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Abstract

Hippocampal subfields play important roles in many brain activities. However, due to the small 

structural size, low signal contrast, and insufficient image resolution of 3T MR, automatic 

hippocampal subfields segmentation is less explored. In this paper, we propose an automatic 

learning-based hippocampal subfields segmentation method using 3T multi-modality MR images, 

including structural MRI (T1, T2) and resting state fMRI (rs-fMRI). The appearance features and 

relationship features are both extracted to capture the appearance patterns in structural MR images 

and also the connectivity patterns in rs-fMRI, respectively. In the training stage, these extracted 

features are adopted to train a structured random forest classifier, which is further iteratively 

refined in an auto-context model by adopting the context features and the updated relationship 

features. In the testing stage, the extracted features are fed into the trained classifiers to predict the 

segmentation for each hippocampal subfield, and the predicted segmentation is iteratively refined 

by the trained auto-context model. To our best knowledge, this is the first work that addresses the 

challenging automatic hippocampal subfields segmentation using relationship features from rs-

fMRI, which is designed to capture the connectivity patterns of different hippocampal subfields. 

The proposed method is validated on two datasets and the segmentation results are quantitatively 

compared with manual labels using the leave-one-out strategy, which shows the effectiveness of 

our method. From experiments, we find a) multi-modality features can significantly increase 

subfields segmentation performance compared to those only using one modality; b) automatic 

segmentation results using 3T multi-modality MR images could be partially comparable to those 

using 7T T1 MRI.
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1. Introduction

The hippocampus plays an important role in both episodic and long-term memory encoding 

and retrieval (Zeineh et al., 2003; Squire et al., 2004; Moscovitch et al., 2006). Clinically, 

hippocampal volumetric change is an important biomarker for early diagnosis of many 

neurological diseases, including Alzheimer’s Disease (AD) and schizophrenia (Bobinski et 

al., 1996; Csernansky et al., 1998; Jack et al., 2000; De Leon et al., 2006; Schuff et al., 

2009). Previously, most automatic hippocampus segmentation techniques treated the 

hippocampus as a whole structure (Fischl et al., 2002; Smith et al., 2004; Patenaude et al., 

2011; Zhang et al., 2012; Wu et al., 2014; Ma et al., 2015). However, increasing 

neuroscience discoveries suggest that hippocampal subfields may yield more valuable 

information than the whole hippocampus (Maruszak and Thuret, 2014; Yushkevich et al., 

2015a). Specifically, in memory systems, hippocampal subfields may play different roles 

during the memory encoding and retrieval (Chai et al., 2014); and the volumetric changes of 

hippocampal subfields are more distinct for understanding disease expression (La Joie et al., 

2013; Khan et al., 2014).

Many promising applications based on hippocampal subfields analysis have been reported 

(Mueller et al., 2007; Kerchner et al., 2010; Malykhin et al., 2010; Henry et al., 2011; Wisse 

et al., 2012; Kirov et al., 2013). Among them, most are based on manual segmentation of 

hippocampal subfields, which is time-consuming, and highly dependent on expertise. 

Therefore, automatic segmentation of hippocampal subfields is highly desirable. However, 

due to the small structural size, low signal contrast (signal noise ratio), and insufficient 

image resolution in 3T MR images, automatic hippocampal subfields segmentation is still a 

challenging problem.

To address this challenge of automatic hippocampal subfields segmentation, three strategies 

have been proposed. a) Registration of segmented atlas(es) from ultra-high resolution 

images of postmortem hippocampus onto in-vivo data. For example, Yushkevich et al. 
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(Yushkevich et al., 2009) scanned the postmortem human hippocampus using 9.4T MR 

scanner and built the first hippocampal subfields altas. More recently, Iglesias et al. (Iglesias 

et al., 2015) built another more detailed hippocampal subfields atlas by incorporating the 

manual labels from both ex-vivo ultrahigh resolution image and in-vivo images. Wisse et al. 

(Wisse et al., 2016) built the atlas from a high-resolution T2 in vivo MRI using the 7T 

scanner in a relatively short scan time. By registering the atlas onto the target image, the 

hippocampal subfields can be automatically segmented. b) Dedicated scan protocols. For 

example, Van Leemput et al. (Van Leemput et al., 2009) increased the T1 MRI resolution by 

using longer scanning time. Yushkevich et al. (Yushkevich et al., 2010) increased the T2 

image resolution by focusing the scan around the hippocampus. c) Multiple scan series of 

the same subject. Typically, Winterburn et al. (Winterburn et al., 2013) used three T1 and T2 

scan series of the same subject to increase the image resolution to 0.3mm isotropic, and then 

built an in-vivo hippocampal subfields atlas. Pipitone et al. (Pipitone et al., 2014) proposed 

to use multiple hippocampal subfields atlases to build a better atlas. Yushkevich et al. 

(Yushkevich et al., 2015b) proposed to combine 3T T1 MRI (isotropic 1mm) and 3T T2 

MRI (0.4×0.4×2mm3) for hippocampal subfields segmentation. This method combined the 

merits of large view for the whole brain on T1 MRI and also the dedicated view for the 

hippocampal region on T2 MRI, and thus significantly improved the segmentation 

performance. However, there is no work to date that attempts to use the functional modality 

images for improving hippocampal subfields segmentation.

In neuroscience, many researches revealed various connectivity patterns between the 

hippocampus and other brain regions in functional MRI, where different subfields serve for 

specific functions during the brain activities (Stokes et al., 2015; Rugg et al., 2012; Wang et 

al., 2006; Duncan et al., 2012; Blessing et al., 2015). This implies that there might be some 

distinguishable connectivity patterns among different hippocampal subfields, which 

motivated us to include the resting state fMRI (rs-fMRI) to explore some connectivity 

patterns of different subfields for segmentation.

In this paper, we propose to use 3T multi-modality MR images (3T T1 MRI, 3T T2 MRI, 

and 3T rs-fMRI) to automatically segment hippocampal subfields (including the subiculum 

(Sub), CA1, CA2, CA3, CA4, and dentate gyrus (DG), see Fig. 1). Besides exploring 

appearance patterns from structural MRI (T1 and T2 MRI), we also explore connectivity 

patterns of different subfields from rs-fMRI for helping segmentation. The appearance 

features and relationship features are extracted to capture the appearance patterns in 

structural MRI as well as the connectivity patterns in rs-fMRI, respectively. These extracted 

features are inputted to the structured random forest (Kontschieder et al., 2011) and auto-

context (Loog and Ginneken, 2006; Tu and Bai, 2010) off-line learning framework (Qian et 

al., 2016) for training. Then, a segmentation classifier can be constructed. When a testing 

image comes, its corresponding appearance features and relationship features are extracted 

and then fed into the learned classifier for segmentation. The segmentation performance is 

quantitatively compared to the manual labels using Dice ratio. To the best of our knowledge, 

this is the first paper that explores the functional connectivity patterns to assist hippocampal 

subfields segmentation. The proposed method is tested on two datasets, and the experiments 

show that the features from multi-modality images improve the hippocampal subfields 

segmentation performance. On the other hand, our method may be limited for certain 
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applications since it requires the rs-fMRI, which is currently not as universally available as 

the structural MRI, such as T1 or T2 MRI. However, as the fMRI and connectivity patterns 

become more and more popular (Glasser et al., 2016b,a), the rs-fMRI would be acquired for 

more clinical cases in the future.

This paper significantly extends our previous workshop paper (Wu et al., 2016) in the 

following aspects. a) More details of the method are provided; b) Experiments on newly 

labeled dataset (4 subjects) from the HCP dataset (Van Essen et al., 2013) are also included 

to evaluate the benefits of employing multi-modality features from 3T T1, 3T T2, and 3T rs-

fMRI data. Previously, we only used 3T T1 MRI and 3T rs-fMRI; c) More comparisons with 

state-of-art methods are also included.

The rest of the paper is organized as follows. Section 2 provides the whole framework and 

method details, including feature extraction in multi-modalities, classifier building, and auto-

context learning framework for iterative segmentation refinement. In Section 3, experimental 

results and related quantitative analysis are reported. Finally, Section 4 concludes the paper.

2. Main framework

2.1. Motivation

The main challenge of subfield segmentation on 3T MRI is the ambiguous subfield 

boundary caused by limited image quality. Fig. 1 (b) demonstrates a typical routine 3T T1 

MRI of hippocampal subfields. Due to such ambiguity, the appearance patterns from two 

different subfields might be similar, which could lead to inaccurate segmentation. In order to 

compensate such ambiguity, we introduce the 3T rs-fMRI to capture the connectivity 

patterns among the subfields and use the difference of these patterns to facilitate the 

segmentation of patches even with similar appearance.

Fig. 2 (a) illustrates our main idea. Patch 1 (belonging to CA2) and patch 2 (belonging to 

DG) are quite similar in 3T T1 MRI. It’s difficult to determine their subfield labels if using 

only appearance patterns. However, their connectivity patterns (i.e., functional connectivity) 

between each patch and reference regions {c1, c2, …, c36} (where 36 is the total number of 

reference regions used in our study) in the rs-fMRI are different, as illustrated in Fig. 2 (b). 

Thus, we can potentially distinguish these two patches through the differences of their 

connectivity patterns.

The details of the method are covered in the following 4 subsections. Subsection 2.2 

explains the data preprocessing, including manual label generation and also alignment from 

other modality images to 3T T1 MRI. Subsection 2.3 elaborates how appearance features 

and relationship features are extracted to capture the appearance patterns and connectivity 

patterns, respectively. In subsection 2.4, structured random forest classifier is introduced, 

which is used as our segmentation classifier. Subsection 2.5 introduces our unified structured 

random forest and auto-context segmentation framework, in which the trained classifier and 

the segmentation results are consistently refined.
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2.2. Data preprocessing

2.2.1. Manual label generation—To get the training data, for each subject in our two 

datasets, 6 hippocampal subfields are manually labeled. In the first dataset, due to the low 

image resolution and low signal contrast of 3T T1 MRI, the boundaries of hippocampal 

subfields are not clear. In order to get better training data, we use 7T T1 MRI to help 

generate the manual labels for the 3T T1 MRI. First, for each subject, we up-sampled the 3T 

T1 MRI to the resolution of 0.65mm isotropic, which is the same as the resolution of 7T T1 

MRI. Then, we linearly align the 7T T1 MRI onto the up-sampled 3T T1 MRI using Flirt 

(Jenkinson et al., 2002), which is a linear image registration toolkit that is efficient for the 

task of cross-modality image registration of the same subject. By doing so, we get the 

aligned 7T T1 MRI with similar resolution and signal contrast as the original 7T T1 MRI, 

but sitting in the 3T T1 MRI space. Then, six subfields are manually delineated on the 

aligned 7T T1 MRI. For the images in the second dataset, the manual labeling is directly 

conducted on each 3T T1 MRI, and cross-checked using 3T T2 MRI. The reasons for doing 

so is because a) their resolution and quality are relatively good; b) the T1 and T2 MRI have 

already been aligned well by the well-validated preprocessing pipeline in (Van Essen et al., 

2013). In the supplementary materials, we explain the detailed steps for conducting manual 

labels, and present further statistical information about manual labels.

2.2.2. Register rs-fMRI to T1 MRI—For subjects in the first dataset, since their 3T T1 

MRI and 3T rs-fMRI are in different spaces, we need to align them into the same space (3T 

T1 MRI space) for extracting corresponding features. For the T1 MRI data, non-brain tissues 

such as skull and dura are first stripped (Shi et al., 2012) and then intensity inhomogeneity is 

corrected through N3 correction (Sled et al., 1998). For rs-fMRI data, the SPM toolkit 

(Penny et al., 2011) is used for preprocessing, including discarding the first 10 volumes, 

slice timing correction, rigid-body motion correction, band pass filtering, and signal 

regression of white matter, CSF, and six motion parameters. Finally, we register the 

preprocessed rs-fMRI data onto their corresponding T1 image for each subject.

Unlike the conventional way of co-registering each single volume of rs-fMRI data separately 

to the T1 MR image, which may generate temporary inconsistency between neighboring 

fMRI frames, we employ a two-step approach to improve the temporary consistency of 

registration, as illustrated in Fig. 3. First, the mean rs-fMRI image is computed and linearly 

registered to the corresponding T1 MR image to get the linear transform matrix ℳ, see Fig. 3 

(a). Second, the obtained transform matrix ℳ is applied to the preprocessed rs-fMRI images 

and brings them to the T1 MRI space using the nearest neighbor interpolation. After that, the 

rs-fMRI and T1 MRI are sitting in the same space, and features extracted from both 

modalities are now in correspondence and can be used together.

In the second dataset, the HCP preprocessing pipeline (Van Essen et al., 2013) has already 

aligned all the 3T T1, 3T T2, and 3T rs-fMRI into the common space. So we can directly use 

the aligned data for feature extraction.
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2.3. Feature extraction

2.3.1. Appearance features from 3T T1 and T2 MRI—The appearance features are 

extracted from 3T T1 and 3T T2 MRI to capture appearance patterns for different subfields. 

The histogram matching (Nyúl et al., 2000) is adopted to match the histogram of all subjects 

to the histogram of the template for T1 and T2 MRI, respectively. Note that the template is 

selected by the following steps. First, we calculate the histogram for each image (either T1 

or T2 MRI), and obtain the mean histogram from all images. Then, we select the one with 

the minimal distance of its histogram to histograms of all other images as the template. From 

each histogram-matched image, two kinds of appearance features are extracted, i.e., the 

gradient-based texture features and 3D Haar features.

The gradient-based texture features include features from the first-order difference filters 

(FOD), the second-order difference filters (SOD), 3D hyperplane filters, 3D Sobel filters, 

Laplacian filters, and range difference filters. The total number of texture features is 36 (Hao 

et al., 2014). The 3D Haar feature is an extension of 2D Haar feature, with the calculation 

unit expanded from boxes to cubes, which can also be calculated efficiently through the 3D 

integral image. More details can be found in (Ke et al., 2005).

On 3T T1 and 3T T2 MRI, for each image patch (11×11×11 in our experiments), the above 

texture feature set (36 features) and 3D Haar feature set (2000 features) are extracted, which 

are used as appearance features.

2.3.2. Features from rs-fMRI—The relationship features are extracted to capture 

connectivity patterns for different subfields. For any local patch (with patch size of 

11×11×11), its connectivity patterns can be regarded as the Pearson correlation of the mean 

BOLD signals between this patch and some reference regions. Thus, even for the 

appearance-similar patches, if their relationship features from the connectivity patterns are 

different, they can still be distinguished.

Based on the above idea, we need to address the following two problems: a) how to select 

reference regions to formulate connectivity patterns, and b) how to extract relationship 

features to capture the information in the connectivity patterns. We address the above two 

problems in the following 4 steps: a) reference regions construction; b) connectivity patterns 

construction; c) connectivity patterns discrimination with subfield prior; and d) relationship 

features extraction from discriminative connectivity patterns.

Reference region construction: For different subfields, a rational assumption is that the 

BOLD signals are highly correlated inside the same subfield, but less correlated across 

different subfields. The traditional way is to use each subfield as a reference region to build 

the connectivity patterns. However, this may be too coarse and thus lots of valuable 

information would be ignored. Fig. 4 demonstrates the mean (in figure) and standard 

deviation (in table) of rs-fMRI BOLD signals of different subfields for one subject. The 

horizontal axis of the figure is the index of rs-fMRI frame, and the vertical axis denotes the 

magnitude of the BOLD signals. The table under the figure shows the standard deviation, 

with the first row indicating the index for the frame. From the figure, we can see that the 

mean BOLD signals of these subfields share similar overall patterns. However, in the table, 
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we can see that the standard deviation of BOLD signals within a subfield is not necessarily 

small (even compared to the maximum magnitude of mean BOLD signals). This high 

standard deviation indicates more information to explore. This also means that using a single 

mean signal to represent the signals of the whole subfield would over-smooth useful 

information, especially when the distribution of BOLD signals is not at a single Gaussian 

fashion. The fact is that the distribution of BOLD signals in the entire subfield cannot be 

regarded as single Gaussian in many fMRI frames. As shown in Fig. 5, in fMRI frame 30, 

the BOLD signals of subfield Sub (subiculum) are more likely distributed uniformly.

To explore more information, for each subfield, we further divide it into several subregions 

and use the signal set of all subregions, rather than a single mean signal, to build the 

connectivity patterns. Specifically, the division is implemented by clustering. The clustering 

objective here is to group voxels with similar BOLD signals and closer spatial distance into 

the same cluster. In our current implementation, we use a straightforward random search 

strategy to get a local optimal solution. First, the 3D position vector of each voxel is fed into 

the k-means clustering procedure (Hartigan and Wong, 1979), with randomly initialized 

cluster centers (where each cluster center corresponds to a subfield division). Then, for each 

division, the sum of standard deviations of the BOLD signals can be calculated, and the one 

with the minimal sum is selected accordingly.

However, for a testing subject, each subfield location has not been determined yet. Thus, the 

question of how to further divide it into subregions remains unsolved. To address this 

problem, we first estimate each subfield and then divide it into subregions. Specifically, for a 

testing subject, the multi-atlas and majority voting strategy (Wang et al., 2013) is used to 

roughly estimate an initial subfield segmentation. This procedure is briefed as follows. First, 

all training images  are nonlinearly registered onto a testing image Ite for 

obtaining the respective deformation fields {D1, ⋯, DM}, where M is the number of training 

images. Then, these deformation fields are applied to the respective label images 

 to obtain the subfield prior (SP) maps, which is simply the probability map 

for each subfield label, e.g., Output 1 of prior maps for 6 subfields in Fig. 6. Moreover, 

through the majority voting, an initial subfield segmentation can be obtained too, e.g., the 

estimated subfield segmentation in Fig. 6. Note that, for a training image, although each 

subfield has already been labeled, we still use the above strategy to estimate an initial 

subfield rather than using the labeled one, i.e., using the other M-1 training images to 

estimate the initial subfield segmentation. This means, the labels of the training images are 

just used for classifier training, not involved in the reference regions partition, for making it 

consistent with testing image.

Once the initial subfield for training and testing images are estimated, using the 

aforementioned clustering strategy, we further divide each subfield into 6 subregions, as 

shown in Output 2 of reference regions in Fig. 6. To make the division of each subfield 

consistent across different subjects, the division is first carried on one randomly selected 

training image as template to obtain the centroids of the divided subregions. Then, these 

centroids are non-linearly registered to all other images. Thus, the subfield in the new image 

can be divided by assigning each voxel to the subregion with the nearest distance.
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Using the k-means to partition the whole subfield into subregions is a typical Voronoi 

tessellation problem. In certain case, with very bad initialization for the k-means, one 

subregion might only contain 1 voxel. However, because the clustering is only conducted on 

the template image space, we could directly exclude the partition that certain subregion has 

too few voxels (i.e., less than 2% of the voxel number of whole subfield in the experiment). 

Compared to other strategies such as spectral clustering, this strategy is quite simple and 

efficient. Therefore, we could run many rounds of searching to get a majority-voted solution 

for robustness.

The advantages of the subdivision include: a) Each subregion has smaller standard deviation 

of BOLD signals than that of the entire subfield, thus reducing the negative impact of over-

smoothing if using the entire subfield; b) The roughly estimated subfields that generated by 

the multi-atlas and majority voting strategy might contain some mislabeled voxels. But, after 

partitioning the estimated subfield into subregions, in some subregions, the mislabeled 

voxels number could be decreased. Then, the BOLD signals from these subregions could be 

better used as the reference for building the connectivity patterns, since they suffer less from 

the noisy signals.

Connectivity pattern construction: Once the reference regions are determined, the 

reference BOLD signals can be obtained by averaging BOLD signals over each reference 

region. Then, the connectivity pattern for each voxel can be calculated as follows.

For each subject, we first calculate 36 (6 subregions from each of 6 subfields) sets of 

reference BOLD signals, denoted as , k = 1, …, 36. Then, for any voxel r, we extract its 

local patch in rs-fMRI and calculate the mean BOLD signal, denoted as b(r). The 

connectivity pattern between this local patch and the reference regions is denoted as ck (r), k 

= 1, …, 36, which is calculated by the Pearson correlation coefficients between b(r) and .

where cov(b(r), ) is the covariance, and σb(r) and  are the standard deviations of b(r) 

and . Here, the reason to add 1 is to make the connectivity pattern non-negative, and note 

that this shift will not influence the final classification because all ck(r) are equivalently 

shifted.

Through the above operations, for any voxel r, we get a connectivity pattern vector {ck(r), k 
= 1, …, 36}, which captures the relationship between this voxel and each reference region, 

where {ck(r), k = 1, …, 6} captures relationships from local patch to Sub., and {ck(r), k = 7, 

…, 12} captures relationships from local patch to CA1, etc.

Connectivity pattern discrimination with prior: We can further increase the 

discrimination of the above connectivity pattern using the subfield prior. Supposing that 

Wu et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



there are two voxels, i.e., voxel s and t with s belonging to CA1 and t belonging to CA2. 

Their corresponding connectivity patterns can be denoted as:

Considering the fact that each subfield is relatively small, the difference between these two 

voxels’ connectivity patterns (c(s), c(t)) might be subtle, which is less beneficial for 

classification. Therefore, we employ the subfield prior to enhance their difference as detailed 

below.

For any voxel r, let pSub(r), pCA1(r), pCA2(r), pCA3(r), pCA4(r), pDG(r) denote its probabilities 

belonging to 6 different subfields, which are the output of atlas registration, as described in 

Section 2.3.2. Note that these probabilities will be updated in the segmentation process, 

which will be described in Section 2.5. These probabilities can be used to weight the 

corresponding connectivity pattern. And the weighted connectivity pattern v(r) = {υ k(r)|k = 

1, …, 36} of voxel r is:

The above formula is quite straightforward. If the subfield prior indicates that the center 

voxel r of this patch more likely belongs to CA1 than other subfields, its connectivity to 

CA1 are enhanced, while the connectivity to other subfields are suppressed. This weighting 

strategy could suppress the noises when we calculate the connectivity patterns and also make 

these patterns more discriminative for classification.

Fig. 7 shows the enhanced connectivity pattern corresponding to the first subregion of 

subfield CA1. The first row shows the manual label of each subfield, with the red color 

indicating CA1. The second row shows the connectivity pattern before incorporating the 

subfield prior. And, the last row shows the enhanced connectivity pattern by incorporation of 

subfield prior. From the figure, it can be seen that the enhancement could strengthen the 

signal contrast along the subfields boundary. With better contrast, the segmentation 

performance could be better.

Relationship features extraction from connectivity pattern: Using the above strategy, for 

any testing image, we can obtain 36 connectivity pattern maps. Each voxel of the k-th 

connectivity pattern map corresponds to the weighted connectivity from this voxel to the k-

th reference region. In order to capture the connectivity patterns for classification, the 3D 
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Haar features are further extracted from the 36 connectivity pattern maps. In our 

experiments, for each voxel, a local patch with size 11×11×11 is extracted, and then 100 

Haar features are extracted from each connectivity pattern map. Thus, totally 36×100 = 3600 

Haar features are extracted for each voxel, and they are used as the relationship features.

2.4. Structured random forest classifier

After extracting the appearance features from structural MRI and relationship features from 

rs-fMRI, we concatenate them to formulate a feature set for learning a structured random 

forest (Kontschieder et al., 2011; Criminisi et al., 2012; Criminisi and Shotton, 2013) 

classifier.

The input of the structured random forest for a local voxel i, is the feature vector xi and its 

label vector li. The label vector is denoted as li = {yi}∪{yj|j ∈ i}, where yi is the label of i, 
{yj|j ∈ i} is its neighbors’ labels, and i is the neighbors of i. yi, yj ∈ ℒ, and ℒ = {1, 2, 

…, 6} is the label set corresponding to 6 subfields considered in this work. Because labels of 

both center voxel and its neighboring voxels are used together as supervised information, the 

structured random forest can potentially capture the local structure of the predicted voxel. 

With the training vector pair (xi, li), the best split at each node is selected as the one with 

maximal information gain for the center voxel and neighboring voxels. After training, the 

prediction of testing voxel i is also a label vector {(ŷi)} ∪ {(ŷj)|j ∈ Ni}, where ŷi is the 

predicted label of the testing voxel i and {yj|j ∈ i} are the predicted label of its 

neighboring voxels. By voxel-wise label prediction, each testing voxel could have multiple 

estimated labels, which will be then fused by majority voting.

2.5. Structured random forest and auto-context segmentation framework

The structured random forest (Kontschieder et al., 2011) and auto-context model (Loog and 

Ginneken, 2006; Tu and Bai, 2010) are combined together to further refine the segmentation 

in an iterative manner during the training and testing stages. The entire process is illustrated 

in Fig. 8 and detailed below.

During the training stage, in iteration 0, the appearance features and relationship features 

extracted from the training images are used to train a structured random forest. Then, the 

trained classifier is applied to each training image, and 6 segmentation probability maps 

corresponding to 6 subfields (see Fig. 8) are obtained. These segmentation probability maps 

are used to extract the context features and also update the relationship features. The context 

features are extracted as the 3D Haar features directly from the segmentation probability 

maps, which are the high-level features characterizing the neighboring label prediction. The 

relationship features are computed as follows. First, the 6 segmentation probability maps are 

binarized into the 6 subfield segmentations with a threshold (0.5). Then, each segmented 

subfield is further divided to produce the updated reference regions, which will update the 

connectivity pattern maps and thus the relationship features. In the next iteration (iteration 

1), the context features together with the updated relationship features and the original 

appearance features are used to train a new structured random forest. This procedure is 

repeated iteratively and, in each iteration, the classifier is refined.
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During the testing stage, in iteration 0, the appearance features and relationship features 

extracted from the testing image are fed into the trained classifier of this iteration, to predict 

6 segmentation probability maps. Then, according to the predicted segmentation probability 

maps, we can update the reference regions and then the relationship features. And also the 

context features are extracted from these predicted probability maps. In iteration 1, the 

original appearance features, context features, and updated relationship features are fed into 

the classifier of iteration 1, to obtain the refined segmentation probability maps. Then, the 

relationship features can thus be updated. This procedure is repeated iteratively. In the last 

iteration, to finalize the segmentation, we first treat all 6 subfields as a single foreground by 

summing up all 6 probability maps to produce a foreground probability map. Then, we 

threshold it (with 0.5) to obtain the foreground segmentation map, which can be used as a 

mask for the 6 probability maps. That is, only voxels inside the foreground segmentation 

map are considered, and their labels are finally determined by a respective subfield label 

with maximum probability.

3. Experiments

3.1. Materials and experiment configuration

Two datasets are used in the experiments. For each subject in two datasets, six hippocampal 

subfields (including the Sub, CA1, CA2, CA3, CA4, and DG) of both left and right 

hippocampus are manually delineated by an expert neuroradiologist. The first dataset 

includes 8 healthy subjects (with ages of 30 ± 8 years). Each subject has 7T T1 MRI, 3T T1 

MRI, and 3T rs-fMRI. A Siemens Trio 3T scanner collected the 3T T1 MRI and 3T rs-

fMRI. The Siemens Magnetom 7T scanner collected the 7T T1 MRI. The 3T T1 MRI is 

collected by an MPRAGE sequence with parameters: TR=1900ms, TE=2.16ms, TI=900ms 

and isotropic 1mm resolution. The 3T rs-fMRI uses a gradient-echo EPI sequence with 

parameters: TR=2000ms, TE=32ms, FA=80, matrix=64×64, resolution=3.75×3.75×4mm3. 

A total of 150 volumes are obtained by 5mins. The 7T T1 MRI is collected by an MPRAGE 

sequence with parameters of TR=6000ms, TE=2.95ms, TI=800/2700ms and with isotropic 

0.65mm resolution. The second dataset includes 4 healthy subjects, selected randomly from 

the preprocessed HCP 500 released dataset, where 3T T1, T2, and rs-fMRI have already 

been preprocessed (Van Essen et al., 2013). For 3T T1 and T2 MRI, the resolution is 

isotropic 0.7mm; for the rs-fMRI, the resolution is isotropic 2mm.

The Dice ratio between the automatic segmentation and the manual label is used as 

quantitative measurement of the segmentation performance, and the leave-one-out strategy is 

adopted in each dataset to evaluate the performance.

3.2. Segmentation performance analysis

The results of left hippocampal subfields segmentation of 4 subjects are demonstrated in Fig. 

9 by overlapping the automatic segmentation and manual labels on their 3T T1 MRI, 

respectively. Among them, subjects 1 and 2 are from the first dataset, while subjects 3 and 4 

are from the second dataset. Although the resolutions and signal contrasts of both structural 

MRI and rs-fMRI are different in these two datasets, it can be seen that the proposed method 
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can effectively segment hippocampal subfields in both datasets consistently with the manual 

labels.

From Fig. 9, it can be seen that our segmentation appears less bumpy than the manual 

labeling. For the manual labeling, the radiologist first delineates each subfield slice by slice 

on the image, and then refines the delineation in three different views (i.e., sagittal, coronal 

and transversal views), respectively. However, the smooth boundary labeled in one view 

usually appears to be non-smooth in other two views. Even based on the 2D slice-by-slice 

refinement, some bumpy boundaries in 3D space are still inevitable. On the other hand, the 

automatic method can extract both appearance and relationship features directly from the 3D 

patches by considering spatial information in 3D space. In addition, the structured random 

forest predicts the labels for the local patch, which also preserves the local structure of 

labeling results. Therefore, automatic segmentation looks more consistent, which can also be 

considered as one of the advantages of our method.

The quantitative analysis of the first dataset is given in Table 1 and Table 2. Each entry in 

Table 1 shows the mean ± standard deviation of the Dice ratios in the leave-one-out cross-

validation, and each entry in Table 2 provides the true positive rate (TPR) and the true 

negative rate (TNR). In this experiment, we extracted 2036 features from 3T T1 MRI and 

3600 relationship features from 3T rs-fMRI. From the table, we can see, by combining the 

3T T1 MRI and 3T rs-fMRI, the segmentation results are significantly improved (with 

p=0.0004, β=0.01 when α=0.05) and consistently better than those only using 3T T1 MRI, 

with both the increased mean Dice ratio and decreased standard deviation. The consistent 

increase in the mean Dice ratio indicates that the relationship features from 3T rs-fMRI 

provide complementary information, which effectively benefits for the subfield 

segmentation. In addition, the consistent decrease of standard deviation also means that, 

using multi-modality data, the segmentation results are more robust. Besides, we also 

compared with the results obtained by the multi-atlas registration plus majority voting (MA

+MV) (Wang et al., 2013) on 3T and 7T T1 MRI, respectively. All these comparison results 

indicate that the appearance features and relationship features can successfully capture the 

appearance and connective patterns of different hippocampal subfields for segmentation, 

using the proposed structured random forest and auto-context learning framework.

Quantitative results of the second dataset are presented in Table 3 (Dice ratio) and Table 4 

(TPR and TNR). Each structural modality (T1, T2) and their combinations with rs-fMRI are 

used to validate our method. From the table, it can be seen, a) in the case of using two 
modalities, by introducing the rs-fMRI, the performance of segmenting subfields using 

T1+fMRI or T2+fMRI is significantly improved in terms of Dice ratio, compared to the case 

of using only the single structural modality image (with p=0.0063, β=0.06 when α=0.05 for 

T1+fMRI vs. T1, and p=0.0099, β=0.11 when α=0.05 for T2+fMRI vs. T2). Besides, the 

segmentation performance of T1+T2 is significantly improved compared to the case of using 

either T1 (with p=0.0003, β=0.02 when α=0.05 for T1+T2 vs. T1) or T2 (with p=0.0002, 

β=0.06 when α=0.05 for T1+T2 vs. T2). b) In the case of using three modalities, the 

segmentation performance of T1+T2+fMRI is better than using any of the two modality 

combinations. For example, the segmentation performance of T1+T2+fMRI is significantly 

better than the segmentation of T1+fMRI (with p=0.0004, β=0.01 when α=0.05) and 
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T2+fMRI (with p=0.0014, β=0.02 when α=0.05). Compared to the result of T1+T2, the 

segmentation performance of T1+T2+fMRI is also significantly improved (with p=0.015, 

β=0.18 when α=0.05); For example, for CA3 and CA2, the increase is 0.03 in Dice ratio.

It is worth noting that the TNR is stable for different methods, due to the small size of the 

hippocampal subfields compared to the size of background voxels in the classification. From 

the quantitative experimental results of the two datasets, it can be seen that the 

complementary information from multimodality images effectively improves the 

hippocampal subfields segmentation in the same dataset. However, the two datasets have 

different subject number and different image quality, i.e., the first dataset has two times 

subject number than the second dataset, while the second dataset has better image quality. 

This might cause performance difference between two datasets; For example, the 

segmentations of two subfields using T1+T2+fMRI from the second dataset are worse than 

the respective segmentations using T1+fMRI from the first dataset. Considering the dataset 

differences, we couldn’t draw conclusion from cross-dataset comparison. In the experiments, 

the patch size 11×11×11 is used for both datasets to extract the appearance and relationship 

features, and it is selected by cross-validation. The reason that this patch size (11×11×11) 

works better for both datasets might due to the similar resolutions of the two datasets (i.e., 

0.65mm and 0.7mm isotropic, respectively).

3.3. Multi-modality vs. ultra-high magnetic field strength

We have also compared the subfield segmentation using 3T multi-modality MR images with 

that using 7T T1 MRI in two experiments. In the first experiment, we segment subfields in 

the 7T T1 MRI by using the same appearance features as the 3T T1 MRI, i.e., the gradient-

based texture features and 3D Haar features. In the second experiment, we combine the 

appearance features from 7T T1 MRI and relationship features from 3T rs-fMRI for subfield 

segmentation. Both results are reported in last two rows of Table 1. It can be seen that the 

combination of 7T T1 MRI with 3T rs-fMRI yields the segmentation performance that is 

almost the same with the case of using only the 7T T1 MRI. This implies that the 

relationship features from 3T rs-fMRI do not provide benefits for subfield segmentation, 

because the ground-truth was defined on the 7T data. Comparing row 6 with row 7, it can be 

seen that by using the complementary features from 3T T1 and 3T rs-fMRI, the 

segmentation results (CA1 – CA4) are comparable to those obtained by using only the 7T 

T1 MRI. However, for the subiculum (Sub) and dentate gyrus (DG), more detailed 

appearance patterns from 7T T1 MRI seems very beneficial, thus the results on 3T multi-

modality images are inferior.

3.4. ACM performance evaluation

We adopted the auto-context model to iteratively refine the segmentation results. The result 

of each iteration on the first dataset is reported in Fig. 10 (with the mean of Dice ratios). 

From the figure, it can be seen that the auto-context model is quite effective in refining the 

segmentation results, especially in the first two iterations. There are two reasons: a) in each 

iteration, the previous segmentation result provides tentative label predictions of neighboring 

voxels, which can be used to learn the structure information of neighboring predictions. This 

information helps refine voxel-wise segmentations that are performed independently; b) the 
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refined segmentation leads to refined reference regions, which updates the relationship 

features that are capable of capturing the connectivity patterns of different subfields. Thus, 

the segmentation is further refined. In our case, the segmentation results become stable after 

the 2nd iteration, so we used 2 iterations for all results reported in this paper.

3.5. Discussion

We also apply the state-of-the-art methods on our second dataset, including the FreeSurfer 

(Van Leemput et al., 2009) and ASHS (Yushkevich et al., 2015b). The segmentation results 

are provided in Fig. 11. From the figure, it can be seen that, although three methods 

successfully segment the hippocampal subfields, the segmentation results have some 

differences. The main reason is the use of different hippocampus subfields partition 

protocols by different methods.

The precise neuroanatomy of hippocampal subfields definition relies on the cytoarchitecture 

of the hippocampus. However, the resolution of the MR images could not reach the 

cytoarchitecture level. Therefore, the radiologists’ prior knowledge becomes essential in 

labeling subfields on MR images, which thus leads to inconsistent labeling protocols for 

hippocampal subfields in the field (Boccardi et al., 2011; Yushkevich et al., 2015a). These 

protocols differ from each other in two aspects. a) There is no consensus on how many 

subfields should be partitioned in the hippocampus. In most cases, the number of subfields is 

dependent on different applications. b) The boundary locations of different subfields are 

subjective and highly dependent on the expertise, since different neurologists may rate 

different boundaries. These two issues have been explicitly discussed in many works 

(Boccardi et al., 2011, 2015; Yushkevich et al., 2015a; Wisse et al., 2017). For example, in 

the FreeSurfer segmentation, the whole hippocampus is partitioned into 4 subfields. CA2 

and CA3 are treated as a single subfield CA2/3. CA4 and DG are also treated as a single 

CA4/DG. While, in the ASHS segmentation, the whole hippocampus is partitioned into 5 

subfields, by treating CA4 and DG as a single DG. Thus, in Fig. 11, for the column of 

FreeSurfer 5.3, the green color (CA2/3) corresponds to the green (CA2) and yellow (CA3) in 

our method, and the cyan (CA4/DG) corresponds to the blue (CA4) and cyan (DG) in our 

method. For the column of ASHS, the blue (DG) corresponds to the blue (CA4) and cyan 

(DG) in our method. Besides, the boundary locations for the same subfield are also different 

in the three methods, due to different definitions by raters. The Sub (magenta color) in our 

labeling is larger than that in the ASHS. More importantly, our method learns from the 

dataset, while the FreeSurfer and ASHS use the pre-built atlas for segmentation. Therefore, 

evaluation of their methods based on our manual labeling protocol is not fair for them, and 

the consistency between our method and the manual label in Fig. 11 does not mean our 

method is better.

A fair way for comparing different methods is to conduct the hippocampal subfields labeling 

on a common dataset with a consistent labeling protocol, which is highly desired but still 

lacking. In the literature, many pioneer researches have been proposed for getting a 

consistent protocol for hippocampal subfields labeling. Recently, the hippocampal subfield 

group (HSG) developed a white paper for getting a consistent subfield protocol1. Based on 

this white paper, Yushkevich et al. (Yushkevich et al., 2015a) moved the first step to 
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quantitatively compare the existing hippocampal subfields labeling protocols. They scanned 

a subject in 3T T1, 3T T2, and 7T T2 MRI modalities. Then the scanned data is distributed 

to different groups for labeling. Based on different labeling of the same subject, they 

obtained some clues for a consistent protocol. More recently, Wisse et al. (Wisse et al., 

2017) proposed a plan for getting a harmonized segmentation protocol, which involves using 

the histological method on the ex-vivo hippocampus and also the adjustment according to 

different feedbacks. Therefore, a consistent labeling protocol and a public available labeled 

dataset might be available in the near future. Despite different protocols, our segmentation 

framework is flexible to different hippocampal subfields definitions. For example, if we have 

images labeled using other subfields definition, our method could learn this definition and 

then be applied to new subjects.

Currently, our method is validated on a relatively small number of subjects (i.e., totally 12 

subjects). This is mainly due to the intensive time-consuming manual delineations of the 

hippocampal subfields, which takes about 1.5 day per subject for a well-trained 

neuroradiologist. On the other hand, in our current dataset, all the data are from healthy 

subjects. However, certain disease may have influences on the functional connectivity 

pattern of the hippocampal subfield, which might need further investigation.

It is also worth noting that using the parametric method to make statistical selection or 

inference from fMRI data requires some assumptions (Eklund et al., 2016). However, the 

temporal and spatial autocorrelation in fMRI data may violate these assumptions. Thus, 

previously, many strategies have been proposed to address these issues, including the 

autocorrelation removal (Friston et al., 1995; Worsley and Friston, 1995; Bullmore et al., 

1996), explicit noise model construction (Lund et al., 2006), and non-parametric methods 

(Woolrich et al., 2001). Recently, Eklund et al. (Eklund et al., 2012, 2016) has already 

shown that the temporal and spatial autocorrelation resulted in the inflation of the false 

discovery rates using the real fMRI data. Therefore, special attention is needed when using 

the parametric method for statistical selection or inference. However, in our work, we just 

used the Pearson correlation to calculate the seed-based functional connectivity and used 

these connectivity patterns as features for segmentation. Note that there is no statistical 

selection and inference from the fMRI data during this process, e.g., to find the activated 

brain functional regions under a predefined significant criterion.

4. Conclusion

In this paper, we utilize multi-modality images, i.e., 3T T1 MRI, 3T T2 MRI and 3T rs-

fMRI, to segment hippocampal subfields. This automatic segmentation algorithm uses the 

structured random forest as a multi-label classifier, followed by the auto-context model to 

iteratively refine the segmentation results. To the best of our knowledge, this is the first work 

that uses rs-fMRI to investigate hippocampal subfields segmentation in the literature. Six 

subfields, including the subiculum, CA1, CA2, CA3, CA4 and the dentate gyrus, are 

automatically segmented by the proposed method. The segmentation results are 

quantitatively evaluated by comparison to the manual labels in Dice ratio. Through the 

1http://www.hippocampalsubfields.com/whitepaper
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experiments, we find that: a) features from 3T multi-modality MR images can provide 

complementary information to significantly improve the hippocampus subfields 

segmentation, compared to the case of using features from the single modality, and b) by 

using the proposed method, a comparable segmentation performance can be achieved with 

3T multi-modality MR images, compared to 7T T1 MRI. However, our work still has two 

limitations. The first limitation is that the size of the dataset is relatively small. The second 

limitation is that the method for constructing the reference regions is quite straightforward 

and the obtained solution might not be the global optimal. To overcome these two 

limitations, in the future, we will increase the subject number (including both normal and 

diseased subjects) and further explore improvements for the construction of reference 

regions, including investigating the influence of the disease on the connectivity patterns of 

hippocampal subfields. In addition, we will also explore the deep learning framework for the 

possibility of embedding more effective features from multi-modality images for 

hippocampal subfields segmentation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Using multi-modality MRI for hippocampal subfields segmentation.

• First explore to capture the connectivity pattern from the resting-state fMRI 

for hippocampal subfields segmentation.

• A learning-based automatic hippocampal subfields segmentation method.

• Features from multi-modality MRI could lead to boosted hippocampal 

subfields segmentation performance.
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Figure 1. 
Illustration of hippocampal subfields. (a) The 7T T1 MRI of the right hippocampus, with 

distinct subfield boundaries. (b) 3T T1 MRI of the same hippocampus from the same 

subject, with ambiguous subfield boundaries. (c) Six manually labeled hippocampal 

subfields overlapped on 3T T1 MRI.
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Figure 2. 
The illustration of using connectivity patterns in rs-fMRI for segmentation. (a) To 

distinguish the two appearance-similar patches in T1 MRI, we utilize the relationship 

features extracted from connectivity patterns in rs-fMRI. (b) The color-coded connectivity 

patterns of patch 1 and patch 2 are illustrated.
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Figure 3. 
Registration of the rs-fMRI to the T1 MRI for building their correspondences.
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Figure 4. 
Mean BOLD signals of 6 different subfields (upper panel) and their corresponding standard 

deviations in selected frames (bottom table).
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Figure 5. 
BOLD signal distributions of subfield Sub (Subiculum) in 2 frames (left and right panels in 

figure).
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Figure 6. 
The schematic illustration of reference regions construction.
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Figure 7. 
The enhancement of the connectivity pattern by subfield prior. The first row shows the 

manual label of each subfield, and the red color indicates the CA1; The second row shows 

the connectivity pattern corresponding to the first subregion of subfield CA1 before adding 

the subfield prior; While the last row shows the connectivity pattern after enhanced by the 

subfield prior. The yellow cross indicates the same position at different views.
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Figure 8. 
The segmentation refinement via the auto-context model. Note that the 36 connectivity 

pattern maps will be updated iteratively as well, which are used to update the relationship 

features.
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Figure 9. 
Subfield segmentation results for four subjects from two datasets (left hippocampus).
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Figure 10. 
Subfield segmentation results (mean Dice ratio) at different auto-context iterations.
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Figure 11. 
Comparison of state-of-the-art methods in segmenting one subject from the second dataset.
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