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A common base method for analysis of
qPCR data and the application of simple
blocking in qPCR experiments
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Abstract

Background: qPCR has established itself as the technique of choice for the quantification of gene expression.
Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the
statistical analysis of qPCR data are needed.

Results: Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data
based on threshold cycle values (Cq) and efficiencies of reactions (E). The Common Base Method keeps all
calculations in the logscale as long as possible by working with log10(E) ∙ Cq, which we call the efficiency-weighted
Cq value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted Cq
values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to
help reduce unexplained variation.

Conclusions: The Common Base Method has several advantages. It allows for the incorporation of well-specific
efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be
performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also
simple enough to be implemented in any spreadsheet or statistical software without additional scripts or
proprietary components.

Keywords: Analysis of variance (ANOVA), Blocking, Confidence intervals, Paired and unpaired tests, Statistics, qPCR analysis

Background
The use of quantitative polymerase chain reaction
(qPCR) for diverse applications has increased dramat-
ically [1–4] since its development in the late 1980s
[5] and has been established as the technique of
choice for the quantification of gene expression [2, 6,
7]. qPCR is a relatively simple technique [8] and
amenable to addressing a variety of experimental
questions from diverse scientific fields [4]. The proto-
cols and procedures for preparing and processing
samples as well as conducting the actual qPCR exper-
iments [4, 7, 9], along with specific concerns and
considerations [8, 10–12], have been covered in detail
by others. However, data analysis of qPCR is continu-
ing to evolve and the proper use of analysis remains

variable in practice (see citations 3–53 in Tellingheu-
sen and Spiess [13] for a comprehensive review).
The output generated by the individual qPCR reac-

tions can be distilled into two values for each well of
the qPCR plate: threshold cycle value (Cq) and the ef-
ficiency of the reaction (E). Current methods used to
analyze qPCR data utilize at a minimum the Cq

values. The Cq values are derived from a logistic
curve that plots the growth of a population of ampli-
cons produced through the use of sequence-specific
primers [1, 2].
One common method to analyze relative gene ex-

pression data is the Livak-Schmittgen [14] method (
2−ΔΔCq ), which compares two values in the exponent
that represent the normalized expression values for a
gene of interest in sample type A relative to sample
type B.* Correspondence: ganger001@gannon.edu
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R ¼ 2− Cq;GOIA−Cq;REFAð Þ− Cq;GOIB−Cq;REFBð Þ½ �
¼ 2− ΔCq;A−ΔCq;Bð Þ ¼ 2−ΔΔCq ð1Þ

Here a gene of interest (GOI) in both sample type A
and B are normalized using a reference gene (REF) and
then compared to one another in the exponent. The ex-
ponential base of 2 used in this method represents an
assumed efficiency of 100% for both genes. This method
is simple but ignores the actual efficiency E and hence
leads to inaccurate results [15, 16].
Since there is no inherent reason to expect the effi-

ciencies for both GOI and REF to be equivalent or even
100%, most consider it prudent to adjust the expression
calculations by incorporating efficiencies into the calcu-
lation of relative gene expression [10, 17, 18]. Pfaffl [3]
has developed a relative expression ratio (R) that incor-
porates efficiencies into the comparison of GOI expres-
sion between two sample types.

R ¼ E
− Cq;GOIA

−Cq;GOIB

� �

GOI

E
− Cq;REFA

−Cq;REFB

� �

REF

¼ E
−ΔCq;GOI

GOI

E−ΔCq;REF

REF

ð2Þ

Schefé et al. [15] show that the calculation and subse-
quent use of gene-specific efficiencies do alter the rela-
tive expression calculations from those derived using the
Livak-Schmittgen [14] method. In the Pfaffl [3] method,
the difference between the expression of the GOI in two
sample types is calculated in the exponent of the numer-
ator, while the efficiency of the GOI is the exponential
base. A similar calculation is done for the REF in the de-
nominator. The ratio of the two represents the normal-
ized relative expression of the GOI between sample type
A and sample type B. In the event that E = 2, the two
formulas for R above coincide. Notice that the efficien-
cies for the GOI (EGOI) and REF (EREF) are assumed to
be constants across treatments, with efficiencies deter-
mined by averaging gene efficiencies across all wells of
the qPCR experiment for each gene.
Both methods are widely used and have been general-

ized to incorporate multiple reference genes [19], as has
been recommended for qPCR experiments [11, 20]. Alter-
natively, Yuan et al. [21] incorporate efficiencies for each
gene in each treatment to the overall relative expression
calculation through more complex manipulations such as
multiple regression and analysis of covariance. The calcu-
lations become more complex but do not alter the essen-
tials: Cq comparisons are performed in the exponent of an
exponential base that represents the efficiency of the reac-
tion E. The equations are constructed to generate a rela-
tive expression value by comparing expression in one
sample relative to another; a set of relative expression
values is then dealt with statistically. In many cases, such a

method makes a great deal of sense given the experimen-
tal question that is being addressed; however, more com-
plex hypotheses necessitate the ability to perform more
complex analyses such as analysis of covariance
(ANCOVA) and more elaborate analyses of variance con-
taining more factors and terms that cannot be performed
given the existing relative expression equations.
Here we propose the use of individual E and Cq values to

develop a new Common Base Method and notation that
combine the simplicity of the 2−ΔΔCq method with the
greater presumed accuracy of methods including those of
Pfaffl [3], Schefé et al. [15], and Yuan et al. [21] that use ac-
tual E values instead of the theoretical maximum of 2. Spe-
cifically, our model uses the experimentally measured
efficiency levels E of reactions and threshold cycle values
Cq but uses a logarithm1 to connect them together on the
same scale. We examine the numerically equivalent expres-
sion 10 log Eð ÞCq and perform our analysis on log(E)Cq. We
also develop logical considerations for the use of unpaired
and paired models and suggest the utility of our method for
aspects of the general linear model including unpaired and
paired t-tests and analysis of variance (ANOVA) that other-
wise seem less manageable given the non-linear relation-
ship of ECq . We show how this approach may be used to
analyze the simplest and also most common type of experi-
mental designs where the relative gene expression in one
sample type is compared to its expression in another sam-
ple type. Finally, a basic spreadsheet or statistical package
can be used to implement the Common Base Method to
analyze qPCR data for the study of relative gene expression.

Methods
The Common Base method
Given an experiment or study comparing two popula-
tions with biological replicates r, sample types t [treat-
ment, control, sample type A, sample type B, etc.], genes
g [gene of interest or reference gene], and technical rep-
licates located in wells i, we obtain data points2 (E, Cq)
= (Er, t, g, i, Cq; r, t, g, i) for each well (Fig. 1).
From each pair of values (E,Cq), we calculate a single

value log10(E) ∙Cq , which we call the efficiency-weighted Cq

value3 (eq. 3). For a fixed biological replicate r, sample type
t, and gene g, we then calculate Cq wð Þ , the mean efficiency-
weighted Cq value over all n technical replicate wells, i.e.,

C wð Þ
q;r;t;g ¼

1
n

X
i¼1

n log Er;t;g;i
� �

∙Cq;r;t;g;i ð3Þ

Please note that the superscript (w) is a label to denote
the use of efficiency-weighting on the Cq values and does
not denote exponentiation.4 We use the well-specific effi-
ciencies rather than average gene efficiencies. Some have
suggested that average gene efficiencies be used [22] be-
cause the error in efficiency estimation associated with a
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single well is likely to be greater than the error in efficien-
cies between samples amplified with the same primer pair
[23]. However, more sophisticated methods of calculating
individual well efficiencies are likely to be developed over
time that will reduce error in estimation. In any event, the
model remains virtually unchanged whether you choose to
use well-specific efficiencies or replace them with mean effi-
ciencies. The ultimate choice here is left to the good sense
of the researcher.
Given a fixed biological replicate r, gene of interest g =

GOI, and a set of n reference genes g = REFi, we then de-
fine the efficiency-weighted ΔCq value as

ΔC wð Þ
q;r;t ¼ C wð Þ

q;r;t;GOI−
1
n

X
i¼1

n
Cq;r;t;REFi

wð Þ ð4Þ

which calculates the difference between the weighted
Cq wð Þ of the gene of interest and the mean weighted Cq wð Þ

of the reference genes (see Table 1 for an illustration of
these calculations using a hypothetical data set; Fig. 1).
The term − 1

n

Pn
i¼1Cq;r;t;REFi

wð Þ of eq. 4 allows for more
than one reference gene to be used in the equation.
Since our calculations are done in the logscale, we can
combine multiple reference genes using the better-
known arithmetic mean, whereas other common
methods of combining multiple reference genes require
the use of geometric means [19]. Computationally, the
two methods produce the same results, but we prefer a
method that avoids geometric means.
The efficiency-weighted ΔCq wð Þ values can now be used

to calculate a normalized relative expression ratio, but
the method of calculation will depend upon whether the
experiment uses paired or unpaired data, i.e., whether
the biological replicates of sample type A are related to
those of sample type B in some paired manner. In terms

A. B.

Fig. 1 Origin of the Efficiency (E) and Cq values. ΔCq wð Þ values are derived from the arithmetic means of the technical replicates. Inset A shows the
derivation of sample types A and B in an unpaired sample test where sample types derive from different biological replicates. Inset B shows the
derivation of sample types A and B in a paired sample test where sample types derive from the same biological replicate. Please note that each E
value is logtransformed and multiplied by Cq as discussed in the text. This transformation is not shown in the interest of saving space
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of calculations and statistical analysis, the difference de-
termines whether a difference of means (unpaired de-
sign) or a mean of differences (paired design) is relevant.
In either case, we will calculate an efficiency-weighted

ΔΔC wð Þ
q value as

ΔΔC wð Þ
q ¼ ΔC wð Þ

q;r;A−ΔC
wð Þ
q;r;B ð5Þ

where the terms on the right represent means over all
biological replicates of sample type A and sample type B
(unpaired design) or corresponding paired samples of
types A and B (paired design). In both cases, the relative
expression ratio is calculated as

R ¼ 10−ΔΔCq
wð Þ ð6Þ

Given that the C wð Þ
q;r;t;g values are calculated from the

values log(Er, t, g, i)Cq; r, t, g, i, and 10 log Eð ÞCq ¼ 10 log ECqð Þ
¼ ECq , our calculation of R theoretically matches that of
Pfaffl [3] and, in the event that E reaches the theoretical
maximum of 2 (i.e., amplification efficiency is 100%),
that of Livak-Schmittgen [14].

Our Common Base Method does not differ in theory
from other models, including those of Pfaffl [3], Yuan et
al. [21], and Hellemans et al. [19], derived from the
Livak-Schmittgen [14] method. Though developed inde-
pendently, the Common Base Method is computation-
ally similar to eq. 7 of Yuan et al. [21] for relative
expression and Tellinghuisen and Speiss [13, 24] (eqs. 7
and 6 respectively) for absolute expression.

Results
The Common Base Method produces efficiency-

weighted ΔC wð Þ
q values that may be used to test many

different types of hypotheses. Here we show how one
may use this method to analyze the simplest type of
experiment where one sample type is compared to an-
other. One of the challenges of qPCR, and other plate-
based experiments, is that data are derived from qPCR
plates that may be run at different times using reagents
of differing ages or even using different machines. This
challenge results in the potential for large amounts of
variation between plates that can obscure trends and
make it more difficult to determine differences between

Table 1 Sample experimental data from a single qPCR plate for analysis. Hypothetical data are used to show the results of a plate
experiment examining the expression of a gene of interest (g) and two reference genes (ref1 and ref2) for two sample types, A and

B. The controls for the plate experiment are not shown. MeanCðwÞ
q represents the the arithmetic MeanCðwÞ

q across the three technical
replicates

Well efficiency (E) Gene Cq log(E) log(E) ∙ Cq MeanCðwÞ
q

Sample type A 1.844 g 31.246 0.266 8.303 8.397

Sample type A 1.843 g 31.490 0.265 8.360

Sample type A 1.836 g 32.316 0.264 8.527

Sample type B 1.839 g 32.565 0.265 8.647 8.611

Sample type B 1.834 g 32.782 0.263 8.631

Sample type B 1.823 g 32.802 0.261 8.555

Sample type A 1.905 ref1 26.645 0.280 7.458 7.336

Sample type A 1.886 ref1 26.618 0.276 7.335

Sample type A 1.868 ref1 26.579 0.271 7.215

Sample type B 1.918 ref1 26.101 0.283 7.382 7.353

Sample type B 1.906 ref1 26.096 0.280 7.309

Sample type B 1.915 ref1 26.105 0.282 7.368

Sample type A 1.900 ref2 26.191 0.279 7.298 7.180

Sample type A 1.881 ref2 25.983 0.274 7.129

Sample type A 1.879 ref2 25.962 0.274 7.113

Sample type B 1.890 ref2 25.308 0.277 6.998 7.054

Sample type B 1.883 ref2 25.256 0.275 6.940

Sample type B 1.911 ref2 25.689 0.281 7.223

Sample type A
Efficiency-weighted ΔCq

ΔC wð Þ
q;r;A ¼1.1387

Sample type B
Efficiency-weighted ΔCq

ΔC wð Þ
q;r;B ¼1.4077
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treatments. For the following we will consider ΔC wð Þ
q

values derived from a qPCR plate capable of processing
all of the wells of an experiment. We begin with two
types of experimental designs: unpaired and paired.
Note that all ensuing data values should be treated as

hypothetical values that are provided to illustrate use of
the model; the source of the values is thus irrelevant for
the following examples. Additionally, we have chosen to
present all results in terms of confidence intervals as op-
posed to standard error. We have made this choice due
to the work in the logscale. While we will calculate
standard error and confidence intervals in the logscale,
we will apply the transformation y = 10x in the final steps
in order to report the relative expression ratio and some
form of error bound. While the transformed confidence
interval can still be interpreted as a confidence interval
placed about the relative expression ratio (although a
non-symmetric interval), the transformed standard error
cannot be reported as a standard error for the relative
expression ratio due to the exponential transformation.
Thus, we prefer the simplicity of language that comes
from reporting a relative expression ratio and associated
confidence interval. We have also arbitrarily chosen 95%
confidence levels for the examples, but the actual choice
of confidence level is left to the specific researcher
dependent upon the norms for a particular experiment.

Unpaired sample experimental design
For experiments with unpaired samples, the biological
replicates of one sample type are not directly linked to
replicates of the other sample type. The sample types are
derived from distinct biological replicates (Fig. 1, Inset
A). Common situations would involve expression of a
particular gene between treatment and control or the ex-
pression of a particular gene between two genotypes,
morphologies, or taxa.
As an example, assume four biological replicates of sam-

ple type A and four biological replicates of sample type B
from unpaired sources (Table 2). For each replicate r from

each sample type t, we calculate the corresponding ΔC wð Þ
q;r;t .

Since the replicates are unpaired, we calculate the mean

and standard deviation of ΔCq
wð Þ across the replicates for

each sample type. Assuming that relative expression ratio is
lognormally distributed, we expect the difference of the

mean ΔC wð Þ
q to follow a normal distribution. To be conser-

vative we assume unequal variances, though this could be
tested, between the two sample types and use a two-
sample, two-tailed t-test (Table 2). The analysis shows an

estimated ΔΔC wð Þ
q of 0.7954– 1.3417 = − 0.546, a t-test

statistic of −3.60, 95% confidence interval of (−0.949,
−0.143), and P-value5 of 0.019 using SPSS software [25] and
applying the confidence interval formulae of

Lower CI ¼ mean−1:96�
SDffiffiffi
n

p and Upper CI

¼ meanþ 1:96�
SDffiffiffi
n

p : ð7Þ

The P-value shows that ΔΔC wð Þ
q is statistically different

from 0 and thus the relative expression ratio is signifi-
cantly different from 10−0 = 1. We estimate that the rela-
tive expression ratio is

R ¼ 10−ΔΔCq
wð Þ

¼ 10− −0:546ð Þ ¼ 3:52 ð8Þ
with a 95% t-confidence interval of

10− −0:124ð Þ; 10− −0:968ð Þ
� �

¼ 1:33; 9:29ð Þ: ð9Þ

In other words, we determine that the gene of interest is
expressed at a level 3.52 times higher for members of sam-
ple type A compared to members of sample type B (when
normalized with respect to the two reference genes) with
a 95% confidence level that includes a low of 1.33 and a
high of 9.29. We interpret the confidence interval to mean
that we are 95% certain that the actual relative expression
ratio lies between 1.33 and 9.29. As we have applied an ex-

ponential function to the t-interval for ΔΔC wð Þ
q , this final

interval estimate for R is not symmetric about 3.52, nor
should it be. We point out that the confidence interval al-
ternatively can be used to determine the result of the hy-
pothesis test as 1 is not in the interval.

Table 2 Results of unpaired t-test. An unpaired t-test and
95% confidence interval are calculated in SPSS assuming
unequal variances using the hypothetical data from Table 1
and three other hypothetical plate experiments. The P-value
is from a two-tailed test assuming a mean difference of 0

Sample type
A ΔC wð Þ

q;r;A

Sample type
B ΔC wð Þ

q;r;B

r = 1 1.1387 1.4077

r = 2 0.845 1.291

r = 3 0.499 1.496

r = 4 0.699 1.172

Mean ΔC wð Þ
q 0.7954 1.3417

SD 0.269 0.141

N 4 4

ΔΔC wð Þ
q −0.546

T for ΔΔC wð Þ
q −3.60

P 0.019

95% CI for ΔΔC wð Þ
q (−0.949, −0.143)

Estimated Expression Ratio
10−ΔΔCq

wð Þ 3.52

95% CI for 10−ΔΔCq
wð Þ

(1.33, 9.29)
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Note that with a qPCR plate with sufficient space for
all samples, an analysis of variance (ANOVA) could be
used where more than two sample types exist. With a
significant ANOVA, post-hoc testing would determine
which two groups differ significantly, and corresponding
relative expression ratios could be calculated as above
since post-hoc testing generally involves applying indi-
vidual t-tests to address comparisons.
Because qPCR experiments are often conducted

using multiple plates, variation across qPCR plates is
a concern. Such variation can make it more difficult
to detect differences in gene expression where such
differences exist. One recommendation is to establish
each qPCR plate as a complete randomized block
[23]. This situation occurs where at least one repli-
cate of each treatment and control is present on a
qPCR plate. Blocking factors are often considered as
random factors and the interaction between the
blocking factor and any main effect is generally not
considered [26, 27].
In the following example (Table 3), an experiment is

run on two plates, and the plate is the blocking factor
for a one-factor ANOVA. The blocking effect’s purpose
is to partition variation, and as such the significance of
the blocking effect is not relevant to our hypothesis [26].
The results show that we can reject the null hypothesis
that all means are the same for the sample types A, B,
and C (P-value = 0.003). As the means are not all the
same, we complete post-hoc t-tests for each pair of sam-
ple types. After calculating 95% confidence intervals for
ΔΔCq wð Þ and applying the base-10 exponential function,
we have 95% interval estimates for the relative expres-
sion ratios (1.34, 2.57; Bonferroni-adjusted P-value =
0.007) [sample type A vs. B], (0.726, 1.39; Bonferroni-

adjusted P-value = 1.00) [sample type A vs. C], and
(0.391, 0.748; Bonferroni-adjusted P-value = 0.007) [sam-
ple type B vs. C]. Notice that the first interval exceeds 1,
showing that the gene expression for sample type A is
significantly larger than that for B. The second interval
includes 1, meaning that the gene expression is not sig-
nificantly different between sample type A and C. The
third interval is completely below 1, showing that the
gene expression for sample type B is significantly smaller
than that for C.
The purpose of blocking is to increase sensitivity by

reducing unexplained variation [27]. That is, we are in-
creasing the likelihood of being able to detect significant
effects despite the fact that run-to-run variation may be
quite large. If the same analysis were performed on data
from Table 3, but the blocking factor was not included,
then the results would be quite different. Since variation
due to the plate-blocking effect is not partitioned, this
variation ends up accumulating in the unexplained vari-
ation. As such, there would be no effect of treatment on
gene expression (F2,9 = 4.064; P-value = 0.055).
Some [7, 19] have suggested an alternative strategy,

the sample maximization method, where separate genes
are run on separate qPCR plates. This approach would
accomplish the goal of reducing the variation; however,
if all samples for an individual gene cannot be run on
the same plate, then it would be difficult to partition
such variation.

Paired sample experimental design
For experiments with paired samples, each biological repli-
cate of sample type A is directly paired with a replicate of
sample type B. Common situations would involve sample
replicates of two types harvested from the same organism

Table 3 Analysis of variance (ANOVA) with a blocking factor. Hypothetical data are used to demonstrate an ANOVA for four individuals
serving as the replicates spread across two qPCR plates. The qPCR plates serve as a statistical blocking factor. * = expression ratio
significantly different from 1

Biological replicate Group A ΔCq;r;A
wð Þ Group B ΔCq;r;B

wð Þ Group C ΔCq;r;C
wð Þ qPCR plate Bonferroni-adjusted P-value

r = 1 0.855 1.203 0.866 1

r = 2 0.711 1.056 0.799 1

r = 3 0.582 0.890 0.522 2

r = 4 0.699 0.775 0.669 2

Source Df MS F P

Group 2 0.096 12.864 0.003

Plate Blocking 1 0.153 20.487 0.002

Error 8 0.007

Post-hoc testing Mean Difference ΔΔC wð Þ
q 95% C.I. for ΔΔC wð Þ

q Expression Ratio 10−ΔΔCq
wð Þ

95% C.I. for 10−ΔΔCq
wð Þ

Group A vs. B −0.269 (−0.128, −0.410) 1.86 (1.34, 2.57) 0.007*

Group A vs. C −0.002 (0.139, −0.143) 1.00 (0.726, 1.39) 1.000

Group B vs. C 0.267 (0.408, 0.126) 0.54 (0.391, 0.748) 0.007*
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or geographic location, or the expression of a particular
gene before and after some experimental treatment is ap-
plied to an individual (Fig. 1, Inset B). Given a paired ex-

periment we calculate the difference of ΔC wð Þ
q across the

pairs and then calculate the mean of the differences to ob-

tain our ΔΔC wð Þ
q (as opposed to calculating the mean ΔC wð Þ

q

for each type and then analyzing the difference of means as
in the unpaired case; Table 4). Under the assumption of
lognormality, we can then apply a two-tailed, paired t-test
to the data. Similar to the last example5, we are testing
whether the mean of differences is different from 0.

The analysis shows an estimated mean difference ΔΔ

C wð Þ
q of −0.546, a t-test statistic of −3.48, 95% confidence

interval of (−1.046, −0.047), and P-value of 0.040 using

SPSS software [25]. The P-value shows that ΔΔC wð Þ
q is

statistically different from 0 and thus the relative expres-
sion ratio is significantly different from 10−0 = 1. We es-
timate that the relative expression ratio is

R ¼ 10−ΔΔC
wð Þ
q ¼ 10− −0:546ð Þ ¼ 3:52 ð10Þ

with a 95% t-confidence interval of

10− −0:047ð Þ; 10− −1:046ð Þ
� �

¼ 1:11; 11:12ð Þ: ð11Þ

In other words, we expect that the gene of interest is
expressed at a level 3.52 times higher for members of
sample type A compared to members of sample type B
(when normalized with respect to the two reference
genes) with a 95% confidence interval that includes

values as low as 1.11 and as high as 11.12. Again, you
may note that the interval estimate for R is not symmet-
ric about 3.52.
Note that the paired t-test utilizes an inherent blocking

factor to account for variation among individuals since
individuals serve as blocks containing the complete
study. The same data in Table 4 could be run as an
ANOVA with this blocking factor with no change in P
value for the main factor.
This paired model may be expanded to include more

than two sample types. For example, if gene expression
were compared in three organs across several individuals
and all of the samples were run on a single qPCR plate,
then an ANOVA with a blocking factor would be utilized,
where the blocks are individuals (biological replicates)
containing each of the three organs. Note, in such a case,
gene expression in one type of organ of an individual is
likely to be more similar to such organs in other individ-
uals than to other organ types in the same individual.
Therefore a blocking factor is appropriate, while a nested
model approach would not, though we could conceive of
situations where such a nested model would fit.
Given such an experiment we will calculate the differ-

ence of ΔC wð Þ
q across the data within each block (i.e.,

across each individual) and then perform an ANOVA on

the collection of ΔC wð Þ
q (Table 5). In a standard one-

factor ANOVA, the null hypothesis is that the means Δ

C wð Þ
q for each of the three sample types A, B, and C are

equal, whereas the alternative hypothesis is that at least
one of the means is different from the others.
The analysis shows that we may reject the null hypothesis

(P-value = 0.002), meaning that at least one of the means is
different from the others. We complete post-hoc t-tests for
each pair of sample types. After calculating 95% confidence

intervals for ΔΔC wð Þ
q and applying the base-10 exponential

function, we have 95% interval estimates for the relative ex-
pression ratios (1.91, 5.40; Bonferroni-adjusted P-value =
0.004) [sample type A vs. B], (0.60, 1.69; Bonferroni-
adjusted P-value = 1.00) [sample type A vs. C], and (0.19,
0.52; Bonferroni-adjusted P-value = 0.005) [sample type B
vs. C]. Notice that the first interval exceeds 1, showing that
the gene expression for sample type A is significantly larger
than that for B. The second interval includes 1, meaning
that the gene expression is not significantly different be-
tween sample type A and C. The third interval is com-
pletely below 1, showing that the gene expression for
sample type B is significantly smaller than that for C.
More complex blocking would occur where a paired

model used more than one qPCR plate. In this case both
the individual and the qPCR plate would appear as
blocking factors in the statistical model. As discussed

Table 4 Results of paired t-test. A paired t-test and 95%
confidence interval are calculated in SPSS using the
hypothetical data from Table 1 and three other hypothetical
plate experiments. The P-value is from a two-tailed test
assuming a mean difference of 0

Biological
replicate r

Sample A
ΔCq;r;A

wð Þ
Sample B ΔCq;r;B

wð Þ ΔΔCq;r
wð Þ

r = 1 1.1387 1.4077 −0.269

r = 2 0.845 1.291 −0.446

r = 3 0.499 1.496 −0.997

r = 4 0.699 1.172 −0.473

Mean ΔΔC wð Þ
q −0.546

SD for ΔΔC wð Þ
q 0.314

N 4

T for ΔΔC wð Þ
q −3.48

P 0.040

95% CI for ΔΔC wð Þ
q (−1.046,

−0.047)

Expression Ratio
10−ΔΔCq

wð Þ 3.52

95% CI for 10−ΔΔCq
wð Þ

(1.11, 11.12)
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previously, our examples above have no nested terms.
The interaction terms that include the blocks would not
be considered [26]. The exact nature of the model would
depend on the design of both the experiment and the
qPCR plate setup and warrants a longer exposition.

Discussion
The advantage of the common base method lies in the use
of the common base 10 (or any other base of choice) to
force all of the data-based calculations into the logscale
and the flexibility to incorporate E values into the calcula-
tion, however they are derived: sample-specific efficiencies
[28], average efficiencies [29], or gene-specific efficiencies
[3, 15]. Given experimental evidence that relative gene ex-
pression is lognormally distributed [7, 30–32], we expect

that ΔΔC wð Þ
q approximately follows a normal distribution

and can be analyzed using parametric statistical methods
(confidence intervals, hypothesis testing, ANOVA, etc.).
Without the use of a common base, it is less clear how
one should apply these analyses or whether one should do
statistics directly on R or on log(R).
We caution against a few potential pitfalls that may arise

from improper analysis of qPCR results. First, avoid
grouping data values unless there is a biological motive for
the pairing of samples, such as the samples are blocked on
the same qPCR plate. For example, the work in Table 4

that calculates ΔΔC wð Þ
q across the table is only valid if the

replicates of types A and B are truly paired in some man-
ner and not simply listed next to each other in the table.
Second, use the appropriate type of mean. Averages

calculated in the logscale (e.g., C wð Þ
q or ΔC wð Þ

q;r ) should be

done using the standard arithmetic mean (sum the items
and divide by n), while averages calculated for relative

expression ratios should be done with geometric means
(multiply the items and take an nth root). The different
use of means is directly related to the exponential iden-
tity axay = ax + y where addition in the exponent corre-
sponds to multiplication at the base.
Third, ensure that the data used in both the paired and

unpaired models conform to the requirements for their
use in paired t-tests and ANOVAs. The assumptions of
such analyses are covered in any general statistics text.
Fourth, apply parametric statistical techniques in the

logscale. Evidence suggests that relative expression ratios
are lognormally distributed [7, 30–32], and so using para-

metric statistics on ΔΔC wð Þ
q appears valid. On the other

hand, using parametric statistics directly on relative expres-
sion ratios is never valid as the following example shows.

Example
Consider the paired sample data from Table 4. Suppose

that instead of using a paired t-test on the ΔΔCq;r
wð Þvalues,

we first calculated the relative expression ratios 10−ΔΔCq;r
wð Þ

for each replicate pair and applied a t-test with a hypothe-
sized mean of 1 to those values (Table 6). If we view this
experiment as a comparison of A versus B (column 4),
then the mean expression ratio is 4.39 and the P-value is
0.167, which would be viewed as not significant. We
would conclude that expression of the gene in sample
types A and B are not significantly different. On the other
hand, if we view this experiment as a test of B versus A
(column 5), then the mean expression ratio is 0.333 with a
P-value of 0.005, which shows a significant difference in
gene expression. The same data cannot both reject and fail
to reject the hypothesis that the relative expression ratio
of the sample types is different from 1.

Table 5 Analysis of variance (ANOVA) with a blocking factor. Hypothetical data are used to demonstrate an ANOVA with three
groups and four individuals serving as the replicates. The groups in this case are paired within individuals and so the individual
serves as a statistical blocking factor. * = expression ratio significantly different from 1

Biological replicate Sample type A ΔCq;r;A
wð Þ Sample type B ΔCq;r;B

wð Þ Sample type C ΔCq;r;C
wð Þ Bonferroni-adjusted

P-value

r = 1 0.855 1.408 0.866

r = 2 0.845 1.056 0.799

r = 3 0.499 1.291 0.532

r = 4 0.699 1.172 0.707

Source df MS F P

Sample type 2 0.342 20.222 0.002

Block 3 0.038 2.237 0.184

Error 6 0.017

Post-hoc testing Mean difference ΔΔC wð Þ
q 95% C.I. for ΔΔC wð Þ

q Expression ratio 10−ΔΔCq
wð Þ

95% C.I. for 10−ΔΔCq
wð Þ

Sample type A vs. B −0.507 (−0.282, −0.732) 3.21 (1.91, 5.40) 0.004*

Sample type A vs. C −0.002 (0.224, −0.227) 1.00 (0.60, 1.69) 1.000

Sample type B vs. C 0.506 (0.731, 0.281) 0.31 (0.19, 0.52) 0.005*
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The interested reader can confirm that our methods
are immune to this problem by running a paired t-test
from the information in Table 4 according to the Com-
mon Base Method, but with the A and B columns
swapped. This change results in oppositely signed values
of ΔΔCq;r wð Þ , its mean, the t-test statistic, and the confi-
dence interval. The standard deviation and P-value re-
main the same. Consequently, the test will have the

same significance result and, after calculating 10−ΔΔCq;r wð Þ ,
will have the multiplicative inverses of the relative ex-
pression ratio and confidence limits.
Though analysis is conducted using log-transformed

ΔΔCq wð Þ values, in most cases it is the relative expression
that is of interest. Therefore, we recommend plotting
relative expression. We join Yuan et al. [20] in finding
the 95% confidence interval to be more meaningful than
plotting either standard deviations or standard errors of
the mean (Fig. 2) as confidence intervals are more natur-
ally transformed from the logscale to the base level com-
pared to standard deviations or standard errors. The use
of confidence intervals is also advocated for other rea-
sons addressed by Colegrave and Ruxton [33], Di Ste-
fano [34], and Nakagawa and Cuthill [35]. Note that for
the graphical representation of the ANOVA results with
greater than two sample types, the relative expression
values would still be plotted. These values would corres-
pond to the post-hoc testing performed.

Conclusions
In this article we have presented a Common Base
Method for use in the statistical analysis of relative ex-
pression ratios arising from qPCR experiments. The
model is presented in Eqs. 3–6 with examples of its use
given in Results.

The Common Base Method has advantages over
current methods for analyzing qPCR data. The primary
advantage is that the model keeps all calculations in the
logscale as long as possible. Staying in the logscale al-
lows one to use arithmetic means instead of geometric
means and opens up a larger world of parametric statis-
tical tests that cannot be validly applied at the level of
the relative expression ratio. Although we contained our
examples to two types of experimental designs, unpaired
and paired, the Common Base Method can be adapted
to include other analyses within the general linear
model. The technique of blocking in such experiments
can increase power, and the design of the qPCR plate ex-
periment deserves attention. The use of multiple block-
ing factors is also possible and the appropriate analysis
of such experiments warrants future attention. The po-
tential utility of the Common Base Method suggests that
there is great value in determining whether relative ex-
pression ratios are lognormally distributed in general.
Our method also has the flexibility to be adaptable to ef-
ficiency values E calculated in a variety of different man-
ners, whether averaged across plates, genes, or from
specific wells.

Table 6 Results of improper t-test usage. An improperly
implemented paired t-test using hypothetical data from Table 1
and three other hypothetical plate experiments testing the
hypothesis of equal gene expression between sample type A
and B assuming a mean difference of 0

Biological
replicate r

Sample A
ΔCq;r;A

wð Þ
Sample B
ΔCq;r;B

wð Þ
10−ΔΔC

wð Þ
q;r A

vs. B
10ΔΔCq;r wð Þ B
vs. A

r = 1 1.1387 1.4077 1.858 0.538

r = 2 0.845 1.291 2.793 0.358

r = 3 0.499 1.496 9.931 0.101

r = 4 0.699 1.172 2.972 0.337

Mean 4.39 0.333

SD 3.73 0.180

N 4 4

T 1.82 −7.42

P 0.167 0.005
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Fig. 2 Presentation of results as mean with 95% confidence
interval. The results of an unpaired t-test using data from
Table 2 are graphically shown. The relative expression ratio of
the GOI is plotted along with the 95% confidence interval
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While our use of logscale calculations is not necessar-
ily groundbreaking on its own, we believe that our
model presents these concepts in a more accessible
manner that will allow easier adaptation for researchers
who are not necessarily experts in statistics or bioinfor-
matics. The simplicity of our model and its ability to be
quickly calculated in any spreadsheet software is its pri-
mary strength.

Endnotes
1Although the choice of logarithm is freely made, in

our discussion we will always use the base-10 logarithm,
denoted by log().

2The semicolon is used to visually separate the fixed
from other data-dependent subscripts.

3Note that any logarithmic base may be used here as
long as the choice is used consistently throughout all fu-
ture calculations. We recommend the use of either log
(base 10) or ln (base e) because of their ease of availabil-
ity in spreadsheet software. On the other hand, using
log2 (base 2) would allow great analogy with the trad-
itional ΔΔCq methods. See footnote 4.

4To be truly transparent, one should really use a label

such as C w;10ð Þ
q to denote weighting with respect to a base

10 logarithm (or more generally, C w;bð Þ
q ¼ logb Eð Þ∙Cq), but

this notation seems overly cumbersome, especially since
the choice of base will be made only once and then used
consistently throughout all calculations. Notice that if one
uses log2 and if all efficiencies attain their theoretical max-
ima of E = 2, then log2(E) ∙Cq =Cq, resulting in the 2−ΔΔCq

model [13]. Thus, our model is a natural generalization of
the 2−ΔΔCq model. Additionally, although different bases b

produce different values for C w;bð Þ
q , these differences can

be ignored for two reasons related to general logarithm

properties: (1) bCq
w;bð Þ ¼ aCq

w;að Þ
for different bases a and b

(thus relative gene expression values will be the same no

matter the choice of logarithmic base), and (2) C w;bð Þ
q

¼ logb að Þ∙C w;að Þ
q and so sums and differences of C w;bð Þ

q

values will be constant multiples of those values calculated
via a different base a, which means that any parametric
statistical tests on differences (t-tests, ANOVAs, etc.)
will produce results that are statistically the same and
are even numerically identical once the functions bx

or ax are applied at the end.
5We hypothesize that the difference of the means is

different from 0 in this example, which corresponds to
the relative expression ratio being different from 10−0 =
1. If for example we wanted to hypothesize that the rela-
tive expression ratio were different by a factor of 2, then
we would conduct the t-test above with a hypothesized
difference of -log(2).

Abbreviations
ANOVA: Analysis of variance; CI: Confidence interval; GOI: Gene of interest;
qPCR: Quantitative polymerase chain reaction; REF: Reference gene

Acknowledgements
We thank P. Headley and J. Sacco for helpful comments on the manuscript.

Funding
Financial support was provided by a Cooney-Jackman Endowed Professorship
to M. Ganger and by the Biology Department at Gannon University. Neither
had any role in the design or conclusions of this work.

Availability of data and materials
All data used are available in the manuscript.

Authors’ contributions
MG worked on the Common Base Method and its application to paired
and unpaired experimental designs, was a major contributor in the
writing, organization, and revision of the manuscript, and developed the
spreadsheet exercises. GD worked on the Common Base Method and
aided the development of the relevant mathematics. SE provided
background knowledge on qPCR experiments and their design and
contributed to manuscript organization and revision. All authors read
and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biology, Gannon University, 109 University Square, Erie, PA
16541, USA. 2Department of Mathematics, Gannon University, 109 University
Square, Erie, PA 16541, USA.

Received: 20 December 2016 Accepted: 22 November 2017

References
1. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ. 2005;29:

151–9.
2. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative

PCR for gene expression analysis. BioTechniques. 2008;44:619–26.
3. Pfaffl MW. A new mathematical model for relative quantification in real-time

RT-PCR. Nucleic Acids Res. 2001;29:2002–7.
4. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M. A practical approach

to RT-qPCR—publishing data that conform to the MIQE guidelines.
Methods. 2010;50:S1–5.

5. Wang AM, Doyle MV, Mark DF. Quantitation of mRNA by the polymerase
chain reaction. Proc Natl Acad Sci. 1989;86:9717–21.

6. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff
MJB, Moorman AFM. Amplification efficiency: linking baseline and bias in
the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45.

7. Derveaux S, Vandesompele J, Hellemans J. How to do successful gene
expression analysis using real-time PCR. Methods. 2010;50:227–30.

8. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to
reference gene selection for quantitative real-time PCR. Biochem Biophys
Res Commun. 2004;313:856–62.

9. Bustin SA. Why the need for qPCR publication guidelines?—the case for
MIQE. Methods. 2010;50:217–26.

10. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and
potential. BioTechniques. 1999;26:112–25.

11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R,
Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CQ. The MIQE
guidelines: Mimimum Information for publication of Quantitative real-time
PCR Experiments. Clin Chem. 2009;55:611–22.

Ganger et al. BMC Bioinformatics  (2017) 18:534 Page 10 of 11



12. Bustin SA, Vandesompele J, Pfaffl MW. Standardization of qPCR and RT-
qPCR. Genetic Engineering & Biotechnology News. 2009;29:RP0045.

13. Tellinghuisen J, Spiess A-N. Comparing real-time quantitative polymerase
chain reaction analysis for precision, linearity, and accuracy of estimating
amplification efficiency. Anal Biochem. 2014a;449:76–82.

14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using
real-time quantitative PCR and the 2-ΔΔCQ method. Methods. 2001;25:402–8.

15. Schefé JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H.
Quantitative real-time RT-PCR data analysis: current concepts and the novel
“gene expression’s CQ difference” formula. J Mol Med. 2006;84:901–10.

16. Yuan JS, Want D, Stewart CN Jr. Statistical methods for efficiency adjusted
real-time PCR quantification. Biotechnol J. 2008;3:112–23.

17. Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM. Assumption-
free analysis of quantitative real-time polymerase chain reaction (PCR) data.
Neurosci Lett. 2003;339:63–6.

18. Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. Statistical significance
of quantitative PCR. BMC Bioinformatics. 2007;8:131.

19. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative
quantification framework and software for management and automated analysis
of real-time quantitative PCR data. Genome Biol. 2007;8:R19.

20. Udvardi MK, Czechoqski T, Scheible W-R. Eleven golden rules of quantitative
RT-PCR. Plant Cell. 2008;20:1736–7.

21. Yuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real-time PCR
data. BMC Bioinformatics. 2006;7:85.

22. Cook P, Fu C, Hickey M, Han E-S, Miller K. SAS programs for real-time RT-PCR
having multiple independent samples. Bioinformatics. 2004;37:990–5.

23. Riu I, POwers SJ. Real-time quantitative RT-PCR: design, calculations, and
statistics. The Plant Cell. 2009;21:1031–3.

24. Tellinghuisen J, Spiess A-N. Statistical uncertainty and its propagation in the
analysis of quantitative polymerase chain reaction data: Comparison of
methods. Analytical Biochemistry. 2014b;449:94–102.

25. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0.
Armonk, NY: IBM Corp.

26. Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in
biological research. 3rd ed. New York: WH Freeman and Company; 1995.

27. Krzywinski M, Altman N. Analysis of variance and blocking. Nat Methods.
2014;7:699–70029.

28. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(−delta delta CT)
method for quantitative real-time polymerase chain reaction data analysis.
Biostat Bioinforma Biomath. 2013;3:71–85.

29. Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, Blom J, Rutledge RG, Sisti
D, Lievens A, De Preter K, Derveaux S, Hellemans J, Vandesompele J.
Evaluation of qPCR curve analysis methods for reliable biomarker discovery:
bias, resolution, precision, and implications. Methods. 2013;59:32–46.

30. Bengtsson M, Ståhlberg A, Rorsman P, Kubista M. Gene expression profiling
in single cells from the pancreatic islets of Langerhans reveals lognormal
distribution of mRNA levels. Genome Res. 2005;15:1388–92.

31. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J,
Aparicio S, Hansen CL. High-throughput microfluidic single-cell RT-qPCR.
PNAS. 2011;108:13999–4004.

32. McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS,
Roederer M, Gottardo R. Data exploration, quality control and testing in single-
cell qPCR-based gene expression experiments. Bioinformatics. 2013;29:461–7.

33. Colegrave N, Ruxton GD. Confidence intervals are a more useful
complement to nonsignificant tests than are power calculations. Behav
Ecol. 2002;14:446–50.

34. Di Stefano J. A confidence interval approach to data analysis. For Ecol
Manag. 2004;187:173–83.

35. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical
significance: a practical guide for biologists. Biol Rev. 2007;82:591–605.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Ganger et al. BMC Bioinformatics  (2017) 18:534 Page 11 of 11


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The Common Base method

	Results
	Unpaired sample experimental design
	Paired sample experimental design

	Discussion
	Example

	Conclusions
	Although the choice of logarithm is freely made, in our discussion we will always use the base-10 logarithm, denoted by log().
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

