Skip to main content
. Author manuscript; available in PMC: 2017 Nov 30.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2015 Dec 23;38(11):2269–2283. doi: 10.1109/TPAMI.2015.2511754

Algorithm 3.

OR-SGBN: SGBN from a single class

Input: data X ∈ ℝn×m
Initialize Θ(0) by least square fitting.
Initialize o(0) and ϒ(0) by solving Eqn. (4.2) with Θ = Θ(0).
Let T = 1.
repeat
 Fixing ϒ = ϒ(T−1) and o = o(T−1).
 Let t = 1, Θ(T−1,t=0) = Θ(T−1).
for λdag=λdag(1) to λdag(M) do
  Optimize Eqn. (4.2) with the initial solution Θ(T−1,t−1) to obtain Θ(T−1,t).
  Let t=t+1.
end for
 Let Θ(T) = Θ(T−1,M).
 Fixing Θ(T), optimize Eqn. (4.2) to update o(T) and ϒ(T) to enforce DAG.
 Let T = T + 1.
until convergence/max number of iterations
Output: Θ = Θ(T)