Skip to main content
. Author manuscript; available in PMC: 2017 Nov 30.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2015 Dec 23;38(11):2269–2283. doi: 10.1109/TPAMI.2015.2511754

Algorithm 1.

KL-SGBN: Discriminative Learning

Input: data X1,X2 ∈ ℝn×m, label y ∈ ℝn×1
 Denote Θ = [Θ1,Θ2]
Initialize Θ(0), o(0),ϒ(0) by Algorithm 3 for each class.
Let Θ(t−1) = Θ(0), o(t−1) = o(0), ϒ(t−1) = ϒ(0)
repeat
  • 1

    Compute ΦΘ(t-1) and KΘ(t-1) by Eqn. (3.2)

  • 2

    Compute tr(ST)(t-1)=tr(KΘ(t-1))-1KΘ(t-1)1/n

  • 3

    Solve J0(Θ(t−1)) and α by Eqn. (3.9)

  • 4

    J(Θ(t−1)) = J0(Θ(t−1)) × tr(ST )(t−1)

  • 6

    Minimize Eqn. (3.7) with α and obtain Θ(t):

    • 6.1

      Let o = o(t−1),ϒ = ϒ(t−1), solve Θ(t) by Eqn. (3.7);

    • 6.2

      Let Θ = Θ(t), solve o(t),ϒ(t) by Eqn. (4.2).

  • 7

    Let Θ(t−1) = Θ(t), o(t−1) = o(t), ϒ(t−1) = ϒ(t)

until convergence/max number of iterations
Output: Θ = Θ(t)