Skip to main content
. Author manuscript; available in PMC: 2017 Nov 30.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2015 Dec 23;38(11):2269–2283. doi: 10.1109/TPAMI.2015.2511754

Algorithm 2.

MM-SGBN: Discriminative Learning

Input: data X1,X2 ∈ ℝn×m, label y ∈ ℝn×1
 Denote Θ = [Θ1,Θ2]
Initialize Θ(0), o(0),ϒ(0) by Algorithm 3 for each class.
Fix Θ = Θ(0) and estimate r(0) and ξi(0) by Eqn. (3.11)
only with the two constraints (3.11a) and (3.11b).
Initialize t = 1.
repeat
  • Step 1: Fixing o = o(t−1) and ϒ = ϒ(t−1), optimize Eqn. (3.11) with the constraints (3.11a ~ 3.11c) to update Θ(t), r(t) and εi(t);

  • Step 2: Fixing Θ(t), optimize Eqn. (4.2) to update o(t) and ϒ(t) to enforce DAG.

    Let t = t + 1

until convergence/max number of iterations
Output: Θ = Θ(t)