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Abstract

Mesenchymal stem cells (MSCs) have been investigated with promising results for meniscus 

healing and tissue engineering. While MSCs are known to contribute to ECM production, less is 

known about how MSCs produce and align large organized fibers for application to tissue 

engineering the meniscus. The goal of this study was to investigate the capability of MSCs to 

produce and organize extracellular matrix molecules compared to meniscal fibrochondrocytes 

(FCCs). Bovine FCCs and MSCs were encapsulated in an anatomically accurate collagen 

meniscus using mono-culture and co-culture of each cell type. Each meniscus was mechanically 

anchored at the horns to mimic the physiological fixation by the meniscal entheses. Mechanical 

fixation generates a static mechanical boundary condition previously shown to induce formation of 

oriented fiber by FCCs. Samples were cultured for 4 weeks and then evaluated for biochemical 

composition and fiber development. MSCs increased the GAG and collagen production in both co-

culture and mono-culture groups compared to FCC mono-culture. Collagen organization was 

greatest in the FCC mono-culture group. While MSCs had increased matrix production they 

lacked the fiber organization capabilities of FCCs. This study suggests that GAG production and 

fiber formation are linked. Co-culture can be used as a means of balancing the synthetic properties 

of MSCs and the matrix remodeling capabilities of FCCs for tissue engineering applications.
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Introduction

The meniscus is a fibrocartilaginous tissue comprised of a complex network of fibers with 

distributed glycosaminoglycans (GAGs) that collectively contribute to its ability to support 

*Address Correspondence to: Lawrence J. Bonassar, PhD., Professor, Department of Biomedical Engineering, 149 Weill Hall, Cornell 
University, Ithaca, NY 14853, (607) 255-9381, lb244@cornell.edu.
Mary Clare McCorry, M.S., Meinig School of Biomedical Engineering, 151 Weill Hall, Cornell University, Ithaca, NY 14853, 
mcm338@cornell.edu

Declaration of Interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

HHS Public Access
Author manuscript
Connect Tissue Res. Author manuscript; available in PMC 2017 November 30.

Published in final edited form as:
Connect Tissue Res. 2017 ; 58(3-4): 329–341. doi:10.1080/03008207.2016.1267152.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



loads in the knee (1). The meniscus is connected to the underlying bone through a meniscal 

enthesis located at each of the meniscal horns (2,3). The meniscal entheses provide an 

anchor point for the meniscus to support tensile loads and prevent meniscal extrusion during 

the gait cycle (4). A majority of the fibers in the meniscus are arranged in the 

circumferential direction (5,6). A smaller portion of radial tie fibers help to anchor the 

circumferential fibers and contribute to the anisotropic properties of the meniscus (5,7,8). 

GAGs make up a smaller fraction of the meniscus and contribute its compressive properties 

(1,9,10).

Damage to the meniscus disrupts this organization, increasing contact pressure in the joint 

resulting in pain, swelling, and loss of motion (11,12). Since the meniscus is primarily 

avascular, surgical intervention is the primary treatment option. There are over 1 million 

meniscus related surgeries in the United States per year (13). In severe cases of injury or 

degeneration, a meniscal allograft is used to replace the damaged meniscus. While meniscal 

allografts relieve patient pain and restore mechanical stability to the knee, allograft 

transplant is limited by material availability, cost, immune competency, and ability to 

correctly match anatomic size and shape (14,15). Size matching must be within a tolerance 

of 5%, the donor must have less than mild pre-existing arthrosis, and be immunocompatible 

with recipient (14,15). Synthetic scaffold such as Menaflex and Actifit are used for partial 

meniscal replacement, however results are inconclusive as to their efficacy with specific 

challenges in tissue fixation, integration, material properties, and surface characteristics (16–

18). An anatomically accurate tissue engineered (TE) meniscus could address many of these 

limitations by using imaging techniques to recapitulate size and shape, as well as natural 

materials, and autologous cells with the ability to modify and integrate with native tissue 

(19,20).

Previous efforts to TE the whole meniscus utilize synthetic polymers, hydrogels, and tissue-

derived scaffolds (21–25). However, none of these are currently in clinical practice because 

they lack the anatomical, mechanical or biochemical properties necessary for native function 

(19). Previously, we developed an anatomically accurate tissue engineered meniscus using 

fibrochondrocytes (FCCs) in a high density collagen gel (26). FCCs, embedded in the 

meniscal construct, developed large fibers under static mechanical boundary conditions with 

mechanical properties approaching native values (27).

These studies show great promise, however, FCCs used for tissue engineered menisci have 

limited clinical availability and are difficult to expand in 2D culture (28). Obtaining the 

sufficient number of cells for a tissue engineered meniscus is challenging because FCCs 

proliferate slowly and often lose their phenotype in two-dimensional (2D) culture (28). 

Mesenchymal stem cells (MSCs) have been shown to contribute to meniscal regeneration in 
vivo, however, there is limited knowledge on MSC performance in the context of whole 

tissue engineered menisci (29–31). In vivo studies in both animals and humans have shown 

that MSCs delivered through intraarticular injection localize to the site of injury and 

contribute to tissue regeneration (30–33). However directing fibrochondrogenic 

differentiation of stem cells has proven to be challenging (34–36). Co-culture of FCCs and 

MSCs has been particularly successful with increased expression of fibrochondrogenic 

genes, reduced hypertrophy, and increased matrix production (35,36). We have shown that 
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MSCs transition to a fibrochondrogenic phenotype in 3D collagen gel, with maximal 

mechanical performance and GAG retention observed in the 50:50 co-culture group (37). 

Furthermore, MSCs have been shown to increase the lubrication properties of a engineered 

menisci (38). These studies suggest the potential advantages and feasibility of MSCs as an 

alternative or supplemental cell source for meniscus tissue engineering.

A successful tissue engineered meniscus must have organized fibers, which are essential to 

the mechanical stability of the meniscus in the knee (7). MSC differentiation is known to be 

guided by mechanical cues, specifically in meniscal development the meniscus begins as a 

dense mesenchymal condensate. In meniscus tissue engineering, MSCs have been shown to 

produce collagen and GAG that perform similar mechanical functions to native when seeded 

in an aligned matrix (39). The meniscus develops from a dense disorganized mesenchymal 

condensate (40). However, there is little data on MSCs produce a functionally organized 

fibers from a disorganized matrix. Anchoring at the attachments provides critical mechanical 

signals for collagen organization and matrix secretion (27,40,41). However there is little data 

on how mechanical anchoring affects MSCs in the context of producing a functionally 

organized meniscus.

The goal of this study was to characterize matrix synthesis and fiber formation in MSC and 

FCC co-culture in collagen gels. Specifically, we evaluated GAG accumulation and fiber 

formation in mono- and co-cultured menisci anchored at the horns. MSCs and FCCs differ 

in their ability to synthesize GAGs, however little is known about MSCs ability to form large 

organized fibers. We hypothesize that MSCs will have similar fiber organization and matrix 

producing capabilities as FCCs for the production of a tissue engineering meniscus.

Materials and Methods

Cell Isolation

As previously described, MSCs were isolated from 1–3 day old bovids (26,42). Briefly, the 

bone marrow from the trabeculae of the distal femoral head was washed with a heparin 

supplemented media to obtain the MSCs (37,42). Heparin solution containing bone marrow 

was centrifuged at 300 × g. The adherent cell population after 48 hours was expanded and 

tested to confirm multipotency using trilineage differentiation assays for osteogenesis, 

adipogenesis, and chondrogenesis (Supp. 1) (43,44). MSCs were plated at 2,000 cells/cm2 

and expanded in 2D culture until passage 4 with a growth medium containing low glucose 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS), 100 μg/mL penicillin, 100 μg/mL streptomycin, 0.25 μg/mL amphotericin B, 2mM 

L-glutamine, and 1 ng/mL basic fibroblast growth factor.

FCCs were isolated from juvenile bovine menisci digested using collagenase as previously 

described (26,45). FCCs were digested from menisci in 0.3% collagenase (Worthington 

Biochemical Corporation, Lakewood, NJ) in DMEM with 100 μg/mL penicillin and 100 

μg/mL streptomycin, followed by filtering through a 100 μm cell strainer (26,45). FCCs 

were directly encapsulated in collagen gels with passaged MSCs as described in construct 

generation. Prior to injecting cells into meniscal molds, MSCs were labeled using CellTrace 

Green CFSE (Invitrogen, Grand Island, NY, C34554) and FCCs were labeled with CellTrace 
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FarRed DDAO-SE (Invitrogen, C34553). Cell types were mixed with media to generate FCC 

mono-culture, 50/50 co-culture, and MSC mono-culture groups.

Construct Generation

Collagen type I was extracted from Sprague-Dawley rat tails (Pel-Freez Biologicals, Rogers, 

AZ) and reconstituted in 0.1% acetic acid at 30 mg/mL concentration as previously 

described (26,46,47). To initiate gelation, a syringe stop cock was used to mix the stock 

collagen solution with a working solution comprised of 1N NaOH, 10× phosphate-buffered 

saline (PBS), and 1× PBS to return the collagen to a neutral 7.0 pH and 300mOsm (47). 

Previously prepared cell groups suspended in media were mixed to a final concentration of 

25×106 cells/mL in a collagen gel at 20 mg/mL (26). The collagen solution was injected into 

an anatomically accurate meniscal mold and incubated for 1 hour at 37˚C (27). 

Anatomically accurate molds were 3D printed from negative molds rendered using magnetic 

resonance imaging and microcomputed tomography images of ovine menisci (27,48). As 

described previously, injection molding into anatomically accurate meniscal molds yields a 

construct with high geometric fidelity to native tissue, within ±10% error of key geometric 

features (49,50). Anatomical molds included extension tabs at the horns for clamping 

(27,48).

Eight menisci per group, with four tested at day 1 and the remaining four tested after 4 

weeks. Each meniscus was clamped at the extensions to a 3D printed culture dish as 

previously described (27). Clamping at the extensions mimics the static mechanical 

boundary conditions of the native meniscus. Samples were cultured in media containing 

DMEM, 10% FBS, 100 μg/mL penicillin, 100 μg/mL streptomycin, 0.1 mM non-essential 

amino acids, 50 μg/mL ascorbate, and 0.4 mM L-proline at 37°C and 5% CO2 (26). Culture 

media was collected and replenished three times a week. Images were taken at each media 

change and imported into ImageJ to calculate the area of each construct. At the conclusion 

of culture, each meniscus was sectioned to obtain samples for biochemical, histological, and 

SEM analysis (Figure 1).

Biochemical Content

Biochemical samples were collected from four different regions on each meniscus. Each 

sample was weighed to obtain a wet weight (WW) then frozen, lyophilized, and weighed 

again to obtain dry weight (DW). As previously described, biochemical content of constructs 

was measured using a Hoechst DNA assay for DNA content (51), a modified 1,9-

dimethylmethylene blue (DMMB) assay at pH 1.5 for GAG content (52) and a 

hydroxyproline (hypro) assay for collagen content (53). The same assays were performed on 

both constructs and media samples. The sum of biochemical content in media added to 

biochemical content in the construct was the total content. Retention was calculated as a 

percentage of content in each construct relative to total content.

Confocal Microscopy

At the conclusion of each culture period, menisci were sectioned with two slices taken from 

each meniscus, one each for radial and circumferential imaging (Figure 1). Samples were 

placed in 10% buffered formalin for 48 hours followed by storage in 70% ethanol. Confocal 
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reflectance, autofluorescence, and fluorescence imaging was performed on a Zeiss 710 

confocal microscope with a Zeiss Axio Observer Z1 inverted stand using a 40×/1.2 C-

Apochromat water immersion objective. Collagen fiber reflectance was captured between 

475–510 nm, while cell autofluorescence was captured between 500–580 nm (26).

Images were analyzed for fiber diameter and alignment index (AI) by a custom MATLAB 

code as previously described (27,48,54). A circumferential cross-section was obtained from 

each meniscus in which 5-7 images from different regions of the cross-section were taken 

for analysis. Images were analyzed using a series of fast Fourier transforms (FFT) to 

determine alignment index followed by a radon transform to determine mean fiber diameter. 

A 2D FFT determines the maximum angle of alignment. An average cycle count along the 

x-axis perpendicular to the maximum angle of alignment was converted to pixels and then 

microns to determine the average diameter. The AI is a ratio of the number of fibers ±20° 

from the maximum angle of alignment divided by the predicted number of fibers in a 40° 

span (54). A sample with no alignment would have an AI of 1 and a sample with perfect 

alignment would have an AI of 4.5. Native menisci have an average AI of 1.8 in the 

circumferential direction.

Scanning Electron Microscopy

A 2-4 mm thick slice was obtained from each sample and prepared for scanning electron 

microscopy (SEM) (55). Samples were fixed overnight in 2.5% glutaraldehyde and then 

washed with a 0.05 M cacodylate buffer. Samples were then incubated with 2% osmium 

tetroxide for 1 hour as a secondary fixative. Following fixation, samples were dehydrated in 

a graded ethanol series over several days. Samples were dried using a critical point dryer and 

freeze fractured at the imaging face. Samples were coated with gold palladium prior to SEM 

imaging. Samples were imaged using a Tescan Mira3 FESEM.

Histology

Following confocal imaging, samples were dehydrated in a graded ethanol series, embedded 

into paraffin blocks, sectioned, and stained. For each sample, one section was embedded to 

examine the radial direction, with the second section embedded to examine the 

circumferential direction. Collagen was characterized using a picrosirious red staining, first 

imaged using brightfield microscopy and then visualized under polarized light to view 

collagen fiber organization (26). Immunohistochemistry (IHC) was conducted as previously 

described to further investigate collagen content using antibodies for collagen type I 

(Abcam, Cambridge, MA, 34710), collagen type II (Chondrex, Redmond, WA, 7005), and 

collagen type X (Abcam, 58632) (37). Specific proteoglycans including biglycan (courtesy 

of Dr. Larry Fischer, NIDCR, LF-96), decorin (courtesy of Dr. Larry Fischer, NIDCR, 

LF-94), and fibromodulin (Abcam, 81443). Primary and secondary antibody controls were 

run in parallel with samples for immunohistochemistry stains (Supplemental 1 and 6). All 

slide were counterstained with hematoxylin. Images were obtained with a SPOT RT camera 

(Diagnostic Instruments, Sterling Heights, MI) attached to a Nikon Eclipse TE2000-S 

microscope (Nikon Instruments, Melville, NY).
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Enzyme-Linked Immunosorbent Assay (ELISA)

Small tissue specimens were obtained from each samples and assayed for collagen type I 

and II using ELISA. Tissue was lyophilized, pulverized, and weighed for dry weight. ~2 mg 

of tissue was extracted using a series of 4°C incubations with guanidine, acetic acid, pepsin 

and elastase. Prior to assaying, the level of solubilization was evaluated via a 6% SDS-gel 

stained using Coomassie Blue with collagen II as a standard. A three day solubilization 

period with pepsin was used to digest tissue. Levels of collagen was detected using a bovine 

type I and multispecies type II collagen detection kits (Chondrex, Redmond, WA).

Mechanical Properties

Two 4 mm diameter plugs from each sample were tested for compressive properties 

(49,56,57). Each sample was tested in confined compression via a stress relaxation test 

performed by imposing 10×100 μm steps (relaxation=12 min., strain=5-45%, steps=5%, 

n=4). The measured loads were fit to a poroelastic model using a custom MATLAB program 

to determine aggregate modulus (HA). A dog bone punch in the radial and circumferential 

direction was obtained from each samples and tensile tested (Figure 1). A 0.75%/sec strain 

rate was applied to mimic quasistatic loading and the elastic modulus was measured as the 

slope of the linear region of the stress vs strain curve. Mechanical testing was performed on 

an Enduratec ElectroForce 3200 System (Bose, Eden Prairie, MN) using a 250 g or 1 kg 

load cell.

Statistics

Contraction data was analyzed using a 2-way-ANOVA with Tukey’s t-test for post hoc 

analysis. Biochemical and ELISA data were analyzed by 1-way-ANOVA using Tukey’s t-

test for post hoc analysis. A mixed model with random effect of sample number was used for 

fiber diameter and fiber alignment data. Fiber diameter had an inter class correlation 

coefficient (ICC) of 13% and fiber alignment had an ICC of 4%. Biochemical content was 

compared to fiber formation measures using a least square fit and significance was 

determined using a Pearson correlation. All data are written as mean ±SD and significance 

was determined with p<0.05. Data analysis was conducted using JMP software (SAS 

Institute Inc, Cary, NC).

Results

Cell type does not influence contraction

Throughout culture, constructs maintained anatomical size and shape. Constructs had 

minimal contraction, contracting uniformly to maintain shape with a loss of ~25% projected 

area (Figure 2). All three culture groups contracted gradually over time with no significant 

differences in contraction between groups at each time point (p>0.05) (Figure 2A). 

Constructs maintained anatomical definition throughout the 4 weeks of culture (Figure 2B).

MSC, 50/50, and FCC culture groups organized oriented fibers

At the beginning of culture, menisci had small disorganized fibers (~8.5 μm in diameter and 

1.35 AI) with a homogenous cell distribution (Figure 4). After 4 weeks in culture, fibers 
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become more organized with regions of directionally oriented fibers. Fiber alignment was 

directionally dependent, circumferential and radial faces were imaged from different 

locations from each sample (Figure 3). In the circumferential direction collagen fibers were 

oriented in the circumferential direction running from horn to horn where each sample was 

clamped at an extension. FCC mono-culture menisci had visible striations analogous to fiber 

fascicles seen in native meniscal fibers (Figure 3). A thin, aligned outer edge with radial 

fibers extending into the bulk of the tissue was apparent in radially sliced samples. MSC 

mono-culture group showed early signs of fiber development and alignment, however, fibers 

appeared smaller than those in FCC mono-culture and 50/50 co-culture groups.

FCC mono-culture have the greatest fiber diameter

Image analysis of circumferential images quantified the fiber diameter and alignment index 

in samples groups. Consistent with qualitative image observations, FCC mono-cultured 

menisci produced significantly larger diameter fibers and more aligned fibers than 50/50 and 

MSC cultured menisci (p<0.05). FCC mono-culture had the highest fiber diameter at ~17 

μm and MSC mono-culture had the lowest fiber diameter at ~9 μm (Figure 4). The 50/50 co-

culture had a diameter in between FCC and MSC mono-culture at ~12 μm. After 4 weeks in 

culture FCC fiber diameter approached native values averaging at ~35 μm. A similar trend 

was observed in the alignment index, where FCCs had increased fiber diameter and 

alignment approaching native values at ~1.75 (27,48).

MSCs transition to chondrogenic morphology while FCCs integrate into collagen fibers

FCCs and MSCs labeled with cell tracker dyes were imaged at the beginning of culture and 

after 4 weeks of culture. FCCs and MSCs were evenly distributed throughout the depth of 

the meniscus construct. The FCCs and MSCs in the 50/50 co-culture group were 

homogenously mixed and distributed throughout the gel at the beginning of culture (Figure 5 

row 1). At 0 weeks FCCs appeared small and rounded, while MSCs were slightly larger in 

size and appeared elongated on the collagen gel (Figure 5 row 2). After 4 weeks of culture in 

a fibrochondrogenic media, cells remained evenly distributed throughout the collagen. While 

the FCCs remained in a circular phenotype, MSCs transitioned from an elongated 

morphology consistent with a fibroblastic phenotype to a circular morphology consistent 

with a chondrogenic morphology (Figure 5 row 3). Collagen gels have small disorganized 

fibers at 0 weeks that develop into larger more organized fibers after 4 weeks. The FCC 

mono-culture group formed well defined fibers where FCCs integrated into the collagen 

fibers. The MSC mono-culture group had less developed fibers and MSCs settled into pores 

between collagen fibers (Figure 5 row 4).

MSCs increased matrix production compared to FCCs

The presence of MSCs in tissue engineered meniscal constructs increased GAG and collagen 

accumulation. After 4 weeks in culture, the MSC mono-culture menisci had ~350% more 

GAG/meniscus and the 50/50 co-culture had ~250% more GAG/meniscus than the FCC 

mono-culture group (Figure 6A). Similar trends were noted when GAG content was 

normalized to DNA (Figure 6B). GAG content measured in the media was added to GAG 

content in the menisci to calculate retention of GAG in the constructs relative to total GAG 

produced. 50/50 co-culture retained a significantly higher amount of GAG in each meniscus 
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sample (Figure 6C). 50/50 co-culture and MSC mono-culture showed an increase in 

production of hydroxyproline compared to FCC mono-culture, however this increase was 

not significant (Figure 6D, p>0.05). Tissue engineered menisci when seeded with MSCs 

have ~30 % of the GAG (μg)/ww(mg) and 40% hypro(μg)/ww(mg) content of human native 

menisci, while tissue engineered constructs seeded with FCCs have ~12% and 31% 

respectively (wet weights presented in Supplemental Figure 2)(58). Seeding constructs with 

MSCs improved the biochemical content to better resemble native values.

Collagen and proteoglycans were probed in meniscus scaffolds using immunohistochemistry 

and ELISA (Figure 8 and Supplemental 5). MSC mono-cultured constructs had increased 

levels of staining for biglycan and decorin with heavy staining at the surface of the 

construct. FCC mono-cultured constructs had increased staining of fibromodulin throughout 

the depth of the construct (Supplemental 5). Meniscus scaffolds were initially cast using 

collagen type I. Positive staining for collagen type I was consistent between 0 and 4 weeks. 

After 4 weeks in culture FCC mono-culture stained darker for collagen type II compared to 

the other culture groups. ELISA analysis supports that FCC and 50/50 groups produce more 

collagen type II than MSC seeded menisci. Conversely, MSC seeded menisci produced 

significantly more collagen type I than FCC and 50/50 groups (Supplemental 3). Minimal 

staining for collagen type X was seen in culture groups.

Fiber diameter was inversely correlated with GAG content

While MSCs have an increased ability to generate GAG and hydroxyproline, constructs 

seeded with MSCs have smaller collagen fibers. Fiber diameter and alignment index were 

compared with GAG and hydroxyproline content per construct using a linear regression and 

Pearson correlation (Figure 7). Hydroxyproline content was not correlated with fiber 

diameter and alignment index. Alignment index had a statistical tend of decreasing as GAG 

content increased (R2=0.38, p<0.056). Fiber diameter and GAG content per meniscus were 

negatively correlated with fiber diameter decreasing with increasing GAG content (R2=0.85, 

p<0.05).

Mechanical properties improve with time in culture

Meniscal constructs increased in both tensile and compressive modulus after 4 weeks in 

culture (Supplemental 4). Samples from the circumferential and radial direction were not 

statistically different and were therefore pooled. Tensile properties were highest in the MSC 

group (60 kPa) and compressive properties were highest in the FCC group (59 kPa). Tissue 

engineered menisci are at about 15% of native bovine aggregate modulus, however tensile 

value are still far below native values (59,60). While construct properties increased with 

time, there was no significant difference between culture groups after 4 weeks.

Discussion

The objective of this study was to evaluate GAG production and fiber formation of MSCs in 

mono- and co-culture with FCCs. This study showed that MSCs incorporated in a 3D tissue 

engineered meniscus had increased matrix production, but decreased the fiber reorganization 

compared to FCCs. This study demonstrated that while MSCs in this system are highly 
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metabolically active, producing collagen and GAG, the types of collagen and the 

organization of the collagen network are different between MSCs and FCCs.

Maintenance of size and shape is a critical factor in engineering anatomical meniscus 

implants. We have previously shown that anchoring a FCC seeded implant at the horns 

reduced collagen contraction (27). MSCs are known to be a highly proliferative and 

contractile cell type (44,61–65). The proliferative properties of stem cells are desirable for 

obtaining sufficient cell numbers for construct generation, however precise control over 

contraction is important for matching the size and shape of tissue engineered menisci for 

clinical application. MSCs are known to rapidly contract low density collagen matrixes 

along a mechanically fixed axis (61,63,64). High concentration collagen with a mechanical 

boundary condition is known to reduce collagen contraction (26,27,47,66). Given MSCs 

highly contractile nature, monitoring of anatomical size and shape throughout culture is 

important for determining if MSCs are an appropriate cell type for use in meniscus tissue 

engineering. In this study, MSCs were embedded in tissue engineered menisci both in co-

culture with FCC and in mono-culture. Changing the cell type had no significant influence 

on meniscal contraction. This study shows that the use of MSCs in tissue engineered 

meniscus has minimal impact on the overall size and shape of the meniscus.

In addition to maintaining anatomical shape, a key challenge in meniscus tissue engineering 

is generating appropriate microstructure and fiber organization. Mechanical constraints are a 

well-established method used to direct cellular remodeling and guide the alignment of fibers 

in collagen gels. This has been shown across many systems and cell types including collagen 

seeded with MSCs (61,64,65), fibroblasts (41,67–69), and annulus fibrosis chondrocytes 

(46). The mechanical fixation used in this study mimics native fixation at the meniscal 

enthesis (70). Application of a mechanical constraint at the meniscal horns has been shown 

to create native like orientation of fibers in a tissue engineered meniscus seeded with FCCs 

(27). However, there is limited research on MSCs ability to form fibers in the context of 

meniscus. In other systems for tendon and ligament tissue engineering, MSCs are able to 

exert tractional forces and align fibers in the direction of axial fixation (61,62,65,67). 

Contraction was often coupled with fiber formation, however contraction and fiber 

formation are dependent on the mechanical load, collagen concentration, and cell 

concentration (61,63,64). Furthermore, contraction does not directly correlate to fiber 

formation. Previously we have seen that groups with increased contraction had decreased 

fiber size and alignment, where mechanical fixation had a greater effect on fiber formation 

(27). Another study saw found that MSCs seeded on an aligned matrix had limited GAG and 

collagen production compared to FCCs seed on the same matrix (71). In the study, MSCs 

developed and formed fibers, however MSC fiber diameter and alignment were inferior to 

FCCs. Native fiber diameters are ~35 μm and with an alignment index of ~1.75 (27,48). Of 

the three culture groups, the FCC mono-culture menisci were closest to native values at a 

diameter of ~17 μm and an alignment index of ~1.47. Both FCC mono-culture and co-

culture have significant increases in fiber diameter, however, MSC mono-cultured menisci 

do not significantly increase fiber diameter after 4 weeks of culture. These findings 

emphasize that FCCs and MSCs have different responses to the mechanical boundary 

conditions and the structural microenvironment they are cultured in.
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Proteoglycans are another factor known to influence the nature of fiber formation. The data 

from this study showed that increasing GAG content was inversely correlated with 

decreasing fiber diameter. Notably, the production of GAG was significantly higher in the 

MSC mono-cultured gels which had the lowest fiber diameter. In this study, MSC mono-

cultured gels had ~350% and co-cultured gels had ~250% the amount of GAG/meniscus 

compared to FCC mono-culture. While GAG production is typically considered a positive 

marker for a meniscal phenotype, the concentration of GAG in the meniscus is significantly 

lower than cartilage, with proteoglycans only comprising 1-2% of the dry weight (1,72,73). 

Furthermore the GAG content of the meniscus increases with age until skeletal maturity 

(72). The type of GAG can influence the way in which fibers form. Small leucine rich 

proteoglycans (SLRPs) are present in fibrocartilage and play a key role in matrix assembly 

(10,74,75). The presence of certain small proteoglycans may actually lead to decreased fiber 

forming capabilities by inhibiting assembly of collagen fibrils (76–78). The constructs in 

this study produced SLRPs decorin, biglycan, and fibromodulin. The increased production 

of GAG in the MSC cultures was correlated with the reduced ability to form large fibers. 

Over accumulation of SLRPs has been linked with reduced fibrillogenesis, however more 

research into the interaction and concentration of these molecules in the meniscus is 

necessary to better understand how to influence fiber formation for tissue engineering 

(78,79). While MSCs are the native cell precursor to FCCs in development this system does 

not adequately differentiate MSCs into FCCs with the same fiber forming capabilities. Fine 

tuning the amount and types of proteoglycans produced by FCCs and MSCs will provide 

insight into their role in controlling fiber formation.

The meniscus is known to be largely comprised of water, collagen, and proteoglycans 

(10,80). Collagen type I is highly prevalent in the outer red-red zone and collagen type II is 

the predominant collagen type in the inner white-white zone (81). Tissue engineered menisci 

in this study contained both collagen I and collagen II. MSC seeded constructs produced 

significantly higher amounts of collagen type I, whereas FCC and co-cultured constructs 

showed increased levels of collagen type II. At 4 weeks, there were no spatial differences in 

the expression between collagen type I and II. Collagen type I is found in a region of the 

meniscus typically under tensile stresses, while collagen type II is prevalent in the inner 

meniscus typically under more compressive loads (20). The menisci in this study are 

constrained at the horns providing a static mechanical boundary condition. A dynamic 

loading regime mimicking native mechanical loading would likely increase regional 

expression of collagen types resembling native meniscus (48).

The specific use of MSCs in a tissue engineered model of meniscus formation could lend 

key insight into the development of native meniscus. During the development of the knee, 

the meniscus begins as a dense mesenchymal condensate (40,82). Throughout embryonic 

development cellular concentration decreases as collagen content increases (40,83) Collagen 

fibers begin as small and disorganized and gradually begin to form larger organized fibers 

after establishment of the meniscal insertions. Early fiber alignment is established in 

embryonic development, however meniscal maturity is not reached until after years of 

normal load bearing in a child (40,84). GAG content is low in early development when 

fibers form, with age, GAGs are deposited in distinct domains separate from collagen 

(72,74,85) Mechanical load bearing is essential to the maturation of the meniscus both pre- 

McCorry and Bonassar Page 10

Connect Tissue Res. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and post-natally (86). Similar to early stages of meniscal development, our system begins 

culture with MSCs seeded into a disorganized collagen gel. Similar to enthesis fixation 

during development, mechanical fixation at the horns helps to direct fiber formation. Tissue 

engineered menisci seeded with MSCs mimic the developmental process which will help to 

inform chemical and mechanical signals that may play a role in meniscal development. The 

system established in this study can be used to ask specific questions about how mechanical 

and biochemical signals can influence MSC differentiation and meniscal development.

This study compared the ability of MSCs and FCCs to form a large organized meniscal 

implant. MSCs produced an anatomically accurate TE meniscus with high levels of GAG, 

however the tissue had inferior fiber microstructure. High levels of GAG are typically 

considered positive markers for fibrochondrogenic differentiation, however this study 

indicates that high levels of GAG production is correlated with reduced fiber diameter. 

MSCs remain a promising cell source for tissue engineering, however achieving targets for 

fiber size and organization will likely require manipulating the amount and types of GAGs 

produced by MSCs. In this study, co-cultures achieved intermediate levels fiber formation 

and GAG production. Co-culture can be used as a technique to utilize the fiber formation 

capabilities of FCC and the matrix production properties of MSCs while reducing the 

clinical dependence on high volumes of FCCs for tissue engineering the meniscus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample delegation from constructs at the conclusion of culture. Dogbone shapes were 

allocated for tensile testing. Circular shapes indicate 4 mm punch biopsies used for 

compression testing. Solid lines depict cut lines for confocal slices that were also used for 

histology. Dotted line indicates freeze fracture lines performed on dried SEM samples prior 

to mounting on SEM stubs. Remaining material was divided into four parts and analyzed for 

biochemical analysis. Scale bar = 10mm.
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Figure 2. 
Tissue engineered meniscal contraction. (A) Ratio of projected area over initial projected 

area calculations at day 1. (B) Representative images of menisci at 0-, 4- weeks. No 

statistical difference was observed between culture groups (mean ±SD, n=4, p<0.05). scale 

bar = 10mm.
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Figure 3. 
MSCs and FCCs form fibers in both the circumferential and radial direction (↑ indicates 

fiber direction). 0 week menisci have mostly small disorganized fibers. After 4 weeks all 

culture groups have organized fibers with directionality. Circumferential fibers have formed 

running from horn to horn of menisci. Aligned fibers around the outer edge and extending 

into the center of the meniscus are visible in the radial direction. (top) Polarized light, scale 

bar = 300 μm (bottom) SHG with FCCs labeled red and MSCs labeled green, scale bar = 

100 μm.
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Figure 4. 
Fiber diameter and alignment index of circumferential sections at four weeks measured 

using SHG images analyzed using custom MATLAB code (— significantly different 

between groups, * significantly different with time, p<0.05, n=6-8, 7 images per samples).
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Figure 5. 
Fluorescence and scanning electron microscopy (SEM) of cells in collagen gels. 

Fluorescence images show FCCs in red and MSCs in green with collagen visualized using 

second harmonic generation (SHG), scale bar = 100 μm. High magnification cell images are 

taken using SEM, scale bar = 10 μm. MSCs ( ) shifted to a circular phenotype. FCCs (→) 

integrated into collagen fibers while MSCs ( ) settled into collagen pores.
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Figure 6. 
Biochemical analysis of meniscal constructs at four weeks. (A) Total GAG content per 

meniscus. (B) GAG normalized to DNA content. (C) % GAG retained in meniscal construct 

relative to GAG released in media. (D) Hydroxyproline content per meniscus. — 

significantly different between groups (p<0.05, n=4).
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Figure 7. 
Fiber formation and biochemical content relationship in tissue engineered menisci (A-B) 

Total GAG content per meniscus compared to fiber diameter and alignment index. (C-D) 

Total Hypro content per meniscus compared to fiber diameter and alignment index. Fiber 

diameter is strongly correlated to GAG/Meniscus (p<0.05, R2>0.80). <R>  FCC, <B> 

50/50, <G>  MSC.
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Figure 8. 
Immunohistochemical staining for collagen type I, II, and X after 0 and 4 weeks in culture 

(scale bar=200 μm).
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