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Abstract

Vervet monkeys are amongst the most widely distributed nonhuman primates, show considerable 

phenotypic diversity, and have long been an important biomedical model for a variety of human 

diseases and in vaccine research. Using whole genome sequencing data from 163 vervets sampled 

from across Africa and the Caribbean, we find high diversity, within and between taxa, and clear 

evidence that taxonomic divergence was reticulate rather than following a simple branching 

pattern. A scan for diversifying selection across taxa reveals strong and highly polygenic selection 

signals affecting viral processes. Furthermore, selection scores are elevated in genes whose human 

orthologs interact with HIV, and in genes that show a response to experimental SIV infection in 

vervet monkeys but not in rhesus macaques, suggesting that part of the signal reflects taxon-

specific adaptation to SIV.

Introduction

Vervet monkeys (genus Chlorocebus, also known as African green monkeys), are highly 

abundant in savannahs and riverine forests throughout sub-Saharan Africa, as well as on 

several Caribbean islands where they were introduced during the colonial era. There is a 

long history of research on vervet monkeys, ranging from studies of their social behavior1,2 

to their use as an important model for a variety of human diseases3 and in vaccine 

research4–6. Vervet research colonies have been established, one of which is currently being 

genetically characterized7,8. Vervets are particularly interesting for HIV/AIDS research as 

they are the most abundant natural hosts of simian immunodeficiency virus (SIV), a close 

relative of HIV. SIV is highly prevalent across African vervets, but infected individuals 

typically avoid progression to immunodeficiency, despite high viral loads9,10. Elucidating 

the genetic mechanisms for host defense against this virus in vervets may identify new 

targets for preventive and therapeutic interventions for HIV/AIDS.

Here we follow the publication of the vervet reference genome11 by presenting a genus-wide 

survey of polymorphism. The genus Chlorocebus has alternatively been viewed as a single 

species (Ch. aethiops) with several subspecies or as 5–6 species with additional 

subspecies12. Our sampling strategy was intended to capture this diversity (Supplementary 

Data 1), by including a total of 163 individuals from nine countries in Africa and two 

countries in the West Indies, which harbor sizable feral populations (Fig. 1a, Supplementary 

Data 1). No previous study has conducted genome-wide resequencing in a non-human 

primate in such a large sample and over such a geographically extensive area.

Vervets harbor extensive polymorphism, both within and between taxa, and we see clear 

evidence that taxonomic divergence involved gradual divergence and gene flow rather than 

following a simple branching pattern. A scan for diversifying selection across vervet taxa 

yields gene enrichments much stronger than in similar studies on humans13. In particular, we 

report strong and highly polygenic selection signals affecting viral processes — in line with 
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recent evidence that proposes a driving role for viruses in protein evolution in mammals14. 

These signals are furthermore enriched in genes with known relevance to SIV: either their 

human orthologs interact with HIV, or they show a vervet-specific transcriptional response to 

SIV infection. Intriguingly, rather than affecting genes with antiviral and inflammatory-

related functions15, selection in vervets appears to have primarily targeted genes involved in 

the transcriptional regulation of viruses, and in particular those that are harmful only under 

immunodeficiency, suggesting evolved tolerance of SIV rather than resistance against 

infection.

Results

Sequencing and polymorphism detection

100 bp paired-end Illumina data were generated for all samples. Coverage was relatively low 

(median 4.4X), but at least one member of each taxon was sequenced to 10X coverage or 

higher (Supplementary Table 1). Employing a standard pipeline for alignment to the 

reference Chlorocebus_sabaeus 1.111, derived from a St. Kitts-origin monkey, and joint 

variant detection across all samples, we discovered a total of over 97 million single 

nucleotide polymorphisms (SNPs), 61 million of which passed our quality filters (Online 

Methods, Supplementary Figs. 1 to 4).

Genetic relationships among vervet groups and SIV strains

Clustering of individuals based on pairwise genetic distance (Fig. 1, b and c) and principal 

component analysis (Supplementary Fig. 5) generally agrees with prior morphological and 

geographic classification, and led us to define six African and two Caribbean taxonomic 

groups: sabaeus (West Africa), aethiops, tantalus, hilgerti, cynosuros, pygerythrus, sabaeus 
(St.Kitts and Nevis) and sabaeus (Barbados). The genetic relatedness pattern also clearly 

confirms the status of sabaeus as an outgroup to other vervet taxa (Supplementary Note 1, 

Supplementary Figs. 6 and 7), and suggests isolation-by-distance within groups (Fig. 1b). 

Both geographic location and group identity contribute significantly to explaining the overall 

pattern of polymorphism (likelihood-ratio test p<2*10−3 and p<10−52, respectively, 

Supplementary Table 2). Our data agree with the morphology-based taxonomy12 in that 

sabaeus, aethiops and tantalus appear to be well-defined taxa, whereas hilgerti, cynosuros 
and pygerythrus are comparatively closer to each other, exhibiting substantial amounts of 

shared variation and strongly correlated allele frequencies (Fig. 1c, Supplementary Fig. 8). 

However, while morphological evidence groups hilgerti and pygerythrus as a single species 

(Ch. pygerythrus) distinct from cynosuros (Ch. cyonosuros), our data show that pygerythrus 
and cynosuros are closer to each other than either is to hilgerti. Indeed, two pygerythrus 
individuals from Botswana are more closely related to cynosuros than to other pygerythrus. 

This is probably due to admixture: as we note below, there is abundant evidence for 

admixture between these groups. Finally, the pattern of relatedness among SIV strains 

mirrors the pattern in vervets (Fig. 1d), suggesting that SIV existed in vervets prior to their 

initial divergence more than half a million years ago and has co-evolved with the taxa9,11.

Our data also confirm that, as surmised from the historical record, Caribbean vervets are 

derived from Western African sabaeus. Additionally, we are able to clarify the relationship 
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between the vervet populations on different Caribbean islands. The fact that vervets from 

Barbados are nearly as different from vervets from St. Kitts and Nevis as they are from 

Gambian sabaeus (Fig. 1c) suggests that these two Caribbean populations were founded 

independently and experienced two independent bottlenecks (28% and 17% reduction in 

diversity relative to Gambia, respectively). The vervet population from Nevis, on the other 

hand, is genetically a subset of the St. Kitts population (17% reduction in diversity relative 

to St. Kitts), and likely was founded by individuals from this island, which is less than 4 km 

away. In human genetics there is currently great interest in sequencing studies of recently 

expanded bottlenecked populations, both for elucidating population genetic processes and 

for identifying deleterious variants with a strong impact on phenotypes that have reached 

high frequency through drift. However, while the site frequency spectrum in Caribbean 

vervets is generally biased towards higher allele frequencies, there is no evidence in our data 

that this effect is relatively stronger for putatively deleterious alleles (Supplementary Fig. 9).

Returning to Africa, variation within vervet taxa is much larger than in humans19 and other 

great apes20 but is typical for other primates (Fig. 1c, Supplementary Fig. 10)21 — which is 

perhaps surprising given the ubiquity of vervets. Divergence between vervet taxa is generally 

higher than between subspecies of other primates, with average pairwise sequence 

divergence between taxa of ~0.4%, compared to 0.2% to 0.32% across great ape 

subspecies20, and FST-values from 25% to 71% (Fig. 1c, Supplementary Fig. 11), compared 

to <15% across human populations22 or macaque subspecies23. However, maximum 

sequence divergence is substantially lower than between human and chimpanzee 

(~1.24%)24. This intermediate status is supported by the presence of substantial amounts of 

both shared variation and fixed differences between vervet taxa (Supplementary Fig. 8).

Evidence for genetic admixture

The process that gave rise to the current taxa was much more complex than a series of 

population splits. We used Admixture25 to cluster individuals into groups. This analysis 

generally resolves the above-mentioned taxa, and confirms the complicated relationships of 

south- and east-African vervets (Fig. 2a, Supplementary Figs. 12 and 13). However, there is 

evidence of admixture throughout. For example, Ghanaian sabaeus and Kenyan and 

Tanzanian hilgerti show substantial proportions of tantalus ancestry (Fig. 2a). D-statistic 

(ABBA-BABA test; Fig. 2, d and e, Supplementary Fig. 14, Supplementary Data 2)26,27 

confirms that this shared ancestry represents gene flow between tantalus and both Ghanaian 

sabaeus and hilgerti (D = 15.2% and 5%, respectively; block jack-knifing p<10−300). The 

alternative explanation, ancestral population structure, seems less parsimonious, as the 

structure would have had to persist through multiple taxonomic splits. Using the multiple 

sequentially Markovian coalescent method (MSMC; Fig. 2, b and c, Supplementary Figs. 15 

and 16, Supplementary Note 2)28 we show that the observed signatures of gene flow likely 

reflect ancient rather than recent admixture; for example, for tantalus, after initial 

divergence, gene flow ceased earlier with geographically more distant Gambian sabaeus than 

with geographically closer Ghanaian sabaeus (Fig. 2b). The lack of long shared haplotypes 

across taxa also supports the absence of recent admixture (Supplementary Table 3).
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Turning to the east and south African cynosuros/hilgerti/pygerythrus complex, we find that, 

while simple clustering suggests that hilgerti is an outgroup to cynosuros and pygerythrus 
(Fig. 1, b and c), Admixture represents cynosuros individuals as a mixture of hilgerti and 

pygerythrus with a larger contribution of the former (Fig. 2a). MSMC suggests a complex 

history of varying gene flow between the three groups (Supplementary Fig. 16). We also 

investigated the status of pygerythrus from Botswana, which appear as sister-group to 

Zambian cynosuros in the clustering tree (Fig. 2d): D-statistic shows that they have an 

additional genetic contribution from South African pygerythrus (Fig. 2e, D = 7.6%, jack-

knifing p<10−300) and MSMC confirms an intermediate status of Botswanian pygerythrus 
with comparable levels of genetic exchange with both South African pygerythrus and 

cynosuros until total separation from both groups ten thousand years ago (Fig. 2c), again 

compatible with isolation by distance. In summary, while inferred genetic relationships are 

generally consistent with current taxonomy, strong signals of excess allele sharing along 

geographic axes suggest that the evolutionary history of these taxa involved processes of 

gradual divergence, isolation, and secondary contact.

Strong signals of selection

Our data provide a rare opportunity to look for signals of adaptation on a continent-wide 

scale, across multiple taxa. To identify footprints of selection, we used an approach that 

incorporates information on both the distortion of allele frequency spectra within groups and 

the increase in differentiation among pairs of groups at loci close to a group-specific 

selective sweep (XP-CLR)29. To summarize the 30 XP-CLR-comparisons between African 

taxa (Supplementary Figs. 17 to 22), we calculated “selection scores” — the root mean 

square XP-CLR scores (across taxon comparisons) — on a 1000 base pair grid along the 

genome.

These scores clearly capture strong signals of selection, because they are significantly higher 

in genic than intergenic regions (one-sided Mann-Whitney U test p<10−300, Supplementary 

Fig. 23). To gain further insight, we compared the distribution of average selection scores for 

genes (Supplementary Data 3) across gene ontology (GO) terms with the R-package 

TopGO30. Testing for enrichment using the relative rank of all scores yielded stronger 

signals than testing genes with the highest scores against the background, suggesting that 

weaker, polygenic effects contribute strongly to the signal of selection (Supplementary Fig. 

24). We found 157 significantly enriched GO terms, many of which are related to RNA 

transcription and cell signalling (Fig. 3, Supplementary Fig. 25, Supplementary Data 4). 

These GO enrichments show partial overlap with similar scores comparing human 

populations (Supplementary Fig. 26)13. However, there are many more significantly 

enriched GO terms for vervets than for humans and shared enrichments are generally much 

more significant in the current data set, suggesting that vervet taxa provide a powerful model 

to study diversifying selection across closely related primate taxa. The strongest selection 

scores are consistent with a dominant role of viral pathogens as selective agents in vervets. 

In particular, we note viral process (p=5*10−9), and positive and negative regulation of 

transcription from the polymerase II promoter (p=3*10−17, 5*10−14), which is known to 

interact with viral proteins (for example the HIV Tat protein during transcription elongation 

of HIV-1 LTP31). We note that these virus-related categories are not only enriched in the root 
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mean square summary but also in many two-taxon XP-CLR comparisons (Supplementary 

Note 3). Furthermore, these categories do not show particularly large neutrality indices or 

significant enrichment for conserved elements32 (Supplementary Note 3; Supplementary 

Figs. 27–30), providing evidence that these signals are not predominantly driven by 

purifying selection (background selection), which can lead to confounding signals33.

To test more specifically for virus-related selection signals, we looked for enrichment of 

signals among the orthologs of human HIV-interacting genes. Indeed, 43 out of 166 gene 

sets in the NCBI HIV-1 human interaction database35 show significant enrichment for high 

selection scores (Supplementary Fig. 31, Supplementary Data 5). However, we note that 21 

and 71 partly overlapping gene categories from this database also show enrichment for 

human selection scores and conserved elements, respectively (Supplementary Figs. 31 and 

32, Supplementary Note 3), suggesting that these gene sets are not very specific.

Selection signals linked to vervet specific response to SIV

SIVagm is prevalent in African vervets9,10 and has diverged into taxon-specific strains (Fig. 

1d) 36,37. Furthermore, while SIVagm is highly pathogenic when used experimentally to 

infect pigtailed macaques that are not natural SIV hosts38,39, infected vervets generally do 

not progress to AIDS, suggesting coevolution of virus and host. We hypothesized that 

coevolution between taxon-specific SIV strains and vervet taxa could lead to an ongoing 

evolutionary arms race that would manifest itself as diversifying selection across taxa, 

specifically on genes involved in host defense (whereas adaptations shared across the genus 

would be very difficult to detect). To test this, we reanalyzed microarray data comparing the 

transcriptional response of vervets and macaques to infection with SIV40,41. Unlike vervets, 

macaques are not natural hosts of SIV and generally develop AIDS-like symptoms upon 

infection. If some of the selection signals reflect adaptation to SIV in vervets, we would 

expect selection scores to be elevated in genes that are differentially expressed in vervets — 

but not in macaque — as a response to infection. Indeed, selection scores are much higher in 

genes that show a significant expression difference before and after infection in vervets only, 

as compared to genes showing an expression difference in both species (one-sided Mann-

Whitney U test p=5 10−9) or in macaque only (p=10−4) (Supplementary Fig. 33). 

Conversely, vervet-specific (but not shared or macaque-specific) differentially expressed 

genes are significantly enriched in high selection scores (p=0.003, p>0.99 and p>0.99, 

respectively).

To further investigate the underlying mechanisms, we grouped differentially expressed genes 

by coexpression patterns using weighted gene co-expression network analysis (WGCNA, 

Supplementary Figs. 34 and 35)42. Five out of 33 gene co-expression modules show a 

significant enrichment for genes with high selection scores (FWER<0.05; Fig. 4a, 

Supplementary Fig. 35, Supplementary Data 6). Remarkably, the significant modules share 

similar expression patterns with strong changes in vervets post-infection, and weak, 

inconsistent signals in macaques. In particular, all the modules that are enriched for 

diversifying selection show changes in gene expression in vervets six days post-infection, 

which is around the time that the virus becomes detectable and activates early immune 

responses. Two modules also show expression differences in the chronic stage (115 days 
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post infection), which is most relevant for progression to immunodeficiency. We ran GO 

enrichment analysis separately on the genes in the enriched WGCNA modules showing 

early (“acute”) and late (“chronic”) expression changes (Fig. 4). We found 30 and 20 

significantly enriched GO categories, respectively, many of which are involved in response 

to HIV in humans (Supplementary Data 7 and 8). For example, for early expression 

response, enriched GO categories include clathrin-mediated endocytosis43, autophagosome 
assembly, positive regulation of type I interferon (IFN-I) production40,41 and innate immune 
response (marginally significant at p=0.01004). This is consistent with recent findings that in 

macaques the IFN-I response is delayed in response to SIV infection and inhibited during 

the first week of SIV infection44, while natural hosts mount a very early and transient IFN-I 

response40,41. Conversely, the three most highly enriched GO categories for genes in 

modules with late expression changes are positive regulation of natural killer (NK) cell 
activation, regulation of cellular response to heat45, and somatic hypermutation of 
immunoglobulin genes46, consistent with differences in NK cell responses during SIV 

infection in natural hosts as compared to non-natural hosts, the lack of viral replication in B 

cell follicles (Tfh cells) and preservation of lymph nodes immune function in natural hosts in 

contrast to macaques, as well as a better adaptation to the stress induced by the chronic 

infection47–50.

Candidate targets of selection

While enrichment analysis identifies categories of genes under selection, and is likely driven 

by large numbers of genes with moderate effects, the highest selection scores identify 

candidate regions for strong selection (Fig. 5). The highest score is for an uncharacterized 

gene on chromosome 6 (Fig. 5b) with 97% sequence identity to the human gene encoding 

for RAN binding protein 3 (RANBP3), a protein connected to influenza A virus 

replication51 and that is involved in nucleocytoplasmic export of RNAs from human T-cell 

leukemia virus type 1 (HTLV-I)52 and HIV53,54. Another gene that displays among the 

highest selection scores is NFIX nuclear factor I/X (Fig. 5d), encoding for a transcription 

factor that binds the palindromic sequence 5′-TTGGCNNNNNGCCAA-3 in viral and 

cellular promoters. Nuclear factor I proteins can serve as a transcription selectivity factor for 

RNA polymerase II, and play a critical role in transcription and regulation of JC virus in 

humans55 and Simian virus 40 in vervet cells56. Remarkably, these closely related viruses 

are usually harmless but cause disease under immunodeficiency, specifically in SIV/HIV 

infection in macaque57 and human58. However, the lack of common genetic variants in the 

coding sequence of this gene suggests that selection is more likely to have targeted 

regulatory variants.

Discussion

We have genetically characterized Chlorocebus, vervet monkeys, a genus of African 

primates with continent-wide distribution and substantial, recently established, populations 

on three Caribbean islands. We find vervets to be genetically diverse with an average 

nucleotide diversity (heterozygosity) within taxonomic subgroups about twice that of 

humans (~0.2% in vervets)19. A recent study59, based on unpublished data from a subset of 

the samples described here, infers more than five times lower diversity; less than half the 
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lowest synonymous diversity reported in a study of 76 species of all phyla60. We suggest that 

the extremely low diversity values reported in the vervet study mentioned above are due to 

biases in GATK HaplotypeCaller leading to an excess of homozygous reference calls 

(Online Methods) and/or an overestimate of the accessible genome size.

There has been considerable debate about vervet taxonomy, both concerning taxonomic 

levels of different groups (species or subspecies) and relationships between groups. While 

taxonomic assignment can reflect a variety of morphological, genetic and behavioral 

information, our results suggest that — despite evidence for substantial genetic exchange — 

Chlorocebus includes both genetically well-separated taxa (sabaeus, aethiops, tantalus, and 

pygerythrus) as well as more closely related groups (pygerythrus, cynosurus, and hilgerti). 
The latter groups would naturally fall at a taxonomic level below the former.

Different phylogenetic relationships between vervet taxa have been proposed. Using two 

different clustering algorithms we find that West African sabaeus split off the common 

ancestor of other vervets first, followed by aethiops, with the last split separating tantalus 
from pygerythrus (the latter including cynosuros and hilgerti). This result is consistent with 

Warren et al. (2015)11, who inferred the same branching pattern using whole genome 

sequencing data of a single representative per taxonomic group. It contradicts Pfeifer 

(2017)59, who suggested that aethiops (rather than sabaeus) constitutes the outgroup of 

vervet taxa. Pfeifer attributed this difference to Warren et al. having neglected to distinguish 

fixed from shared polymorphism. However, Pfeifer apparently used fixed differences only to 

infer taxon relatedness. This procedure leads to erroneous conclusions, because inferred 

branch lengths for taxa with comparatively high rates of drift (low effective population size), 

such as aethiops, will be biased upward, and branch lengths for taxa that have been 

exchanging genes, such as sabaeus and tantalus, will be biased downward. By aligning a 

subset of the data against the macaque reference genome and computing genome-wide 

summaries of the coalescent histories of the samples, we strongly confirm the outgroup 

status of sabaeus (Supplementary Fig. 7, Supplementary Note 1).

These results notwithstanding, our analyses also clearly show that a simple phylogenetic tree 

cannot fully capture the pattern of relatedness across vervets. As in several recent 

studies61,62, the process of speciation must have been gradual and involved gene flow, 

leading to a fundamentally reticulate pattern of relatedness. Although we see no evidence for 

current gene flow between vervet taxa, definite conclusions will require more appropriate 

sampling (especially in putative hybrid zones, as these taxa are expected to readily 

hybridize63,64) and sequencing strategies that are better able to resolve haplotypes.

Finally, we carry out a screen for diversifying selection across vervet taxa, our primary goal 

being to look for signs of adaption to SIV. To this end, we use a method that tests whether 

the change in allele frequency between taxa at a locus occurred too quickly to be due to 

random drift. This approach is expected to be sensitive to both recent and relatively older 

selection events, and to pick up signals of recurrent adaptation29.

Gene ontology analysis yields strong enrichment of selection scores in multiple biological 

processes, generally driven by polygenic signals. Our data have the potential to yield 
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insights into taxon-specific adaptations (e.g., altitude adaptation in aethiops). In the present 

study, we focus on loci that show signals of repeated (but differential) adaptations across 

multiple taxa, consistent with host-pathogen coevolution. As hypothesized, our screen 

revealed a strong excess of signal in genes that interact with viruses, consistent with findings 

in other organisms14,29. While there is potential for coevolution with different types of 

viruses in vervets, integration of our selection study with gene expression analysis of SIV-

infected monkeys provides evidence that part of the signal results from vervet co-evolution 

with SIV. Interestingly, the genes identified do not include the virus (co-)receptor genes 

involved in the virus docking mechanism, but rather genes involved in cell signalling and 

transcriptional regulation, consistent with recent results suggesting that natural selection has 

shaped primate CD4+ T-cell transcription65, and suggesting adaptation to living with the 

virus rather than avoidance of infection. Indeed, one of the highest scoring genes controls 

the expression of a virus known to cause disease under SIV-induced immunodeficiency.

While there is no doubt that our analysis is picking up real signals of selection in virus-

related genes, it is difficult to determine the mode of selection conclusively. For example, we 

carried out several tests to confirm that our results are not primarily driven by purifying 

(rather than diversifying) selection, but further orthogonal approaches and functional 

validation will be necessary to ultimately understand the evolutionary dynamics of vervets 

and their pathogens. The data and results presented here should aid this endeavor, and may 

prove useful in the quest for antiviral vaccinations and therapies.

Online Methods

Sample collection and sequencing

All blood samples were collected under approved country specific permits that meet 

standardized bioprospecting regulations. DNA samples were obtained from blood (PaxGene 

DNA tubes, ACD tubes or archival blood cell pellet collection) except for sample AG23 that 

was obtained from a B lymphoblastoid cell line transformed with herpesvirus papio. 

Individuals were sequenced at variable coverage (Supplementary Data 1) on a Illumina 

HiSeq2000 platform obtaining 100bp paired-end reads.

Alignment, variant detection and filtering

Sequences were aligned against the ChlSab1.1 reference11 using bwa-mem66 with a total 

coverage of 798X and a median coverage of 4.4X. On average, more than 98% of the reads 

mapped for all taxa, suggesting that reference bias is weak. Following the GATK 

recommended workflow67,68, alignments against ChlSab1.1 (see URLs) were locally 

realigned, base quality scores were recalibrated using a first round of variant calling and 

variants were detected using GATK UnifiedGenotyper. We also called variants using GATK 

HaplotypeCaller but found these calls to have a strong bias towards homozygous reference 

alleles in the low coverage samples. We hence only used UnifiedGenotyper variant calls for 

further analysis. Biallelic SNP calls were hard filtered with a combination of GATK best 

practices68 and custom filters to yield the data set used for further analysis (Supplementary 

Table 1, Supplementary Fig. 1). We used VCFtools diff-indv-discordance to compare the 

genotype calls from Warren et al. 201511 and the current dataset for the five individuals that 
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are shared between the studies. For non-filtered SNP the discordance rate was 0.12% – 

0.26% and for all non-filtered sites it was 0.006% – 0.012%.

Given the large differences in coverage between individuals (2X–45X), a stringent control 

on false positive rate would have led to strong a bias towards lower diversity (and especially 

a lower number of singletons) in low coverage samples. We suggest that for population 

genomic analysis it is conservative to reduce bias at the cost of increased noise. Our dataset 

does show correlation between coverage and individual heterozygosity (Pearson’s r=0.48, 

p=10−10, Supplementary Fig. 3), especially for individuals with less than 4X coverage, but 

cross-individual sequence divergence within and between taxa is not strongly affected by 

coverage (Pearson’s r=0.009 and 0.026, respectively, Supplementary Fig. 3). The ancestral 

state for each SNP was determined by aligning the macaque reference genome, rheMac2, 

against ChlSab1.1 using nucmer69, only considering one-to-one mappings with a minimum 

length of 200bp.

To test whether our results could be affected by coverage bias, we repeated some of the 

analysis with a subset of the sequencing reads aligned to the Rhesus macaque genome, 

Mmul 8.0.1 (Supplementary Note 1, Supplementary Figs. 6 and 36).

Minor in-silico contamination of the original read-files of 18 South African individuals with 

RNA-seq reads was detected at a late stage (after review). While the effect of this on variant 

calls was very small (median genotype concordance between the original call-set and an 

updated version with contamination removed was 99.91%), it led to some highly expressed 

genes being masked by the high coverage filter (~2% additional PASS SNPs in the recall). 

We therefore repeated the complete selection analysis (Figs. 3–5, Supplementary Figs. 15–

31) using the updated call-set.

Accessible genome size

To compare levels of polymorphism and divergence across individuals and to previous 

studies, we measured the proportion of the genome accessible to our variant detection 

process. In particular, we excluded all sites that did not pass our quality filters, and, for each 

individual, all sites for which UnifiedGenotyper could not make a genotype call (Ns) 

(Supplementary Fig. 2).

Diversity and divergence

Nucleotide diversity was calculated by computing the number of pairwise differences for 

each comparison divided by the accessible genome size for each pair as derived above. For 

each group, nucleotide diversity was estimated as the average of within-group comparisons. 

We found 16–27 million SNPs segregating within taxa, corresponding to an average number 

of pairwise differences per site (nucleotide diversity) of 0.17–0.22% (Fig. 1c, Supplementary 

Fig. 7) and effective population sizes generally above 35,000 (except for aethiops for which 

we estimate ~29,000). Site frequency spectra within taxa (Supplementary Fig. 4) generally 

agree with neutral expectations, except for a general lack of low frequency variants and an 

excess of high frequency derived variants, most likely as a consequence of low power to call 

low frequency variants and erroneous inference of the ancestral state, respectively.
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Divergence was calculated as the average of pairwise differences across all comparisons of 

two groups. Two taxon site frequency spectra (Supplementary Fig. 9) generally showed 

fixed differences as well as shared and private variation, except for hilgerty/cynosorus/
pygerythrus which showed few fixed differences and highly correlated allele frequencies.

To assess the relative contribution of geography and taxon label to explaining the genetic 

relatedness among vervets, we calculated principal components (PCs) from autosomal SNPs 

using PCAdapt version 05/26/14 in mode fast70 setting K=6, which gave the best fit to our 

data. Next, for each of the six PCs we performed likelihood ratio tests in R (function anova 

with option test=‘LRT’) to test whether a linear model “PC ~ latitude + longitude + taxon 

label” gave a significantly better fit than a model using either only geography or only taxon 

(Supplementary Table 4). The outgroup branch of the vervet phylogeny was confirmed using 

genome wide summaries of the average time to the most recent common ancestor among 

samples from different taxa (Supplementary Note 1, Supplementary Fig. 7).

FST was calculated using the Weir-Cockerham estimator71 using vcftools72 for all autosomal 

SNPs. For each pairwise comparison, we summarised FST-values in minor allele frequency 

(MAF) bins (Supplementary Fig. 8; the maximum across MAFs in Fig. 1c).

SIVagm phylogenetic analyses

A 602 bp pol integrase fragment of SIVagm, obtained as described previously9, was used for 

phylogenetic analyses of a large sample of SIVagm strains from the different subtaxa of 

vervet with different origin. pol nucleotide sequence alignments were obtained from the Los 

Alamos National Laboratory HIV Sequence Database (see URLs). Newly derived SIV 

sequences were aligned using MUSCLE73 and alignments were edited manually where 

necessary. Regions of ambiguous alignment and all gap-containing sites were excluded.

Phylogenetic trees were inferred from the nucleotide sequence alignments by the neighbor-

joining method using the HKY85 model of nucleotide substitution73,74 implemented using 

PAUP*75. The reliability of branching order was assessed by performing 1,000 bootstrap 

replicates, again using neighbor-joining and the HKY85 model. Phylogenetic trees were also 

inferred by maximum-likelihood using PAUP* with models inferred from the alignment 

using Modeltest76. The neighbor-joining tree topology was used as the starting tree in a 

heuristic search using TBR branch swapping.

Admixture analysis

The software Admixture 1.2325 was run on autosomal SNPs filtered for minor allele 

frequency > 5%, converted to binary .bed format using GATK VariantToBinaryPed and LD 

pruned using the plink flag --indep 50 10 2 (Fig. 3a and Supplementary Fig. 11).

Cross-taxon gene flow across time

Missing genotypes in our autosomal SNP calls were imputed using beagle 477, version 

03Oct15.284:

java -jar beagle.jar gl=biallelic_pass_snps.vcf out=beagle_out.vcf ibd=false

Samples were phased using shapeit.v2.r837.GLIBCv2.12.Linux78:
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shapeit -phase --input-vcf beagle_out.vcf --window 0.1 -O phased.tmp

shapeit -output-vcf --input-haps phased.tmp -O phased.vcf

For each geographic sample group of interest, we chose the individual with the highest 

coverage for further analysis. For pairs of individuals from different groups, we extracted the 

alleles that segregate within or between the two individuals and their phase as needed as 

input to MSMC. The number of informative sites between two segregating variants was 

determined for each pair of individuals separately from the all-sites VCF (the whole genome 

including non-variant sites) by counting the number of non-filtered sites for which both 

individuals had genotype calls.

Three runs of MSMC2 (see URLs) were produced for each pair, two inferring coalescent 

rates across time within each of the two samples

msmc2 -I 0,1 -o within_1 input_chrom1 ... input_chrom29

msmc2 -I 2,3 -o within_2 input_chrom1 ... input_chrom29

and one run for inferring coalescent rates across time between the two samples

msmc2 -P 0,0,1,1 -o between input_chrom1 ... input_chrom29

The outputs of these runs were combined by interpolating the mid-point of each time 

interval in the former two on the mid-points in the latter run. Cross-coalescent rate was 

calculated as 2*between/(within_1+within_2) (Figs. 2, b and c, Supplementary Figs. 12 and 

13, Supplementary Note 2). Evolutionary time was scaled to years using a mutation rate of 

1.5*10−8 and a generation time of 8.5 years11. Each MSMC2 analysis was re-run 29 times 

leaving one chromosomes out at a time and block-jackknifing variance was calculated.

D-statistic

D-statistic was calculated from autosomal SNPs using Admixtools 3.027, treating samples 

from each country as a populations and performing all tests that were consistent with the 

country UPGMA tree shown in Fig. 2d. Macaque was used as an outgroup and the analysis 

was restricted to sites where the macaque allele could be inferred. Due to limitations in 

Admixtools the analysis was restricted to vervet chromosomes 1–24. Block-jackknifing was 

performed with Admixtools standard settings.

Diversifying selection scan

Autosomal biallelic PASS SNP genotypes were converted to XP-CLR input format. For each 

comparison of two groups, we excluded SNPs if they were not segregating within or 

between the groups or if they had more than 20% missing genotypes across the two groups. 

The genetic map from Huang et al.7 was interpolated to our SNP positions to obtain genetic 

distance in Morgan. A handful of extremely flat regions in the genetic map lead to numeric 

errors in XPCLR. The problematic markers were removed and map distance was instead 

interpolated from the adjacent markers left and right.

XP-CLR was run on all 30 possible comparison of the 6 African taxa (for each comparison, 

using each taxon once as objective and once as reference population). Parameters supplied to 
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XP-CLR were -w1 0.001 500 1000 -p0 0, meaning that a set of grid points as the putative 

selected allele positions are placed along the chromosome with a spacing of 1 kb, the sliding 

window size was 0.1 cM around the grid points and if the number of SNPs within a window 

is beyond 500, some SNPs were randomly dropped to control for SNP number. Alleles were 

assumed unphased (-p0) and SNPs in high LD were not down-weighted (final 0).

To find loci that were repeatedly under diversifying selection across several group 

comparisons, we calculated for each grid point the root mean square selection score across 

all 30 comparisons (Fig. 5a). To test whether these scores capture biological signal, we 

confirmed that scores are significantly higher in genic (introns + exons) than in intergenic 

regions (Supplementary Fig. 21, one sided Mann-Whitney U test, p<10−300). Since the 

Mann-Whitney U test assumes independence of scores, a condition which is not totally met 

in our data due to linkage disequilibrium, we also calculated the average of the mean 

selection score across each gene and compared the resulting value to a background 

distribution. The background distribution was obtained by first concatenating all 

chromosomes in a circle and randomly shifting (rotating) the scores against their genomic 

positions, then calculating mean gene scores from these rotated data. We again found that 

genic scores are significantly larger (p<10−5).

Gene set enrichment analysis

z-score transformed selection scores across genes (exons and introns) were used for gene 

enrichment analysis. Gene locations were extracted from NCBI Chlorocebus sabaeus 
Annotation Release 100 (see URLs). To test for enrichment in gene ontology (GO) terms, 

we first used the the R-package TopGO30 with the “weight01” algorithm which allows to 

account for the hierarchical structure (and thus overlap) of GO terms when testing 

significance and thereby implicitly corrects for multiple testing. GO annotations were 

obtained from the R package org.Hs.eg.db (Bioconductor 3.2). We restricted the analysis to 

5777 GO terms with more than ten genes in our annotation. Note that our gene scores are 

not biased by gene length because we are calculating the average score across genes rather 

than taking the maximum score. However, enrichment results are qualitatively similar if the 

maximum is taken. Results are also similar if only exons are used (rather than exons + 

introns). We also note that the most significantly enriched categories contain many genes 

(Supplementary Data 4) and do not show strong clustering in particular genomic regions.

HIV-1 human interaction categories

The NCBI HIV-1 Human Interaction Database35 was downloaded from (see URLs). We 

only kept categories from the database that had ten or more genes in our annotation. We 

implemented the sumstat statistic13 to compare observed and expected gene-averaged 

selection scores in HIV-1 human interaction categories to random sets of known genes.

Gene expression analysis

We conducted Weighted Gene Co-expression Network Analysis (WGCNA) on gene 

expression data of vervets and macaques essayed at different time points pre- and post-

infection with SIVagm and SIVmac, respectively40, using the WGCNA R package as 

previously described42,79. We used as a starting point the list of genes with differentially 
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expressed transcripts in CD4+ cells before and after SIV infection in either vervet or 

rhesus40. Correlation coefficients were constructed between expression levels of genes, and 

a connectivity measure (topological overlap, TO) was calculated for each gene by summing 

the connection strength with other genes. Genes were then clustered based on their TO, and 

groups of coexpressed genes (modules) were identified. Each module was assigned a color, 

and the first principal component (eigengene) of a module was extracted from the module 

and considered to be representative of the gene expression profiles in a module. We 

identified 36 modules (Supplementary Figs. 34 and 35, Supplementary Data 6), 33 of which 

contained more than 10 genes in our annotation and were used for enrichment testing.

Data availability

All genomic data for the vervets sequenced in this study are available through the NCBI 

SRA public repositories under NCBI BioProject numbers PRJNA168521, PRJNA168472, 

PRJNA168520, PRJNA168527, PRJNA168522. Variant Call Format (VCF) files are 

available from the Dryad Digital Repository (see URLs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sample information and genetic relatedness. (a) Taxon-distribution, approximate sampling 

locations (triangles) and representative drawings (where available: hilgerti and pygerythrus 
are morphologically very similar and have often not been considered separately). Number of 

whole-genome sequenced monkeys given in parentheses. (b) Neighbor-joining tree based on 

pairwise differences oriented to approximately fit geographic sampling locations. (c) Matrix-

plot of pairwise genetic differences per callable site (above diagonal) and fixation index 

(FST) between groups (below diagonal). Rows and columns are sorted according to a 

hierarchical clustering (UPGMA) tree of vervet pairwise genetic differences. (d) Clustering 

tree of SIVagm pol gene sequences sampled from wild vervets (Africa only). Vervet 

taxonomic relationships are given on the left for comparison. The tree was constructed with 

sequences from both vervets included in this study and with sequences from the HIV 

Sequence Databases. Colors correspond to group labels in (a). Monkey heads in (a) are 

redrawn from Haus et al. (2013)16 adapted from Hill (1966)17. Distribution maps are 

adapted from IUCN (2017)18.
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Fig. 2. 
Evidence for gene flow across taxa. (a) Admixture clustering of individuals. Each pie-chart 

represents an individual and colours represent contributions from five assumed admixture 

clusters. The choice of five clusters is discussed in the legend of Supplementary Fig. 12. Full 

results are shown in Supplementary Fig. 13. Colored lines mark comparisons in panels b and 

c. (b) and (c) MSMC plots of cross-coalescence rate, a measure of gene flow, across time 

(on a log scale). Shaded areas correspond to +/− 3 block-jackknifing standard deviations. (d) 

UPGMA tree of pairwise distance matrix summarized by country. Arrows point to evidence 

of cross-taxon gene flow. (E) D-statistic (ABBA-BABA test) for instances of gene flow 

shown in (d). For full results see Supplementary Fig. 14 and Supplementary Data 2.
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Fig. 3. 
Enrichment map network of Gene Ontology (GO) categories enriched for high average gene 

selection scores. Edges represent overlap in genes. Colors represent p-values on a log scale 

(red most highly significant, TopGO Kolmogorov-Smirnov weight01 p<0.001). Node size 

represents number of genes in a category (capped at 474). Terms are grouped using 

Cytoscape clustermaker34.
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Fig. 4. 
Gene co-expression modules with differential expression pre- and post-SIV-infection which 

are also significantly enriched for high selection scores. Genes that were differentially 

expressed in CD4+ blood cells in vervet or macaque as response to SIV infection were 

grouped into 36 co-expression modules using WGCNA (shown in Supplementary Fig. 35). 

(a) Expression pattern of the five co-expression modules which are significantly enriched for 

high selection scores (p<0.01, FWER <0.05). (b) Joint enrichment map network of GO 

enrichments of the genes in the top three panels of (a) (“acute”, circles) and the bottom two 

panels of (a) (“chronic”, diamonds). GO enrichment was tested using TopGO Fisher’s exact 

test with weight01 algorithm. Edges represent overlap in genes. Node size represents 

number of genes in a category (capped at 474).
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Fig. 5. 
Selection scores across the genome and candidate genes with strong selection signals. (a) 

Manhattan plot of selection scores across all chromosomes. (b–c) Selection scores along 

chromosomes 6 and 16, respectively (d) Magnification of the region containing NFIX. (e) 

Magnification of a peak containing multiple candidates, among them CD68 (Cluster of 

Differentiation 68), a glycoprotein highly expressed on monocytes/macrophages, and FXR2 

(Fragile X mental retardation, autosomal homolog 2) that interacts with HIV-1 Tat gene. 

Slightly downstream of the shown region, we note the highly scoring gene KDM6B (lysine-

specific demethylase 6B), which is upregulated by HIV-1 gp120 in human B-cells.
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