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Noncoding microRNAs (miRNAs) have emerged as central regulators of cardiac biology,
modulating cardiac development and the response to pathological stress in disease.
Although less well developed, emerging evidence suggests miRNAs are likely also impor-
tant in the heart’s response to the physiological stress of exercise. Given the well-recog-
nized cardiovascular benefits of exercise, elucidating the contribution of miRNAs to this
response has the potential not only to reveal novel aspects of cardiovascular biology but
also to identify new targets for therapeutic intervention that may complement those dis-
covered through studies of diseased hearts. Here, we first provide an overview of the
cardiovascular effects of exercise as well as some of the major protein signaling mecha-
nisms contributing to these effects. We then review the evidence that both cardiac and
circulating miRNAs are dynamically regulated by exercise and regulate these mechanisms
and phenotypes.

THE GROWING BURDEN OF
CARDIOVASCULAR DISEASE

It is ironic that, despite enormous progress in
our understanding and ability to treat many

cardiovascular diseases, the burden of these con-
ditions in both human and financial terms is
increasing and expected to continue to do so.
There are likely three principle drivers of this
disturbing trend. First, in some ways, it reflects
our success at managing acute cardiovascular
conditions such as myocardial infarction (MI)
and hypertensive crises. As the mortality from
these conditions has plummeted over the past
half-century (Ford et al. 2007), the increasing
number of survivors are at continued risk for

late sequelae of their conditions, such as heart
failure (HF) and arrhythmia, for which our ther-
apies remain inadequate. Second, as popula-
tions age around the world (Christensen et al.
2009), the prevalence of age-related diseases,
including cardiovascular disease, increases. Fi-
nally, the burgeoning epidemic of metabolic dis-
eases such as obesity and diabetes, substantially
increase the risk of most forms of cardiovascular
disease, including atherosclerotic vascular dis-
ease as well as ischemic injury and HF (Bhupa-
thiraju and Hu 2016). In the context of this
growing unmet clinical need, investigation into
the mechanisms responsible for the putative
cardiovascular benefits of exercise may comple-
ment ongoing studies of the mechanisms of
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disease, potentially yielding new insights and
targets for intervention.

CLINICAL BENEFITS OF EXERCISE

The intuitively appealing concept that exercise
protects against the development of cardiovas-
cular disease has long been espoused. However,
it is worth acknowledging that the large major-
ity of evidence supporting this perspective is
observational in nature and thus cannot estab-
lish a causal relationship (Wei et al. 2014). Such
observational studies are inherently limited by
multiple factors, including selection and recall
biases, unrecognized confounding, and inaccu-
rate self-reporting of activity. On the other
hand, randomized controlled trials, the gold
standard of clinical evidence, are also chal-
lenged in this context by imperfect adherence
to lifestyle interventions, the daunting statistical
requirements for adequate power in primary
prevention, and the potential inability of pa-
tients with cardiovascular disease to exercise
adequately in secondary prevention or treat-
ment trials. Nevertheless, the large majority of
observational studies show a reduction in car-
diovascular disease among those who exercise
habitually and, consistent with this, clinical in-
terventional trials also suggest benefits accrued
to those with existing cardiovascular disease.
Studies of particular note include a recent
meta-epidemiological analysis suggesting that
the mortality benefit resulting from exercise in
patients with coronary disease or early diabetes
was comparable to that seen with approved
medical therapies (Naci and Ioannidis 2013).
One of the largest randomized controlled trials
of exercise performed to date is the HF-
ACTION trial, which showed a substantial im-
provement in HF patients randomized to a
structured exercise program in self-reported
health status and moderate improvements in
several clinical endpoints, including a compos-
ite of all-cause mortality and hospitalization,
which achieved statistical significance when ad-
justed for differences in baseline patient charac-
teristics (O’Connor et al. 2009). Thus, although
the clinical evidence is imperfect, the consistent
message that emerges from observational, epi-

demiological, and interventional trials is that
exercise has substantive benefits in the preven-
tion and management of cardiovascular disease.

RATIONALE FOR STUDYING EXERCISE

Although studies of heart disease have yielded
important insights, the pathway to therapeutic
translation has been challenging, in part be-
cause recognizing deleterious changes in disease
does not reliably lead to corrective interven-
tions. We know much less about what keeps
the heart healthy, and thus delineating the
mechanisms by which exercise leads to its car-
diovascular benefits may provide a model of the
“healthy heart” and in the process lead to novel
strategies for preventing or treating heart dis-
ease. How likely is it that exercise-related path-
ways will also mitigate the response to patho-
logical stress and/or established cardiovascular
disease? Interestingly, the large majority of
pathways identified thus far as functionally im-
portant in the cardiac response to exercise also
protect the heart against pathological stress
(Wei et al. 2014; Roh et al. 2016). As discussed
below, examples include phosphoinositide-3-
kinase (PI3K) (McMullen et al. 2003; Weeks
et al. 2012), Akt1 (Matsui et al. 1999, 2001; De-
Bosch et al. 2006), endothelial nitric oxide syn-
thase (eNOS) (Calvert et al. 2011), peroxisome
proliferator-activated receptor g coactivator 1a
(PGC-1a) (Arany et al. 2006, 2008), C/EBPb
(Bostrom et al. 2010), and CITED4 (Bezzerides
et al. 2016). Thus, it appears that pathways
functionally important in the heart’s response
to exercise are enriched for pathways with
the potential to mitigate disease phenotypes.
Given this observation, the practical question
emerges as to which of these pathways are ame-
nable to therapeutic manipulation. MicroRNAs
(miRNAs) may have some advantages as thera-
peutic targets. Both animal and clinical studies
have shown the feasibility of targeting miRNAs
in vivo, with chemically modified locked nucle-
ic acid (LNA) inhibitors (Elmén et al. 2008;
Janssen et al. 2013) and, at least in some cases,
agonists (Wang et al. 2013; Yan et al. 2014).
Thus, identification of miRNA pathways func-
tionally important in the cardiac exercise re-
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sponse could in principle lay a foundation for
new preventive or therapeutic approaches.

CARDIAC PHENOTYPES INDUCED
BY EXERCISE

As a first step toward explaining what is known
about the role of miRNAs in the cardiac re-
sponse to exercise, we will briefly describe the
major cardiac phenotypes induced by exercise
and outline the molecular pathways thought re-
sponsible. We hope this background will pro-
vide a helpful context for the miRNA effects
described later, as well as potentially highlight
areas where influences by miRNAs may yet be
discovered.

Cardiac Changes in Response to Exercise

In response to exercise training, the heart under-
goes adaptive changes in both structure and
function, resulting in what has been termed
the “athlete’s heart.” These changes, which in-
volve both the cardiomyocyte and noncardio-
myocyte lineages of the heart, support the
heart’s ability to augment its output to perfuse
exercising muscle and cope with the hemody-
namic stress of exercise (Fig. 1). In humans, dis-
tinct patterns of cardiac adaptation have been
described in response to different types of exer-
cise from endurance to strength training (Bag-
gish et al. 2008; Wasfy et al. 2015).

Most characteristics of the “athlete’s heart”
is cardiac hypertrophy. In response to exercise
training, the left ventricular (LV) mass of the
human heart can increase by �20% (DeMaria
et al. 1978; Utomi et al. 2013). This effect, also a
hallmark of animal models of exercise training,
results primarily from cardiomyocyte hypertro-
phy (Ellison et al. 2012; McDiarmid et al. 2016).
Cardiomyocytes can grow in length thus in-
creasing LV volume (eccentric hypertrophy),
in width thus increasing cardiac wall thickness
(concentric hypertrophy), or a combination.
Endurance exercise presents a volume challenge
to the heart typically resulting in eccentric
growth, whereas resistance exercise and the as-
sociated pressure overload characteristically
causes concentric hypertrophy, although the

concentric nature of growth in resistance-
trained athletes has been challenged by a recent
meta-analysis (Utomi et al. 2013; Wilson et al.
2016). In animal models, studies have been
largely confined to endurance training and we
focus on this because the mechanistic pathways
have been delineated in this context.

Exercise-induced hypertrophy appears to be
“physiological” and largely distinct from the
“pathological hypertrophy,” which occurs in
disease states such as chronic hypertension or
HF following MI. “Pathological hypertrophy”
in these states is part of an adverse remodeling
process, including cardiac fibrosis, electrical re-
modeling, and activation of a fetal gene program
(Molkentin et al. 1998; Dirkx et al. 2013). In
contrast, exercise-induced “physiological hyper-
trophy” does not share these features, has a char-
acteristic gene expression profile, including
increased a-to-b myosin heavy-chain ratio,
increased PGC-1a, and nonincreased atrial na-
triuretic peptide (ANP) and brain natriuretic
peptide (BNP), and is generally associated with
better clinical outcomes except potentially in
extreme cases in ultra-elite athletes (La Gerche
and Prior 2007; Bostrom et al. 2010; O’Keefe
et al. 2012; Eijsvogels et al. 2016).

To support this increase in cardiac tissue and
the heart’s metabolic needs (increased ventric-
ular work during exercise can cause LV oxygen
demand to increase by sixfold), coronary blood
flow, and, to a lesser extent, oxygen extraction
increase. Enhanced cardiac perfusion results
from both structural changes to the microvas-
culature (increased arteriole densities and/or
diameters and capillary angiogenesis) and
altered function (increased endothelium-de-
pendent vasodilation) (White et al. 1998; Ham-
brecht et al. 2000; Duncker and Bache 2008).

In addition to their growth in size, cardio-
myocytes change their functional characteristics
in response to exercise. Both cardiomyocyte
contraction and relaxation respond to exercise
training. Cardiomyocyte longitudinal contrac-
tion per cycle (fractional shortening) can in-
crease 40%–50% with exercise training, whereas
the rates of relaxation and contraction can in-
crease by 20%–40%, with the degree of change
correlating positively with the intensity of the
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Figure 1. Cardiac phenotypes induced by exercise. Schematic illustrating the cardiac effects induced by chronic
endurance exercise training. Red circles indicate major phenotypes or groups of phenotypes altered in response
to exercise training. Yellow ovals indicate key proteins or pathways thought to contribute to the phenotype
changes. Vertical arrows next to phenotypes, proteins/pathways, or microRNAs (miRNAs) indicate reported
increases or decreases in response to exercise. For proteins/pathways, changes may be either in level or activity.
Arrows connecting miRNAs, proteins/pathways, and phenotypes indicate regulation either demonstrated in
animal models of exercise or inferred from in vitro experiments and/or in vivo experiments of related contexts.
Stroke vol., Stroke volume; Sarcomere Fn, sarcomere function; Ox. phosphorylation, oxidative phosphoryla-
tion; Mito. biogenesis, mitochondrial biogenesis; ACE, angiotensin I converting enzyme; ACE2, angiotensin I
converting enzyme 2; Akt1, AKT serine/threonine kinase 1; AMPK, AMP-activated kinase; CaMKII, calcium/
calmodulin-dependent protein kinase II; C/EBPb, CCAAT/enhancer binding protein b; Cited4, Cbp/p300
interacting transactivator with Glu/Asp rich carboxy-terminal domain 4; eNOS, endothelial nitric oxide
synthase; ErbB4, erb-b2 receptor tyrosine kinase 4; IGF-1, insulin-like growth factor 1; LKB1, serine/threonine
liver kinase B1; MHC, myosin heavy chain; mTOR, mechanistic target of rapamycin; MuRF-1, muscle-specific
RING finger protein 1; NO; nitric oxide; Nrg-1, neuregulin 1; p27, cyclin-dependent kinase inhibitor 1B (p27);
PGC-1a, peroxisome proliferator-activated receptor g coactivator 1a; PI3K, phosphoinositide-3-kinase;
PIK3R2, phosphoinositide-3-kinase regulatory subunit 2; PLB, phospholamban; PTEN, phosphatase and
tensin homolog; SERCA2a, sarcoplasmic reticulum calcium ATPase 2 isoform a; SIRT1, sirtuin 1; SIRT3,
sirtuin 3; SPRED1, sprouty-related EVH1 domain-containing 1; TSC2, tuberous sclerosis 2; VEGF, vascular
endothelial growth factor.
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exercise training (Kemi and Wisloff 2010). The
maximal power output of individual cardio-
myocytes is also increased (Diffee and Chung
2003). This contractile behavior of cardiomyo-
cytes is regulated principally by Ca2þ dynamics.
Plasma membrane depolarization triggers ini-
tial cytoplasmic Ca2þ entry through L-type cal-
cium channels, in turn triggering Ca2þ release
from the sarcoplasmic reticulum (SR) through
ryanodine receptors. The increased cytoplasmic
Ca2þ binds cardiac troponin C, producing a
conformation change in the actin–tropomyo-
sin–troponin complex, which increases actin–
myosin cross-bridge formation, resulting in
contraction of the myofilaments and thus the
cardiomyocytes. Relaxation is subsequently me-
diated by reuptake of cytoplasmic Ca2þ into the
SR by the SR-Ca2þ ATPase-2a (SERCA2a). Ex-
ercise enhances cardiomyocyte contractility by
increasing sensitivity to Ca2þ through several
mechanisms, including activation of Ca2þ/cal-
modulin-dependent kinase II (CamKII) and
isoform switching of troponins and myosin
heavy chains, while promoting their relaxation
by increasing SERCA2a activity through a com-
bination of increased SERCA2a expression and
phosphorylation of its inhibitor phospholam-
ban (Wisloff et al. 2001; Kemi et al. 2007a). Ex-
ercise also mitigates the decreases in T-tubule
(invaginations of the plasma membrane, which
promote rapid and uniform depolarization and
Ca2þ entry) density and organization observed
in HF, thus promoting excitation–contraction
coupling (ECC) (Kemi et al. 2011). For a more
detailed discussion of how exercise affects con-
tractility, please see Kemi and Wisloff (2010).

Exercise not only improves the function of
the healthy heart but also protects the heart and
promotes recovery from injury. In animals,
exercise increases resistance to and improves
recovery from a wide range of cardiac insults,
including MI, pressure overload, diabetic car-
diomyopathy, and doxorubicin cardiotoxicity
(Chicco et al. 2006; Andrews Portes et al. 2009;
Stolen et al. 2009; Barboza et al. 2013). Multiple
mechanisms likely contribute to the benefits of
exercise in these contexts, including protection
against oxidative stress, increased resistance to
apoptosis, restoration of Ca2þ handling and

contractile function, restoration of cardiac ener-
gy metabolism, inhibition of fibrosis, and vascu-
lar improvements (Wisloff et al. 2002; Matsui
et al. 2003; Kemi et al. 2007b; Leosco et al.
2008; Calvert et al. 2011; Vettor et al. 2014).

Recent work has also raised the possibility
that exercise may promote cardiomyogenesis.
The adult mammalian heart was traditionally
considered a nonmitotic organ, with essentially
no formation of new cardiomyocytes beyond the
early postnatal period. However, multiple stud-
ies have now shown that new cardiomyocytes do
form, albeit at a low rate, throughout life (Berg-
mann et al. 2009; Senyo et al. 2013; Ali et al.
2014). Cardiomyogenesis appears to increase af-
ter injury (Smart et al. 2011; Senyo et al. 2013)
and possibly exercise. We found in mice that ex-
ercise caused increases in markers of prolifera-
tion and cell-cycle activity (PCNA expression,
positivity for Ki67, pHH3 and aurora B kinase
staining, and BrdUincorporation) in cardiomyo-
cytes (Bostrom et al. 2010), whereas others have
reported that exercise caused increased numbers
and activation of putative cardiac progenitor and
stem-cell populations (Waring et al. 2014; Xiao
et al. 2014). The source of newly formed cardio-
myocytes in adulthood, whether from division of
preexisting cardiomyocytes or cardiac progenitor
cells, remains an area of controversy.

Major Pathways Implicated in the Cardiac
Exercise Response

Several key pathways underlying the heart’s
response to exercise have been identified. Of
these, perhaps the best established is the insu-
lin-like growth factor 1 (IGF-1)/PI3K/Akt/
mTOR signaling axis. Exercise induces increased
IGF-1 production in the heart (as well as other
tissues), leading to increasedautocrineand para-
crine signaling (Neri Serneri et al. 2001; Frystyk
2010), which stimulates physiological cardiac
hypertrophy (Reiss et al. 1996; McMullen et al.
2004). Cardiac-specific IGF-1 receptor (IGF-1R)
knockout mice show that IGF-1R signaling is
necessary for exercise-induced hypertrophy
(Kim et al. 2008). The PI3K family of enzymes
appear to be the immediate downstream medi-
ators of these signals: Genetic manipulations of
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the 110a PI3K isoform show it is necessary and
sufficient for exercise-induced physiological
cardiac hypertrophy but not pathological hyper-
trophy (Shioi et al. 2000; McMullen et al. 2004;
Weeks et al. 2012). Similarly, Akt1 appears to be
the PI3K effector that is both necessary and suf-
ficient for physiological hypertrophy while ac-
tually inhibiting pathological hypertrophy in-
duced by pressure overload (DeBosch et al.
2006). Conversely, levels of the phosphatase
and tensin homolog (PTEN), which inhibits
PI3K/Akt signaling, decrease in the heart in re-
sponse to exercise (Ma et al. 2013; Pons et al.
2013). We found that increased Akt1 expression
in cardiomyocytes causes a decrease in expres-
sion of the transcription factor C/EBPb, and
mice heterozygous for C/EBPb deletion reca-
pitulate many of the cardiac phenotypes seen
with exercise and are resistant to pressure-over-
load-induced cardiac dysfunction (Bostrom
et al. 2010). C/EBPb appears to act through
repressing expression of the protein CITED4
(Bostrom et al. 2010), and mice with inducible
cardiac-specific overexpression of CITED4 de-
velop cardiac hypertrophy reminiscent of the
“athlete’s heart” as well as improved recovery
from cardiac ischemia-reperfusion injury (IRI),
effects that appear to be the result of increased
mTORC1 activity (Bezzerides et al. 2016). Exer-
cise also appears to increase mTORC1 activity by
causing a decrease in expression of its inhibitor
TSC2 (Ma et al. 2013) and by increasing phos-
phorylation of mTOR (Kemi et al. 2008). In ad-
dition to its effect on cardiac hypertrophy, Akt
signaling also contributes to the resistance of
cardiomyocytes to apoptosis on injury (Matsui
et al. 1999, 2001).

Other exercise-activated pathways also con-
tribute to increasing the resistance of the heart
to injury. Neuregulin-1 (NRG-1), which is in-
duced by exercise, binds to ErbB receptors on
cardiomyocytes and has cardioprotective effects
against IRI via a PI3K/Akt-dependent mecha-
nism (Fang et al. 2010; Cai et al. 2016). NRG-1
has also been reported to stimulate cardiomyo-
cyte proliferation and to induce angiogenesis.
These effects have led to clinical trials evaluating
the use of recombinant NRG-1 fragments for
HF treatment (Bersell et al. 2009; Odiete et al.

2012). eNOS activity increases in response to
exercise, as a result of both increased circulating
catecholamines and increased phosphorylation
by Akt and AMP-activated kinase (AMPK)
(Zhang et al. 2009; Calvert et al. 2011) and ap-
pears important in protection against ischemic
injury and oxidative stress. Exercise also induces
expression of the deacetylases, Sirt1 and Sirt3,
which regulate Akt, AMPK, and PGG-1a
among other pathways and protect against car-
diac IRI as well as oxidative stress, with Sirt3 also
protecting against pathological cardiac hyper-
trophy and fibrosis (Ferrara et al. 2008; Sunda-
resan et al. 2009; Hsu et al. 2010; Pillai et al.
2010; Lai et al. 2014).

miRNAs IN THE CARDIAC EXERCISE
RESPONSE

miRNAs are small (�22 nucleotides) noncod-
ing RNAs that modulate gene expression by
RNA silencing and posttranscriptional repres-
sion (Bartel 2004). miRNAs play pivotal roles in
cardiovascular development and disease (Zhao
et al. 2005; van Rooij et al. 2006; Small and
Olson 2011; Da Costa Martins and De Windt
2012; Wang and Yang 2012) and thus investigat-
ing their roles in exercise-induced cardiac phe-
notypes is logical. Multiple studies document
miRNAs in the heart or circulation that are dif-
ferentially regulated in response to exercise and,
in some instances, functional contributions
can be reasonably inferred from alterations in
their known targets. However, efforts to assess
the functional roles of cardiac or circulating
miRNAs in exercise-induced cardiac pheno-
types are relatively recent (Fernandes et al.
2011; Soci et al. 2011; Liu et al. 2015).

miRNAs DYNAMICALLY REGULATED BY
EXERCISE

Cardiac miRNAs

Many miRNAs are altered in hearts after exer-
cise or the manipulation of physiological hyper-
trophy pathways (Fig. 2A,B; Table 1). Care and
colleagues found that miR-1 and -133 are
down-regulated in rat hearts by treadmill train-
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ing as well as in transgenic mice with cardiac
overexpression of Akt1 (Care et al. 2007), which
as noted above is necessary and sufficient for
physiological hypertrophy. Lin et al. profiled
mouse hearts with genetic manipulation of
PI3K(p110a) at baseline and after ischemic
stress. They found that miR-222, -34a, and
-210 were down-regulated in PI3K-induced
physiological hypertrophy and up-regulated in

dominant-negative PI3K transgenic hearts (Lin
et al. 2010). Ma and colleagues studied miRNAs
in rats subjected to 8 weeks of swim training.
Cardiac expression of miR-21, -144, and -145
increased while miR-124 decreased (Ma et al.
2013). Correspondingly, in exercised hearts,
PTEN (targeted by miR-21 and miR-144) and
TSC2 (targeted by miR-145) were decreased
while PI3K(110a) (targeted by miR-124) was
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Figure 2. MicroRNAs (miRNAs) dynamically regulated in the heart by exercise training. (A) 120 miRNAs are
clustered according to their reported expression altered by different exercise training in the heart. (B) miRNAs
marked in green or blue have been reported to be up-regulated or down-regulated after exercise, respectively. The
responses of miRNAs marked in black have been reported to vary depending on the health of the animals and/or
the timing and exercise model studied. ECC, Excitation–contraction coupling.
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Table 1. miRNAs altered in exercise and their putative functional effects and targets

miRNA Putative targets Functional effects References (PMID)

miR-1 PKC1, HSP60, BCL2, GATA4,
MEF2A, NCX1

Antihypertrophic, increased CM death,
ECC

PMID: 19506341,
PMID: 23226300,
PMID: 21447748,
PMID: 17468766,
PMID: 26646371

miR-100 IGF-1R Increased CM death PMID: 25793527,
PMID: 26191255

miR-125b-5p p53, Bak1, TRAF6 Reduced CM death, profibrosis PMID: 25863248,
PMID: 26408546,
PMID: 24576954

miR-126 Spred1, PIK3R2 Increased angiogenesis PMID: 22330028,
PMID: 25863248

miR-133a RhoA, DAPK2, Cdc42, Nelf-
A/WHSC2

Antihypertrophic, ECC, antifibrotic,
anticardiomyogenesis

PMID: 17468766,
PMID: 21447748

miR-143 ACE2 Prohypertrophic PMID: 21709209,
PMID: 24751578

miR-144 Rac1, PTEN Inhibited CM death PMID: 23812090,
PMID: 26408546

miR-145 TSC2, Bnip3, CaMKIId Inhibited CM death, ECC, promoting
autophagy

PMID: 23812090,
PMID: 26408546,
PMID: 23028672,
PMID: 23702479,
PMID: 26432843

miR-150 SRF, Egr2, p2x7r, c-myb, Inhibited CM death, ECC, antifibrosis,
antihypertrophic

PMID: 24751578,
PMID: 25863248,
PMID: 25639779,
PMID: 25824147,
PMID: 27184887

miR-155 SOCS-1, Jarid2 Increased CM death, antihypertophy PMID: 25863248,
PMID: 26408546,
PMID: 24657879

miR-15a CHEK1 Increased CM death, anticardiogenesis PMID: 25863248,
PMID: 22052914,
PMID: 24043355

miR-181a MAPK1, TNF-a, GAT4 Inflammation injury PMID: 25793527
miR-19b Bim, TNF-a, PTEN, MuRF,

atrogin-1, CTGF, TSP-1
Prohypertrophy, inhibited CM death,

cardiogenesis, antifibrosis,
antiangiogenesis

PMID: 25793527,
PMID: 26918829,
PMID: 24117217,
PMID: 21501375

miR-208a THARAP1, myostatin, GATA4, Prohypertrophic, ECC PMID: 27503950,
PMID: 25793527,
PMID: 19726871,
PMID: 17379774

miR-208b THARAP1, myostatin, Prohypertrophic, ECC PMID: 27503950
miR-21 PTEN, PDCD4, FasL, Spry1, Inhibited CM death, profibrosis,

proangiogenesis
PMID: 23812090,
PMID: 19043405,
PMID: 19041309

miR-214 SERCA2a, Ncx1, BIM, CypD,
CaMKIId, XBP1

Inhibited CM death, ECC,
antiangiogenesis

PMID: 22426211,
PMID: 25822872,
PMID: 26646371,

Continued

X. Liu et al.

8 Cite this article as Cold Spring Harb Perspect Med 2017;7:a029850

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



increased (Ma et al. 2013). These data suggest at
least some of the miRNAs altered by exercise
modulate PI3K/AKT/mTOR signaling, a key
regulator of the cardiac response to exercise.

Soci and colleagues profiled 349 cardiac
miRNAs after 10 weeks of exercise and found

87 differentially expressed compared with sed-
entary controls, including 48 up-regulated and
39 down-regulated miRNAs (Soci et al. 2011).
miR-1, -133a, and -133b, all previously shown to
be involved in pathological and stress-responsive
cardiac hypertrophy, decreased after exercise

Table 1. Continued

miRNA Putative targets Functional effects References (PMID)

PMID: 26408546,
PMID: 25656649

miR-22 CBP, CDK16, Sirt1, Sp1,
PTEN, PURB, Hdac4

Prohypertrophic, inhibiting CM death,
ECC

PMID: 25793527,
PMID: 22570371

miR-222 p27, HIPK1/2, Hmbox1 Increased CM proliferation,
prohypertrophy, inhibited CM death,
antiangiogenesis

PMID: 25863248,
PMID: 26408546

miR-24 Bim, BCL2L11, Bax, GATA2,
PAK4, Furin

Inhibited CM death, ECC, antiangiogenesis,
antifibrosis

PMID: 25863248,
PMID: 26408546,
PMID: 21383058,
PMID: 21788589,
PMID: 22260784

miR-26b GATA4, IGF Antiangiogenic, increased CM death,
antihypertrophic

PMID: 24751578

miR-27a ACE, SEMA6A Prohypertrophic, proangiogenesis PMID: 21709209,
PMID: 24751578,
PMID: 26408546,
PMID: 25863248,
PMID: 22184411

miR-27b ACE, SEMA6A Prohypertrophic, proangiogenesis PMID: 21709209,
PMID: 26408546,
PMID: 25863248,
PMID: 22184411

miR-29a COL1A1, COL1A2, COL3A1,
FBN1, ELN, Mcl-2

Antifibrotic, increased CM death,
prohypertrophy

PMID: 21447748,
PMID: 24642957,
PMID: 18723672,
PMID: 17108080

miR-29c COL1A1, COL1A2, COL3A1,
FBN1, ELN, Mcl-2

Antifibrotic, increased CM death,
prohypertrophy

PMID: 21447748,
PMID: 24642957,
PMID: 18723672,
PMID: 17108080

miR-30e ?CaMKIId, ?Egfr1, ?Bcl2 ?ECC, ?apoptosis PMID: 25793527
miR-320 HSP20 Increased CM death PMID: 19380620,

PMID: 25863248
miR-499 CaN, Drp1 Inhibited CM death, ECC PMID: 26387191,

PMID: 21186368
miR-574-3p ATP2A2 ECC PMID: 25863248

MicroRNAs (miRNAs) implicated in the cardiac response to exercise. miRNAs reported as dynamically regulated by

exercise and potentially contributing functionally to the phenotypes associated with exercise are listed, along with their

putative targets and functional effects, as well as supporting citations.

CM, Cardiomyocyte; ECC, excitation–contraction coupling; PTEN, phosphatase and tensin homolog; IGF-1R, insulin-like

growth factor receptor.
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training (Care et al. 2007; Soci et al. 2011). Con-
versely, miR-29c was increased in exercised
hearts compared with sedentary controls (Soci
et al. 2011). In exercised rats, miR-27a and -27b
were reported to increase while miR-143 de-
creased, together with reciprocal changes in
expression of their angiotensin-converting en-
zyme targets, ACE and ACE2, respectively, sug-
gesting specific miRNAs targeting renin–angio-
tensin system genes are dynamically modulated
by exercise training and may contribute, at least
in part, to the progression of cardiac hypertro-
phy (Fernandes et al. 2011). Using a microarray
to assess .1000 murine miRNAs in exercise-in-
duced LV hypertrophy, Martinelli et al. (2014)
identified 35 miRNAs differentially expressed
after 1 week of exercise relative to sedentary con-
trols and 25 miRNAs differentially expressed
after 5 weeks of training, documenting temporal
regulation of cardiac miRNAs during exercise
training. We profiled miRNAs in hearts of mice
subjected to 3 weeks of either an intense swim-
ming protocol or voluntary wheel running. We
found 124 miRNAs that were differentially ex-
pressed in hearts from wheel-run mice and 55
differentially expressed in hearts from swum
mice in comparison to sedentary controls (Liu
et al. 2015). It is worth noting that forced swim
training may cause a stress response not present
in voluntary wheel running. Among these, 16
miRNAs, including miR-222, were indepen-
dently validated as concordantly regulated in
both models (Liu et al. 2015). In a recent study,
Ramasamy et al. (2015) sequenced RNA from the
hearts of rats swum for 8 weeks and sedentary
controls and found that .80% of the 201 detect-
ed miRNAs were differentially regulated. Among
the 128 miRNAs with read counts of .1000, 95
miRNAs were altered .1.5-fold with an adjusted
false discovery rate (FDR) ,0.1 (Ramasamyet al.
2015). miRNAs changed .2.5-fold were miR-
208a, -19b, -133b, and -30e, which were all up-
regulated, and miR-99b, -100, -191a, -22, and
-181a, which were all down-regulated. Gene on-
tologyand pathway mapping suggested that these
miRNAs are associated with cardiac hypertrophy
and apoptosis (Ramasamy et al. 2015).

Some studies have examined the effects of
exercise on miRNA expression in the context of

cardiac pathologies such as HF. Souza et al.
(2015) examined cardiac miRNAs in controls
and failing animals subjected to exercise train-
ing or sedentary. Only 11 miRNAs were specif-
ically altered by exercise in the failing hearts,
whereas 23 miRNAs were concordantly altered
in both sedentary and exercised HF hearts
(Souza et al. 2015). Of note, miR-222 was up-
regulated in both HF groups (Souza et al. 2015).
Other miRNAs, including miR-1, -29, -126, and
-214, have also been reported to change in both
healthy and diseased hearts after exercise (da
Silva et al. 2012; Melo et al. 2014, 2015a,b;
Zhao 2015). Given limited access to tissue, there
are no clinical studies to date examining human
cardiac miRNA alterations after exercise.

Circulating miRNAs

Extracellular miRNAs, packaged in lipid micro-
particles such as exosomes, microvesicles, and
apoptotic bodies or associated with protein
complexes like RNA-binding proteins (argo-
naute 2, nucleophosmin 1) and high-density
lipoproteins (HDLs), are widely present in
body fluids such as plasma (Valadi et al. 2007;
Wang et al. 2010; Arroyo et al. 2011; Turchino-
vich et al. 2011). Such circulating miRNAs have
attracted interest as potential biomarkers for a
variety of diseases (Mitchell et al. 2008; Akat
et al. 2014; Galimberti et al. 2014). Recent stud-
ies have also suggested that circulating miRNAs
may mediate intercellular communication (Va-
ladi et al. 2007; Zernecke et al. 2009; Hergen-
reider et al. 2012). Baggish and colleagues ex-
amined the response of eight human plasma
miRNAs to acute exhaustive exercise and sus-
tained aerobic exercise training in healthy col-
legiate athletes. They found that plasma levels of
miR-146a and -222 increased after acute exer-
cise both before and after sustained training,
whereas miR-21 and -221 were up-regulated
only by acute exercise before sustained training,
and miR-20a increased after sustained training
but not acute exercise (Baggish et al. 2011).
Strong correlations were seen between changes
in both resting miR-20a and peak exercise levels
of miR-146a and VO2max (Baggish et al. 2011).
We found that serum miR-222 also increased in
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HF patients after acute exercise (Liu et al. 2015).
It is interesting to note that some of the miRNAs
altered in human peripheral blood after exercise
are altered in the hearts of animals after exercise
training. Taken together, these data suggest a
parallel that may reflect conservation of exer-
cise-responsive miRNA pathways.

Among muscle-enriched miRNAs (miR-1,
-133a, -133b, -206, -208b, and -486), only
miR-486 was altered (decreased) in response to
acute and chronic cycling exercise in young men
(Aoi et al. 2013). Conversely, Gomes et al. (2014)
found that circulating miR-1, -133, and -206
levels increased after a half-marathon. Mooren
et al. (2014) also showed that plasma levels of
miR-1, -133, -206, -499, and -206 increased after
running a marathon. Intriguingly, alterations of
miR-1, -133a, and -206 correlated not with car-
diac injury markers but aerobic performance
(Mooren et al. 2014). Sawada et al. (2013) re-
ported that miR-149� increased, whereas miR-
146a and -221 decreased in human serum 3 days
after acute resistance exercise. Changes in circu-
lating miRNAs levels appear to depend on the
type of exercise, as Wardle et al. (2015) found
that elite endurance athletes had higher plasma
miR-222 levels than sedentary controls while
elite strength athletes had lower levels, and
Uhlemann et al. (2014) found that circulating
miR-126 increased in response to endurance but
not resistance training. Studies of alterations in
plasma or serum miRNA in response to exercise
have thus far been confined in humans. Al-
though the observation that some circulating
miRNAs altered in exercise coincide with miR-
NAs documented in animal models to be dy-
namically regulated or functionally important
in the heart is encouraging, the tissue source(s)
and role(s) of circulating miRNAs induced by
exercise have yet to be defined. Moreover, their
clinical value as biomarkers reflecting fitness or
cardiometabolic risk remains to be established.

FUNCTIONAL CONTRIBUTIONS OF miRNAs
TO EXERCISE PHENOTYPES

Cardiac Hypertrophy

As noted above, cardiac hypertrophy can be di-
vided into pathological and physiological hy-

pertrophy. miRNAs modulating pathological
cardiac hypertrophy have been well studied
and include both antagonists and agonists
(Ucar et al. 2012; Yang et al. 2013; Bang et al.
2014; for detailed reviews, see Da Costa Martins
and De Windt 2012; Wang and Yang 2012). In
contrast, fewer studies have directly examined
the functional role of miRNAs in physiological
cardiac hypertrophy (Fernandes et al. 2011; Soci
et al. 2011; Liu et al. 2015). However, multiple
studies have identified cardiac miRNAs differ-
entially regulated in exercise, which were known
to regulate pathological hypertrophy, including
miRNAs in Table 1 (Care et al. 2007; Fernandes
et al. 2011; Soci et al. 2011; Ma et al. 2013;
Martinelli et al. 2014; Liu et al. 2015). Thus,
although the functional contributions of most
have not been directly assessed in exercise-in-
duced hypertrophy, these miRNAs may also
modulate physiological hypertrophy. However,
because the pathways mediating pathological
and physiological hypertrophy are often dis-
tinct, the directionality of their influence may
not be readily extrapolated from studies of path-
ological hypertrophy. For example, cardiac Akt1
is activated in both physiological and patholog-
ical hypertrophy models but appears necessary
for the former and actually inhibitory of the
latter (DeBosch et al. 2006), and thus plays a
beneficial role in both settings. Similarly, our
unpublished data suggest that miR-222, which
is up-regulated in both physiological and path-
ological hypertrophy, is necessary for physiolog-
ical growth but may inhibit pathological growth,
again playing a positive role in both settings.

Care et al. (2007) found that cardiac miR-
133 decreased in trained rats and in patients
with heart disease. In vivo inhibition of miR-
133 induced marked and sustained cardiac hy-
pertrophy, suggesting that miR-133 acts as an
inhibitor of cardiac hypertrophy (Care et al.
2007). Soci et al. (2011) also found decreased
expression of cardiac miR-133a and miR-133b
in rats after 10 weeks of swimming. In contrast,
others found increased miR-133b in the hearts
of rats after 8 weeks of swimming (Ramasamy
et al. 2015). Whether this discrepancy is caused
by differences in the exercise protocols or mea-
surement methodologies is not clear.

MicroRNAs in Cardiovascular Exercise Response
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We found that cardiac miR-222 was up-reg-
ulated both by swimming and voluntary wheel
running in mice (Liu et al. 2015). miR-222 ex-
pression in neonatal cardiomyocytes in vitro
produced cellular proliferation and hypertro-
phy with a gene expression pattern characteris-
tic of physiological growth. In contrast, miR-
222 inhibition reduced cardiomyocyte size
and proliferation in neonatal cardiomyocytes
(Liu et al. 2015). In vivo, neither miR-222 inhi-
bition nor overexpression altered cardiac or car-
diomyocyte size. However, miR-222 inhibition
completely blocked the increase of cardiomyo-
cyte and heart size induced by 3 weeks of inten-
sive exercise as well as reduced the markers of
cell proliferation induced by exercise (Liu et al.
2015). Mechanistically, HMBOX1, p27, HIPK1,
and HIPK2 were implicated as direct targets
contributing to miR-222’s effects in cardiomyo-
cytes (Liu et al. 2015). Taken together, these data
suggest that miR-222 is necessary for exercise-
induced cardiac growth. Exercise induction of
cardiac miR-19b has also been reported by oth-
ers to induce cardiomyocyte hypertrophy by
targeting atrogin-1 and MuRF-1, as well as en-
hancing calcineurin/NFAT signaling (Song
et al. 2014; Ramasamy et al. 2015).

Cardiomyocyte Hyperplasia

Short-term physiological changes in heart size
are mostly the result of corresponding changes in
cardiomyocyte size. However, work from our
group (Bostrom et al. 2010; Liu et al. 2015) and
others (Waring et al. 2014; Xiao et al. 2014) has
raised the possibility that exercise may also in-
duce cardiomyocyte hyperplasia or cardiomyo-
genesis, perhaps in parallel to the neurogenesis
well documented in animals after exercise (van
Praag et al. 1999, 2005). miR-222 expression in-
creased proliferation of neonatal cardiomyo-
cytes in vitro and increased markers of prolifer-
ation in adult cardiomyocytes in vivo after
ischemic injury (Liu et al. 2015). Conversely,
an LNA anti-miR inhibitor specific to miR-222
blocked the increase in cardiomyocyte prolifer-
ation markers seen after exercise in control ani-
mals (Liu et al. 2015). These studies intriguingly
raise the possibility that exercise is an inductive

physiological cue regulating cardiomyogenesis
in the adult heart, and that miR-222 may be
part of the pathway regulating this response. In-
triguingly, Li et al. (2016) recently reported that
knockdown of endogenous miR-199 up-regu-
lates its target PGC-1a and causes physiological
cardiac and cardiomyocyte hypertrophy as well
as an increase in markers of cardiomyocyte pro-
liferation. However, it should be emphasized
that the precise degree to which new cardiomyo-
cytes are formed, survive, and contribute func-
tionally to the benefits of exercise in animal
models, let alone humans, remains unclear.

Although little is known about other
miRNAs regulating cardiomyogenesis after
exercise, other studies have suggested that
miRNAs may regulate cardiomyogenesis in oth-
er settings. Eulalio et al. (2012) examined the
ability of human miRNA mimics to induce pro-
liferation of rat neonatal cardiomyocytes in vi-
tro, and then examined the effects of the most
promising candidates in adult rat cardiomyo-
cytes in vitro and in a murine model of ischemic
injury in vivo. Interestingly, they found that
miR-590 and -199a promoted cell-cycle reentry
of adult cardiomyocytes in vitro and markers of
cardiomyocyte proliferation after ischemic in-
jury in vivo (Eulalio et al. 2012). In addition,
Chen et al. (2013) showed that the mir-17-92
cluster (specifically miR-19) is necessary and
sufficient to induce markers of cardiomyocyte
proliferation in adult hearts. Again, it is difficult
to precisely document the degree of cardiomyo-
genesis and correlate this with functional ben-
efits in vivo, leaving open the possibility that
these benefits accrue from other functional ef-
fects, such as inhibition of cardiomyocyte
death, which often appears to coincide with
drivers of growth and proliferation. Neverthe-
less, it appears that identification of miRNAs
that induce cardiomyocyte proliferation in vitro
and/or in vivo may enrich miRNAs with bene-
ficial effects on cardiac function and repair in
vivo (Eulalio et al. 2012; Li et al. 2016).

Excitation–Contraction Coupling

Exercise training decreases miR-1, -22, -133,
-208, and -214 and increases miR-24, -145,
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-499, and -574-3p in healthy hearts, although it
appears to restore miR-1 and -214 and increase
miR-145 in HF (Care et al. 2007; Cha et al. 2013;
Liu et al. 2015; Melo et al. 2015a,b; Ramasamy
et al. 2015; Souza et al. 2015; Zhao 2015). In-
triguingly, these miRNAs have been implicated
in regulating ECC, suggesting that miRNAs
contribute to exercise-induced ECC remodel-
ing. For example, Cha et al. (2013) showed
that miR-145 suppressed reactive oxygen spe-
cies (ROS)-induced Ca2þ overload and related
signaling by targeting CaMKIId, and thereby
protected against ROS-induced cardiomyocyte
apoptosis. Resistance training decreased the ex-
pression of miR-214 contributing to up-regula-
tion of its target, SERCA2a, which enhances SR
Ca2þ-uptake accelerating cardiomyocyte relax-
ation and loading the SR with Ca2þ, thereby
improving peak Ca2þ release and contractility
(Melo et al. 2015a). Melo et al. (2015b) also
found that swimming increased miR-1 (target-
ing NCX1) and decreased miR-214 (targeting
NCX1 and SERCA2a) regulating Ca2þ handling
after MI.

Cardioprotection from Ischemic Injury

Exercise protects against acute myocardial is-
chemic injury in animals and humans (Powers
et al. 2002, 2008; Lennon et al. 2004; Calvert
et al. 2011). Many of the miRNAs identified as
altered in exercised hearts have documented
roles regulating apoptosis or necroptosis, and
therefore could provide mechanistic links be-
tween exercise and cardioprotection (Fig. 2B)
(Cheng et al. 2009; Dong et al. 2009; Lin et al.
2010; Wang et al. 2011; Ma et al. 2013; Marti-
nelli et al. 2014; Liu et al. 2015; Ramasamy et al.
2015; Zhao 2015; Qin et al. 2016). However,
functional effects in cardiomyocytes in vitro
or in vivo have only been investigated in a
minority of cases and only rarely has cardio-
protection against ischemic injury been inves-
tigated. Aurora and colleagues reported that
miR-214 protects the mouse heart from ische-
mic injury by mitigating Ca2þ overload and
cell death (Aurora et al. 2012). Ramasamy et
al. (2015) found that physiological hypertrophy
increases cardiac miR-19b, which others have

shown down-regulates proapoptotic BIM,
thereby protecting cardiomyocytes against ER-
stress-induced apoptosis (Song et al. 2014).
Whether exercise-induced miR-19b contributes
to acute cardioprotection in vivo has not been
reported but seems probable. Other intriguing
candidates include miR-100, which is down-
regulated by exercise (Ramasamy et al. 2015),
which in vitro can protect cardiomyocytes
against H2O2-induced apoptosis (Chen et al.
2015).

However, not all miRNAs with antiapo-
ptotic effects will have an acute cardioprotective
effect after IRI in vivo. We found that miR-222 is
necessary and sufficient to reduce cardiomyo-
cyte apoptosis in vitro, and transgenic miR-222
overexpression in vivo reduces cardiomyocyte
apoptosis late after IRI (Liu et al. 2015). How-
ever, the initial infarct size measured at 24 hours
was not altered by miR-222 overexpression.
Cardiac-specific overexpression of miR-222 in
mice did improve cardiac function, in associa-
tion with increased markers of cardiomyocyte
proliferation as well as reduced cardiomyocyte
apoptosis and fibrosis “late” after IRI. Thus,
although miR-222 does not appear to contrib-
ute to the acute cardioprotective effects of exer-
cise, it does substantially reduce late adverse
remodeling after ischemic injury. Presumably
the same may be true of other miRNA candi-
dates with prosurvival effects in cardiomyocytes
and thus the possible contribution of miRNAs
to the acute cardioprotective effects of exercise
remains unclear.

Cardiac Fibrosis

Cardiac fibrosis occurs in many cardiac pathol-
ogies and is not generally associated with exer-
cise. Cardiac fibrosis can have important clin-
ical implications by increasing myocardial
stiffness and diastolic dysfunction, as well as
contributing to arrhythmia by interfering with
homogeneous electrical propagation. Exercise
appears to attenuate cardiac fibrosis (Wright et
al. 2014; Ma et al. 2015) and multiple miRNAs
may contribute in this context. van Rooij et al.
(2006) showed that the miR-29 family (miR-
29a, b, c) can act as negative regulators of car-
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diac fibrosis after MI. In related studies, Soci
et al. (2011) showed that increased miR-29a
and c correlates with decreased COL1A1 and
COL3A1 in the exercised heart, suggesting that
miR-29 may regulate fibrosis in both physio-
logical and pathological states. We also found
that miR-29c was increased in two distinct ex-
ercise models (Liu et al. 2015). Consistently,
Souza and Melo and colleagues found that
the decrease in miR-29 (a and c) seen in failing
rat hearts was attenuated by aerobic exercise
training, resulting in decreased collagen ex-
pression (Melo et al. 2014; Souza et al. 2015)
and suggesting that exercise-induced miR-29
could help mitigate fibrosis and thereby im-
prove ventricular function. We found that
overexpression of miR-222, which is also up-
regulated in two distinct exercise models, in-
hibited cardiac fibrosis by three- to fourfold
after IRI (Liu et al. 2015). Similarly, multiple
other miRNAs that have been reported to reg-
ulate cardiac fibrosis in disease states are al-
tered by exercise (Fig. 2B), raising the possibil-
ity that they contribute to the antifibrotic
effects of exercise.

Angiogenesis

An increase in neovascular formation or angio-
genesis is associated with endurance exercise.
Using endothelial-cell-specific deletion of Di-
cer, Suarez et al. (2008) showed that endothelial
miRNAs are essential for postnatal angiogenesis
in many contexts. Although a Dicer role in ex-
ercise-induced cardiac angiogenesis was not di-
rectly examined, it seems likely. Endothelial
miR-126 was shown to be involved in endothe-
lial homeostasis and angiogenesis (Fish et al.
2008; Wang et al. 2008). Intriguingly, da Silva
et al. (2012) reported that swim training in-
creased expression of cardiac miR-126, which
was positively correlated with the increase in
LV capillary–fiber ratio. Taken together, these
results suggest that exercise-induced miR-126
may contribute to angiogenesis in the heart.
Conversely, exercise decreased expression of
miR-26b (Martinelli et al. 2014), which has
well-documented antiangiogenic effects (Icli
et al. 2013).

SUMMARY AND CONCLUSION

Growing evidence suggests that both circulat-
ing and cardiac miRNAs are dynamically reg-
ulated by exercise in animal models and hu-
mans. Although the functional effects of these
miRNAs have been examined, several have doc-
umented roles in mediating the cardiac pheno-
types associated with exercise. In other cases,
functional contributions have been plausibly
inferred from demonstrated effects in other set-
tings. It appears that many miRNAs that are
functionally important in the heart’s response
to exercise also mitigate its response to patho-
logical stress and disease. These preliminary
studies provide cause for optimism that ongo-
ing investigations of these pathways may not
only provide novel biological insights but could
also lay a foundation for new therapeutic ap-
proaches to preventing or treating a range of
cardiovascular diseases.
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