Table 5.
Statisticsa of marginal posterior distributions for genetic parameter estimates under Model 8 at the mean of the explanatory covariates
| Genetic parameterb | Mean | Median | sd | HPD | Pr| |>0c | ESS | |
|---|---|---|---|---|---|---|---|
| 0.12 | 0.13 | 0.05 | 0.04 | 0.20 | 1.00 | 476 | |
| 0.44 | 0.43 | 0.20 | 0.10 | 0.79 | 1.00 | 155 | |
| 0.39 | 0.41 | 0.19 | 0.06 | 0.68 | 1.00 | 301 | |
| 0.55 | 0.56 | 0.14 | 0.31 | 0.79 | 1.00 | 356 | |
| rg(, ) | − 0.46 | − 0.48 | 0.30 | − 0.99 | 0.08 | 0.07 | 239 |
| rg(, ) | 0.75 | 0.82 | 0.26 | 0.23 | 1.00 | 0.98 | 116 |
| rg(, ) | 0.52 | 0.51 | 0.31 | 0.02 | 0.98 | 0.96 | 355 |
| rg(, ) | − 0.43 | − 0.46 | 0.33 | − 0.96 | 0.12 | 0.10 | 203 |
| rg(, ) | − 0.19 | − 0.21 | 0.30 | − 0.74 | 0.41 | 0.25 | 326 |
| rg(, ) | 0.57 | 0.60 | 0.19 | 0.19 | 0.88 | 0.99 | 342 |
aMean, median, highest posterior density (HPD) intervals, probability of the parameter to be higher than zero (Pr| | > 0) and effective sample size (ESS)
b = heritability estimate of the intercept (residual feed intake); = heritability estimate (defined as the ratio between additive variance associated to each component divided by the sum of their permanent and additive genetic components) of the slopes of on the different explanatory variables : metabolic weight ( / ), overall growth ( / ) and backfat thickness gain ( / ); rg(x, y) = genetic correlation between components of feed efficiency
cPr| | > 0 is only relevant for the genetic correlations, prior assumptions of the heritabilities force this quantity to be equal to 1