4 by using H-SGBN (BCD) and OR-SGBN (WHOLE), respectively. The network 

structure is obtained by thresholding the edge weights Θ with a cutoff value of 0.01 [14]. 

Each row i represents the effective connections (dark dots) starting from the node i, and each 

column j represents the effective connections ending at the node j. Note that, due to the 

different optimization problems involved, the same parameter λ leads to different sparsity 

levels for H-SGBN and OR-SGBN. However, for a given method, different λ values do not 

change the major structures of the resulting networks.

In Fig. 4, it is noticed that H-SGBN (BCD) usually generates more connections in the upper 

triangle of the graphs even when we randomly permute the nodes. We suspect that this is 

caused by the column-wise optimization. The parameters θi (corresponding to the columns 
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in the graph) optimized at the early stage tend to be made more sparse than those optimized 

later in order to satisfy the DAG constraint. This phenomenon is not observed in OR-SGBN 

(WHOLE) that is used to initialize the discriminative learning.

Let us focus on OR-SGBN. Compared with H-SGBN, OR-SGBN has an additional bias 

node corresponding to the last row and column in Fig. 4. Visualizing Θ can provide rich 

information for medical analysis. Here we just list a few observations as examples. With the 

same λ, OR-SGBN produces 183 edges for NC, and 145 edges for MCI. Such loss of 

connectivity also happens at the temporal lobe (24% loss) for MCI. The temporal lobe (and 

some subcortical structures) is known to play a very important role in the progression of AD. 

The loss of connectivity in this region has been well-documented in wide AD-related studies 

[50], [51], [14]. In Fig. 4, we also observe an increase of connectivity (the left bottom corner 

in the figure) between the frontal and the temporal lobe in MCI. Some study [52] mentioned 

that the frontal lobe may have connectivity increase at the early stage of AD as a 

compensation of cognitive functions for the patients. Moreover, significant directionality 

changes are also found for the left (node 35) and the right (node 38) hippocampi, an 

important structure among the earliest ones affected by AD. Both hippocampi have reduced 

incoming connectivity (communications dominated by other nodes) but increased outgoing 

connectivity (communications dominated by themselves) in MCI. Please note that the above 

observations could be influenced by the factors such as the limited number of data, the 

degree of disease progression and the imaging modality used in this study. More reliable 

medical analysis should be validated on larger data sets and worth further exploration, which 

is, however, beyond the scope of this paper.

To illustrate the difference of edge weights learned by KL-SGBN and MM-SGBN, an 

example of 30 edge weight changes (from the initial OR-SGBN) learned by these two 

methods is given in Fig. 5, where the SGBN networks from the two classes are vectorized 

and concatenated as x-axis. As shown, the signs of weight changes are quite similar in both 

methods. The most significant difference is that, MM-SGBN gives negative weight changes 

to the bias node of the left Amygdala and the right Parahippocampus (red lines in Fig. 5) 

while KL-SGBN gives them positive weight changes. The adjustment of edge weights leads 

to 10% increase of test accuracy for MM-SGBN in this example.

6 Conclusion

In this paper, we focus on the discriminative learning of Bayesian network for continuous 

variables, especially for neuroimaging data. Two discriminative learning frameworks are 

proposed to achieve this goal, i.e., KL-SGBN improves the performance of SVM classifiers 

based on SGBN-induced features, and MM-SGBN explicitly optimizes an SGBN-based 

criterion for classification. We demonstrate how to utilize Fisher-kernel to bridge the 

generative methods of SGBN and the discriminative classifiers of SVM, and how to embed 

the max-margin criterion into SGBN for discriminative learning. The optimization problems 

are analyzed in details, and the advantages and disadvantages of the proposed methods are 

discussed. Moreover, a new DAG constraint is proposed to ensure the validity of the graph 

with theoretical guarantee and validation on the benchmark data. We apply the proposed 

methods to modeling brain effective connectivity for early AD prediction. Significant 
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improvements have been observed in the discriminative power of both the SGBN models 

and the associated SVM classifiers, without sacrificing much representation power.
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Appendix

Proposition 1

Given a sparse Gaussian Bayesian Network parameterized by Θ and its associated directed 

graph  with m nodes, the graph  is DAG if and only if there exist some oi (i = 1,…, m) 

and ϒ ∈ ℝm×m, such that for arbitary Δ > 0, the following constraints are satisfied:

(1a)

(1b)

(1c)

(1d)

Proof

As is known, a Bayesian network is equivalent to a topological ordering (Chapter 8, Section 

8.1 on Page 362 in [37]). Therefore, we prove Proposition 1 by showing that i) Eqn. (1a ~ 

1d) lead to a topological ordering (the necessary condition), and ii) a topological ordering 

from a DAG can meet the requirements in Eqn. (1a ~ 1d) (sufficient condition).

First, we prove the necessary condition by contradiction (Fig. 6). We consider three cases for 

two nodes j and i. Case 1) the nodes j and i are directly connected. If there is an edge from 

node i to node j, the parameter Θij is then non-zero, and thus ϒij must be zero. According to 

Eqn. (1a), we have oj > oi. If at the same time, there is an edge from node j to node i, 
similarly we have oi > oj, which contradicts with oj > oi, and therefore is impossible. Case 2: 

the nodes j and i are not directly linked but connected by a path. Suppose there is a directed 

path P1 from node i to node j, where P1 is composed of nodes k1, k2, …, km1 in order. 

Following the above proof, we can have oj > okm1
 > … > ok1 > oi. If at the same time 

another directed path P2 links node j to node i, where P2 is composed of nodes l1, l2, …, lm2 
in order, similarly we have oi > olm2

 > … > ol1 > oj, making the contradiction. Case 3) If 

there is no edge between node i and node j, by definition Θij = 0. It is straightforward to see 
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Eqn. (1b) and Eqn. (1c) hold for any arbitrary non-negative ϒij. Moreover, for any oi and oj 

satisfying Eqn. (1d), we can show that as long as  (which is positive), Eqn. 

(1a) will always hold. This is further explained as follows. By Eqn. (1d), we have −Δ ≤ oj − 

oi ≤ Δ. For Eqn. (1a) to be always held, we need some ϒij such that , 

which requires . Therefore, there exist a set of oi and ϒ valid for Eqn. (1a ~ 

1d) when no edge links node i and node j. In sum, Eqn. (1a ~ 1d) show a topological 

ordering, that is, if node j comes after node i (that is, oj > oi) in the ordering, there can not be 

a link from node j to node i, which guarantees the acyclicity.

Now let us consider the sufficient condition. if  is a DAG, we can obtain some topological 

ordering (1, 2, …,m) from it. Let õi be the index of node i in this ordering. Setting 

, we have  and . 

If node j comes after node i, we have . If node j comes before node i, 
we can always set ϒij sufficiently large to satisfy Eqn. (1a ~ 1d). Therefore, from a DAG, we 

can always construct a set of ordering variables that satisfy Eqn. (1a ~ 1d).

Combining the proofs above, Eqn. (1a ~ 1d) are the sufficient and necessary condition for a 

directed graph  to be DAG.

Proposition 2

The optimization problem in Eqn. (2) (i.e., Eqn. (4.2) in the paper) is iteratively solved by 

alternate optimizations of (i) o and ϒ with Θ fixed, and (ii) Θ with o and ϒ fixed. This 

optimization converges and the output Θ★ is DAG when , 

where m is the number of nodes and n is the number of samples.

(2)

Here o and ϒ are the variables defined in the DAG constraint in Section 4.2, and Θ is the 

model parameters of SGBN. The vector εi denotes the i-th column of the matrix ϒ, and |θi| 

the component-wise absolute value of the i-th column of Θ. Other parameters are defined in 

Table 1 in the paper.

Proof

In the following, we prove that:

1. The alternate optimization in Eqn. (2) converges.

2. The solution Θ★ of Eqn. (2) is DAG when λdag is sufficiently large.

Let us denote .
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First, we prove Eqn. (2) converges by showing that (i) f(Θ, o,ϒ) is lower bounded; and (ii) 

f(Θ(t+1), o(t+1),ϒ(t+1)) ≤ f(Θ(t), o(t),ϒ(t)), meaning that the function value will monotonically 

decrease with the iteration number t.

It is easy to see that f(Θ, o,ϒ) is lower bounded by 0, since each term in f(Θ, o,ϒ) is non-

negative. And the second point can be proven as follows. At the t-th iteration, we update Θ 
by

(3)

It holds that f(Θ(t+1), o(t),ϒ(t)) ≤ f(Θ(t), o(t),ϒ(t)). Also it is noted that Θ(t+1) is an achievable 

global minimum of Θ since f(Θ, o(t),ϒ(t)) is a convex function with respect to Θ. Similarly, 

we then update o and ϒ by

(4)

It holds that f(Θ(t+1), o(t+1),ϒ(t+1)) ≤ f(Θ(t+1), o(t),ϒ(t)). Also, f(Θ(t+1), o,ϒ) is a linear function 

with respect to o and ϒ. Consequently we have

Therefore, the optimization problem in Eqn. (2) is guaranteed to converge with the alternate 

optimization strategy, because the objective function is lower-bounded and monotonically 

decreases with the iteration numbers.

Second, we prove that when , the output Θ★ is guaranteed to 

be DAG. This could be proven by contradiction. Suppose that such a λdag does not lead to a 

DAG, say,  for at least one pair of nodes i and j, with  and ϒji > 0. 

Without loss of generality, we assume  (where Δ is an arbitary positive 

number), so the ordering constraints in Eqn. (2) always hold regardless of the variables oi 

and oj. This is because oi and oj are constrained by 0 ≤ oi ≤ Δ and 0 ≤ oj ≤ Δ, and 

. Based on the first-order optimality condition,  i.f.f. 

. Here, PAi(\j,:) denotes the elements in the 

matrix PAi with the j-th row removed (i.e., parents of the node i without the node j), and 

denotes the elements in  without . However, it can be shown that,
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(5)

The second last inequality holds due to the normalization of features x:,i (to zero mean and 

unit std). The last inequality holds because 

. With the given λdag, 

Eqn. (5) results in

which contradicts the above first-order optimality condition with . Therefore, when 

λdag is sufficiently large, the output Θ★ is guaranteed to be DAG.

Summing up the proofs above, the alternate optimization of Eqn. (2) converges and the 

output Θ★ is guaranteed to be DAG when λdag is sufficiently large.
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Fig. 1. 
Illustration of Fisher-kernel-induced Discriminative Learning.
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Fig. 2. 
One example of the estimated parameter Θ for the MCI class (reshaped as a long vector) 

with regard to the random permutation of the feature ordering. Quantitative measurements of 

the changes are given in Table 3.
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Fig. 3. 
Comparison of classification accuracies on data sets of MRI (the left column), PET (the 

middle column) and MRI-II (the right column). The top two rows correspond to the test 

accuracies obtained by the learned SGBNs. The first row shows the test accuracies varied 

with the sparsity levels (i.e., the parameter λ). The second row shows the test accuracies 

varied with the number of edges (denoted as “#Sel Edges” in the figure) optimized in 

discriminative learning. The bottom two rows correspond to the test accuracies obtained by 

SVMs using the SGBN-induced Fisher vectors either in full length (the third row) or with 

(100) selected components (the fourth row).

Zhou et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Visualization of connectivities for MRI-II. The four red boxes correspond to the frontal, 

parietal, occipital and temporal (including subcortical regions) lobes of the brain. The green 

row (Row 35) and column (Col 35) correspond to the left hippocampus while the blue ones 

(Row 38 and Col 38) correspond to the right hippocampus.
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Fig. 5. 
An example: change of edge weights learned by KL-SGBN and MM-SGBN
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Fig. 6. 
Explanation of our ordering based DAG constraint.
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TABLE 1

Notation

xi a random variable

x a sample of m variables: x = [x1, x2, · · ·, xm]⊤

X the data matrix of n samples, X ∈ ℝn×m

xi,: the i-th row of X, representing a sample

x:,i the i-th column of X, representing the realization of the random variable xi on n samples

Θ the parameters of a Gaussian Bayesian Network θ = [θ1, · · ·, θm], Θ ∈ ℝm×m

Pai a vector containing the parents of xi

PAi a matrix whose j-th column represents a realization of Pai on the j-th sample.

G an m× m matrix for BN: if there is a directed edge from xi to xj, Gij = 1, otherwise Gij = 0

P an m× m matrix for BN: if there is a directed path from xi to xj, Pij = 1, otherwise Pij = 0
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TABLE 2

Summary of Experiment Purpose

Experiment Test Subject Purpose

Exp-I (Sec. 5.2) DAG constraint Test the invariance of solution to feature ordering

Exp-II (Sec. 5.2) DAG constraint Test the ability of network structure recovery

Exp-III (Sec. 5.3) discriminative learning Test the improvement of discriminative power of SGBN models

Exp-IV (Sec. 5.4) brain network analysis Investigate the learned brain connectivity patterns
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TABLE 3

Quantitative Analysis of Θ for the random permutation of feature ordering (between the original and the 

averaged Θ)

Distance Correlation (R)

OR-SGBN (WHOLE)
Θ1 0.08 0.9996

Θ2 0.18 0.9981

H-SGBN (BCD)
Θ1 1.91 0.6828

Θ2 2.06 0.6396

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 39

TA
B

L
E

 4

To
ta

l e
rr

or
s 

(n
um

be
r 

of
 b

ot
h 

fa
ls

e 
an

d 
m

is
si

ng
 e

dg
es

, a
ve

ra
ge

d 
on

 5
0 

si
m

ul
at

io
ns

) 
on

 b
en

ch
m

ar
k 

ne
tw

or
ks

L
1M

B
G

S
T

C
-b

w
T

C
IA

M
B

IA
M

B
1

IA
M

B
2

IA
M

B
3

O
R

-S
G

B
N

Fa
ct

or
s

10
1.

48
10

4.
50

10
2.

90
10

3.
02

10
3.

14
10

3.
30

10
3.

14
10

3.
14

54
.8

2

A
la

rm
56

.5
8

59
.3

0
57

.7
6

60
.6

0
61

.7
6

59
.1

6
61

.7
6

61
.7

6
44

.4
0

B
ar

le
y

11
3.

24
11

4.
70

11
4.

38
12

2.
78

12
3.

80
10

9.
92

12
3.

80
12

3.
80

99
.2

6

C
ar

po
12

5.
74

13
1.

72
13

1.
18

13
3.

16
13

2.
76

13
2.

90
13

2.
76

13
2.

76
25

.5
8

C
ha

in
5.

32
4.

88
5.

50
4.

42
4.

70
5.

00
4.

70
4.

70
7.

04

H
ai

lf
in

de
r

91
.5

0
94

.9
4

96
.1

8
99

.0
2

10
3.

10
92

.7
4

10
3.

10
10

3.
10

57
.0

4

In
su

ra
nc

e
74

.7
8

74
.6

4
73

.7
4

76
.3

0
78

.7
8

73
.0

4
78

.7
8

78
.7

8
59

.0
4

M
ild

ew
60

.8
6

60
.7

4
59

.6
6

63
.8

0
68

.4
6

92
.7

4
10

3.
10

10
3.

10
57

.0
4

W
at

er
92

.8
6

94
.0

4
90

.2
4

97
.1

6
10

2.
70

90
.0

6
10

2.
70

10
2.

70
93

.0
8

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 40

TA
B

L
E

 5

N
um

be
r 

of
 f

al
se

ly
 id

en
tif

ie
d 

ed
ge

s 
(a

ve
ra

ge
d 

on
 5

0 
si

m
ul

at
io

ns
) 

on
 b

en
ch

m
ar

k 
ne

tw
or

ks

L
1M

B
G

S
T

C
-b

w
T

C
IA

M
B

IA
M

B
1

IA
M

B
2

IA
M

B
3

O
R

-S
G

B
N

Fa
ct

or
s

47
.6

6
50

.7
4

49
.4

0
49

.7
4

50
.2

8
49

.7
0

50
.2

8
50

.2
8

17
.7

0

A
la

rm
36

.0
4

37
.7

2
36

.8
6

39
.2

4
40

.9
6

37
.3

0
40

.9
6

40
.9

6
23

.1
4

B
ar

le
y

71
.7

0
72

.3
0

72
.6

0
80

.7
6

82
.9

6
69

.7
6

82
.9

6
82

.9
6

48
.7

0

C
ar

po
71

.9
6

76
.3

0
75

.1
4

77
.3

8
77

.1
8

77
.3

6
77

.1
8

77
.1

8
14

.5
6

C
ha

in
2.

66
2.

44
2.

76
2.

22
2.

36
2.

50
2.

36
2.

36
3.

52

H
ai

lf
in

de
r

60
.0

0
62

.0
4

63
.1

6
65

.4
2

66
.4

0
60

.9
0

66
.4

0
66

.4
0

28
.6

6

In
su

ra
nc

e
42

.8
0

42
.1

6
41

.7
2

44
.0

6
48

.0
8

41
.4

2
48

.0
8

48
.0

8
31

.2
0

M
ild

ew
46

.2
2

46
.4

6
45

.4
6

49
.8

2
52

.4
8

44
.8

2
52

.4
8

52
.4

8
33

.8
6

W
at

er
64

.5
2

65
.0

2
63

.7
0

68
.0

6
74

.2
2

63
.4

8
74

.2
2

74
.2

2
46

.7
4

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 41

TA
B

L
E

 6

N
um

be
r 

of
 f

al
se

ly
 id

en
tif

ie
d 

P-
D

A
G

 s
tr

uc
tu

re
s 

(a
ve

ra
ge

d 
on

 5
0 

si
m

ul
at

io
ns

) 
on

 b
en

ch
m

ar
k 

ne
tw

or
ks

L
1M

B
G

S
T

C
-b

w
T

C
IA

M
B

IA
M

B
1

IA
M

B
2

IA
M

B
3

O
R

-S
G

B
N

Fa
ct

or
s

10
7.

20
10

9.
54

10
8.

96
10

8.
84

10
9.

22
10

8.
84

10
9.

22
10

9.
22

63
.4

0

A
la

rm
61

.7
4

64
.0

8
62

.5
4

65
.3

4
66

.8
2

63
.9

8
66

.8
2

66
.8

2
51

.0
2

B
ar

le
y

12
0.

54
12

2.
26

12
1.

38
13

0.
04

13
1.

24
11

6.
92

13
1.

24
13

1.
24

10
5.

50

C
ar

po
12

9.
02

13
5.

34
13

4.
78

13
6.

92
13

6.
74

13
6.

22
13

6.
74

13
6.

74
33

.7
4

C
ha

in
5.

96
5.

54
6.

12
5.

16
5.

30
5.

66
5.

30
5.

30
7.

42

H
ai

lf
in

de
r

10
3.

72
10

6.
08

10
7.

56
11

0.
04

11
3.

44
10

4.
86

11
3.

44
11

3.
44

63
.7

6

In
su

ra
nc

e
81

.5
8

81
.6

8
81

.4
4

83
.7

0
86

.6
0

80
.6

6
86

.6
0

86
.6

0
68

.2
6

M
ild

ew
61

.6
8

61
.3

2
60

.3
4

64
.4

8
69

.3
0

58
.0

8
69

.3
0

69
.3

0
67

.2
4

W
at

er
96

.3
4

97
.4

6
93

.8
0

10
0.

38
10

6.
14

93
.6

0
10

6.
14

10
6.

14
94

.5
2

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 November 30.


	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Gaussian Bayesian Network (SGBN)
	2.2 Brain Network Analysis

	3 Proposed Discriminative Learning of Generative SGBN
	3.1 Proposed Fisher-kernel-induced Discriminative Learning (KL-SGBN)
	3.1.1 Induction of Fisher vectors from SGBN
	3.1.2 Discriminative Fisher kernel learning via SVM


	Algorithm 1
	3.2 Proposed Max-margin-based Discriminative Learning (MM-SGBN)

	Algorithm 2
	3.3 Discussion and Analysis
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 is DAG if and only if there exist some oi (i = 1, ···, m) and ϒ ∈ ℝm×m, such that for arbitrary Δ > 0, the following constraints are satisfied:(4.1a)(4.1b)(4.1c)(4.1d)Eqn.(4.1) leads to a topological ordering equivalent to DAG. The topological ordering means that if node j comes after node i in the ordering (oj > oi), there cannot be a link from node j to node i, which guarantees the acyclicity. The proof of Proposition 1 is given in Appendix.By Proposition 1, we remove the awkward hard binarization for computing P in [14]. The inequalities of (4.1a, 4.1b, 4.1d) are linear to the ordering variables oi and ϒ. The equation (4.1c) differs from the equation Θji × Pij = 0 in [14] in that the variable ϒij is now separable from Θij (while Pij is not) and does not require the binarization of Θ. This makes it tractable to solve Θ as a whole instead of BCD (to avoid the feature ordering problem).It is worth noting that, provided Θ is sparse, the number of constraints in Eqn. (4.1) could be significantly reduced. As can be seen, for any Θij = 0, as long as we set the corresponding ϒij an arbitary value greater than , all the conditions in Eqn. (4.1) will be automatically satisfied. Therefore, we only need to consider the constraints related to Θij ≠ 0.The idea of topological ordering is also used to design DAG constraint for the discrete variables in [38]. However, the work in [38] addresses the multinominal distribution of discrete variables, while here we target the Gaussian distribution of continuous variables. It is worthy noting that the constraint in [38] has to predefine candidate parent-node sets. Therefore, it inherits the drawbacks of the two-stage methods as pointed out in Section 1. This has been circumvented in our proposed DAG constraint for SGBN.
	Proposition 1


	4.3 Estimation of SGBN from A Single Class

	Algorithm 3
	5 Experiment
	5.1 Neuroimaging Data Sets
	5.2 DAG Constraint
	Exp-I: In this experiment, we compare the solutions of OR-SGBN (WHOLE) and H-SGBN (BCD) with respect to the change of feature ordering. To do that, for the neuroimaging data sets, we randomly permute the feature ordering for 100 times. The estimated Θ of the resulting 100 SGBNs are re-arranged according to the initial feature ordering and then averaged as in Fig. 2. As shown, the averaged result from OR-SGBN (WHOLE) (Fig. 2(d)) is almost identical to the result using the original feature ordering (Fig. 2(c)), reflecting its robustness to feature ordering. In contrast, H-SGBN (BCD) generates SGBNs with large variations when the feature ordering changes ((Fig. 2(a) versus (b)). To give a quantitative evaluation, the Euclidean distance and the correlation between the averaged Θ and the original Θ are presented in Table 3. Consistently, the solutions from OR-SGBN (WHOLE) are much less affected by the ordering permutation, indicating the advantage of solving Θ as a whole via the proposed DAG constraint.Exp-II: In this experiment, we test the ability of OR-SGBN (WHOLE) at identifying network structures from data. Since no ground-truth is available for the three neuroimaging data sets due to the unknown mechanism of the disease, we conduct experiments on nine benchmark network data sets mostly coming from the Bayesian Network Repository [45] as was done in the literature [12], [46]. The nine benchmark data sets are: Factors (27 nodes, 68 arcs), Alarm (37 nodes, 46 arcs), Barley (48 nodes, 84 arcs), Carpo (61 nodes, 74 arcs), Chain (7 nodes, 6 arcs), Hailfinder (56 nodes, 66 arcs), Insurance (27 nodes, 52 arcs), Mildew (35 nodes, 46 arcs) and Water (32 nodes, 66 arcs). We compare the OR-SGBN (WHOLE) with another eight BN learning methods, including L1MB [12], GS [47], TC and its variant TC-bw [13] and three variants of IAMB [48]. The experiment is repeated for 50 simulations. In each simulation, for each network, we randomly sample 1000 samples from ±Uniform(0.5, 1) for the regression coefficients of each variable on its parents. The parameters of the eight methods to be compared are set according to [14]. A predefined λ that controls the sparsity of OR-SGBN is uniformly applied to all the nine data sets, which simply brings the number of the resulting edges to a reasonable range 88The Bayesian Information Criterion is used to select λ in [14]. However, it did not behave well in our experiment.. We use the first stage estimate of L1MB as the initial solution of OR-SGBN. Table 4 shows the total numbers of mis-identified edges (including both the false and the missing edges), while Table 5 shows the numbers of falsely identified edges (false positive). In addition, Table 6 lists the numbers of falsely identified PDAG structures. PDAG structures are statistically indistinguishable structures, i.e., representing the same statistical dependency. The PDAG of BN is obtained by the method in [49]. From Tables 4 ~ 6, it can be seen that OR-SGBN shows significantly smaller errors on six data sets (Factors, Alarm, Barley, Carpo, Hailfinder and Insurance) in identifying both edges and PDAG structures. For the data sets of Mildew and Water, OR-SGBN performs similarly to the other methods. It only performs relatively inferior on Chain. This experiment demonstrates that the proposed DAG constraint for SGBN can perform effectively for BN structure identification. Its relatively low risk of mis-edge identification is a favorable property for exploratory research.
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	5.3 Comparison of Discrimination
	Exp-III: In this experiment, we test whether our learning methods (KL-SGBN and MM-SGBN) can improve the discriminative power on both kinds of classifiers for the real neuroimaging data sets. The initial SGBN models are obtained by our proposed OR-SGBN (WHOLE), since it has been shown more robust to feature ordering than H-SGBN as above. For the SGBN classifier, assuming equal prior, we assign a test sample to the class with a higher likelihood. For the SVM classifier, we use ℒ2-SVM with Fisher kernels. In order to maintain representation capability, we allow maximal 1% additional squared fitting errors (that is, Ti = 1.01 × Ti0, (i = 1, 2), where Ti0 is the squared fitting error of the initial solution) to be introduced during the learning process of KL-SGBN or MM-SGBN.The test accuracies are averaged over the 30 randomly partitioned training-test groups. The classification performances of SGBN and SVM classifiers are evaluated with the varied parameter λ that controls the sparsity level and the number of edges optimized in the learning process in Fig. 3. The results of our proposed KL-SGBN and MM-SGBN are plotted by the green and the red lines, respectively. The results of the individually learned OR-SGBN and H-SGBN are plotted by the blue and the black lines, respectively. The top two rows in Fig. 3 correspond to the results from the SGBN classifiers, while the bottom two rows correspond to those from the SVM classifiers. From Fig. 3, we have the following observations.i.Both KL-SGBN and MM-SGBN can significantly improve the discriminative power of the individually learned SGBNs (Fig. 3, the top two rows), as well as their associated SVM classifiers (Fig. 3, the third row). Such improvements are consistent over the three neuroimaging data sets and different parameter settings, and could reach the significant increases of 10% ~ 20% on most occasions. When the network becomes more sparse, the classification performance of the individually learned SGBNs (H-SGBN and OR-SGBN) drops significantly possibly due to the insufficient modeling of data. However, under such circumstances, KL-SGBN and MM-SGBN can still maintain high classification accuracies, which may indicate the necessity and effectiveness of the discriminative learning in classification scenarios.ii.When using SGBN classifiers, for all the three data sets, MM-SGBN consistently achieves higher test accuracies at all sparsity levels (Fig. 3, the first row) with different numbers of optimized edges than KL-SGBN (Fig. 3, the second row). The advantage of MM-SGBN over KL-SGBN comes from explicitly optimizing the discriminative power of SGBNs, instead of getting help from optimizing the performance of SVM on SGBN-induced features.iii.When using SVM classifiers, the SVM built upon KL-SGBN-induced features performs slightly better than that built upon MM-SGBN-induced features at all sparsity levels (Fig. 3, the third row). This is expected since KL-SGBN optimizes the performance of its associated SVM classifier.iv.When cross-referencing the first and the third rows in Fig. 3, it is noticed that SVM classifiers in general perform worse than the discriminatively learned SGBN classifiers. These may be because our Fisher vectors have very high dimensionality, which causes serious overfitting of data in SVM classifiers. Such situation might be somewhat improved for SGBN-classifiers since the simple Gaussian model may “regularize” the model fitting. Based on this assumption, we further select a number of leading features from Fisher vectors by computing the Pearson correlation of the features and the labels, and use the selected features to construct the Fisher kernel for the SVM classifiers. As shown in the fourth row of Fig. 3, the simple feature selection step can further significantly improve the classification performance of the Fisher-kernel based SVM.v.The individually learned OR-SGBN and H-SGBN perform similarly for classification. However, as mentioned above, OR-SGBN has an additional advantage of being invariant to the feature ordering.vi.Recall that these improvement on discrimination are achieved with no more than 1% increase of squared fitting errors, which is explicitly controlled through the user defined parameters T1 and T2. Note that the rate of 1% is application dependent. More tolerance of fitting errors can potentially bring more discrimination.
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	5.4 Comparison of Connectivity
	Exp-IV: In this experiment, we visualize the learned brain networks and compare the connectivity patterns obtained by different methods and from different populations. MRI-II data set is used for this study since it covers regions spread over the four lobes of brain.The structures of the brain networks recovered from NC and MCI groups are displayed in Fig. 4 by using H-SGBN (BCD) and OR-SGBN (WHOLE), respectively. The network structure is obtained by thresholding the edge weights Θ with a cutoff value of 0.01 [14]. Each row i represents the effective connections (dark dots) starting from the node i, and each column j represents the effective connections ending at the node j. Note that, due to the different optimization problems involved, the same parameter λ leads to different sparsity levels for H-SGBN and OR-SGBN. However, for a given method, different λ values do not change the major structures of the resulting networks.In Fig. 4, it is noticed that H-SGBN (BCD) usually generates more connections in the upper triangle of the graphs even when we randomly permute the nodes. We suspect that this is caused by the column-wise optimization. The parameters θi (corresponding to the columns in the graph) optimized at the early stage tend to be made more sparse than those optimized later in order to satisfy the DAG constraint. This phenomenon is not observed in OR-SGBN (WHOLE) that is used to initialize the discriminative learning.Let us focus on OR-SGBN. Compared with H-SGBN, OR-SGBN has an additional bias node corresponding to the last row and column in Fig. 4. Visualizing Θ can provide rich information for medical analysis. Here we just list a few observations as examples. With the same λ, OR-SGBN produces 183 edges for NC, and 145 edges for MCI. Such loss of connectivity also happens at the temporal lobe (24% loss) for MCI. The temporal lobe (and some subcortical structures) is known to play a very important role in the progression of AD. The loss of connectivity in this region has been well-documented in wide AD-related studies [50], [51], [14]. In Fig. 4, we also observe an increase of connectivity (the left bottom corner in the figure) between the frontal and the temporal lobe in MCI. Some study [52] mentioned that the frontal lobe may have connectivity increase at the early stage of AD as a compensation of cognitive functions for the patients. Moreover, significant directionality changes are also found for the left (node 35) and the right (node 38) hippocampi, an important structure among the earliest ones affected by AD. Both hippocampi have reduced incoming connectivity (communications dominated by other nodes) but increased outgoing connectivity (communications dominated by themselves) in MCI. Please note that the above observations could be influenced by the factors such as the limited number of data, the degree of disease progression and the imaging modality used in this study. More reliable medical analysis should be validated on larger data sets and worth further exploration, which is, however, beyond the scope of this paper.To illustrate the difference of edge weights learned by KL-SGBN and MM-SGBN, an example of 30 edge weight changes (from the initial OR-SGBN) learned by these two methods is given in Fig. 5, where the SGBN networks from the two classes are vectorized and concatenated as x-axis. As shown, the signs of weight changes are quite similar in both methods. The most significant difference is that, MM-SGBN gives negative weight changes to the bias node of the left Amygdala and the right Parahippocampus (red lines in Fig. 5) while KL-SGBN gives them positive weight changes. The adjustment of edge weights leads to 10% increase of test accuracy for MM-SGBN in this example.
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