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SUMMARY

Type III intermediate filament (IF) proteins assemble into cytoplasmic homopolymeric and
heteropolymeric filaments with other type III and some type IV IFs. These highly dynamic
structures form an integral component of the cytoskeleton of muscle, brain, and mesenchymal
cells. Here, we review the current ideas on the role of type III IFs in health and disease. It turns
out that they not only offer resilience to mechanical strains, but, most importantly, they facil-
itate very efficiently the integration of cell structure and function, thus providing the necessary
scaffolds for optimal cellular responses upon biochemical stresses and protecting against cell
death, disease, and aging.
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1 INTRODUCTION

There are four proteins classified as type III intermediate
filament (IF) proteins: desmin, glial fibrillary acidic protein
(GFAP), peripherin, and vimentin. Desmin is expressed in
all muscle types, GFAP is expressed in astrocytes and other
glial cells, and peripherin is expressed in peripheral neu-
rons. Vimentin is the most widely distributed and studied
type III IF protein, expressed mainly in mesenchyme-de-
rived cells, undifferentiated cells, and most cells in culture.
Type III IF proteins can form coiled-coil dimers with them-
selves, other type III IF members, and type IV IF proteins
such as syncoilin, nestin, neurofilaments, and synemins. All
type III IF proteins are cytoplasmic IFs and have a similar
primary structure, consisting of a head, rod, and tail do-
main (Fig. 1). Here, we review the expression of the differ-
ent type III IFs during development and in adulthood,
before moving on to focus on their role in health and
disease.

2 DESMIN

2.1 Desmin in Muscle Development

2.1.1 Expression Pattern in Cardiac and Skeletal
Muscle Progenitors

The original cloning of desmin complementary DNA
(cDNA) (Capetanaki et al. 1984) has facilitated molecular
studies related to the gene encoding desmin and the role of
desmin protein in health and disease (Capetanaki et al.
2015). Desmin is one of the earliest detected muscle-spe-
cific proteins during mammalian embryonic development

(Capetanaki 2002; Capetanaki et al. 2015), appearing first
at day 7.5 postcoitum in the precardial mesoderm, and a
day later in the skeletal muscle progenitors, the myotome
of the somites, in which its expression precedes even the
myogenic helix–loop–helix (HLH) transcription regula-
tors MyoD, myogenin, and MRF4 (Buckingham et al.
1992). All these factors, in cooperation with members of
the MEF2 family of transcription regulators, control des-
min expression during development (Li and Capetanaki
1994; Kuisk et al. 1996), thus suggesting a regulatory role
for desmin during myogenic commitment and differenti-
ation. Desmin is also expressed in adult skeletal and car-
diac muscle progenitor cells (Allen et al. 1991; Pfister et al.
2005).

2.1.2 Nuclear Role as a Myogenic and Cardiogenic
Cytoskeletal Regulator

During myogenesis and cardiogenesis, extensive mechano-
chemical signal transduction from the cell surface to the
nucleus takes place, and the IF cytoskeletal and nucleoske-
letal systems are potential modulators of such actions be-
cause they form a continuous network that links directly or
through the LINC (“linker of the nucleoskeleton and the
cytoskeleton”) complex, the outside of the cell to the nu-
clear interior (Capetanaki et al. 2007). Desmin is very im-
portant for myogenic and cardiogenic differentiation.
Inhibition of desmin expression interferes not only with
myoblast fusion and myotube differentiation but also
with proper expression of the myogenic transcription reg-
ulators MyoD and myogenin in C2C12 cells (Li et al. 1994)
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Figure 1. A schematic overview of the type III intermediate filaments (IFs) (only the human form is shown). The
three IF domains—head, rod, and tail—are indicated. The rod domain is divided into subregions: the coiled-coil
regions 1A (35 aa), 1B (8 aa), 2A (19 aa), and 2B (121 aa); and these subregions are separated by linker regions L1 (8
aa), L1/2 (DES, GFAP, and VIM, 16 aa; PRPH, 18 aa), and L2 (8 aa). The most variability in amino acid length is
present in the head and tail region. aa, amino acids; DES, desmin; GFAP, glial fibrillary acidic protein; L, linker;
PRPH, peripherin; VIM, vimentin.
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and, additionally, of myf5 in desmin-deficient (des2/2)
embryoid bodies (EBs) (Weitzer et al. 1995). Furthermore,
mutations of desmin interfere with cardiogenesis and
are linked to down-regulation of brachyury, goosecoid,
nkx2.5, and Mef2c, all important cardiogenic regulators
(Hollrigl et al. 2002; Hofner et al. 2007; Hollrigl et al.
2007), whereas ectopic expression of desmin in embryonic
stem cells promotes up-regulation of brachyury and nkx2.5
(Hofner et al. 2007). All the above findings strongly suggest
that the desmin cytoskeleton facilitates commitment of
primitive mesoderm to cardiogenic and myogenic lineages
or the maintenance of the committed lineages and subse-
quent differentiation, as well as maintenance of proper
skeletal and cardiac muscle homeostasis and regeneration
in adulthood.

How could desmin be involved in these processes? As
discussed above, it could act as the mechanosensor and
transducer of mechanical forces to the nucleus, a hypoth-
esis supported by studies demonstrating that nuclear shape
and positioning, as well as links to sarcomeres, are altered in
desmin-null mice (Capetanaki et al. 1997; Shah et al. 2004;
Ralston et al. 2006), whereas lamin A/C–deficient cardio-
myocytes show detachment of desmin IFs from the nuclear
surface and progressive disruption of its network (Nikolova
et al. 2004). In addition, lamin A/C and emerin (Adam
2016) are crucial for skeletal muscle satellite cell differen-
tiation, and restoration of normal desmin levels in
LmnA2/2 myoblasts enhances their differentiation poten-
tial (Frock et al. 2006). Finally, very recent novel data have
shown that desmin enters transiently the nucleus of cardiac
stem cells, physically interacts with transcription factor
complexes bound to the enhancer and promoter elements
of the Nkx2.5 gene, and regulates its transcription (Fuchs
et al. 2016).

2.2 Desmin in Adult Muscle Maintenance

2.2.1 Mechanochemical Integrator of Muscle
Structure, Maintenance, and Function

Adult striated muscle is a highly organized tissue (Fig. 2),
with direct links between morphology and function, and
effective mechanochemical signaling among the contractile
apparatus and the nucleus and other organelles. Mainte-
nance of this high level of integration requires a cell-wide
system that has the potential to interact with all the key
structures involved. A good candidate for such a system is
the desmin IF cytoskeleton that surrounds the Z-disks and
interconnects the contractile apparatus to the sarcolemma,
at the level of costameres and at intercalated disks in the
case of cardiac muscle (Figs. 2 and 3), as well as to different
membranous organelles, including the nucleus, mitochon-

dria, lysosomes, and potentially the sarcoplasmic reticulum
(Capetanaki et al. 2007; Capetanaki et al. 2015). The mo-
lecular mechanism responsible for the majority of these
associations remains unknown.

2.2.2 Links to Membranous Organelles

Desmin and the sarcolemma/intercalated disks (costamere
organization and function). Desmin IFs associate with the
sarcolemma of both cardiac and skeletal muscle at struc-
tures termed “costameres,” present at the membrane over-
lying Z-disks. In addition, in cardiac muscle, desmin
associates with the desmosomes of the intercalated disks
through desmoplakin (Capetanaki et al. 2015). Studies
with desmin-deficient mice have shown that desmin IFs
play an important role in stabilizing the organization of
the sarcolemma into costameres (O’Neill et al. 2002; Cape-
tanaki et al. 2007).

Desmin links to nuclei/mechanochemical signaling. Al-
though the nuclear envelope seems to isolate the cytoplas-
mic from the nuclear IF scaffold, these two systems form a
continuous network, either directly through the nuclear
pores (Capetanaki et al. 2007; Capetanaki et al. 2015) or
through the association of the cytoskeletal cross-linking
protein plectin and the LINC-complex protein nesprin 3.
This association provides linkages between cytoskeletal IFs
and lamins A/C and the nuclear envelope protein emerin
through interactions with SUN1 and SUN2 proteins (Wil-
helmsen et al. 2005). These interactions are consistent with
the importance of desmin shown in the proper localization
of myofiber nuclei (Ralston et al. 2006), the mechanical
coupling of the contractile apparatus and the nucleus
(Shah et al. 2004), and, consequently, the lamin-based nu-
cleoskeleton. Based on these findings, it has been proposed
that the desmin IF scaffold could participate in a bidirec-
tional mechanochemical signaling process leading to de
novo gene activity and tissue homeostasis. This hypothesis
is supported by the established interaction of desmin with
myospryn (Kouloumenta et al. 2007), a negative modula-
tor of calcineurin (Kielbasa et al. 2011; Tsoupri and Cape-
tanaki 2013), as well as its suggested interaction with the
stretch-sensing transcription factor cardiac ankyrin repeat
protein (CARP) (Witt et al. 2005). Finally, an additional
novel interaction of desmin with the homologous tran-
scription factors Dux4 and Dux4c in the cytoplasm and
at the nuclear periphery during muscle differentiation was
recently reported (Ansseau et al. 2016). As discussed below,
IFs are also associated with other membranous organelles
in the myoplasm, thus, potentially facilitating the cross talk
required for efficient muscle function.

Desmin links to the biogenesis, maintenance, and func-
tion of mitochondria. Alterations in mitochondrial distri-
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bution and morphology are associated with normal cellular
processes, as well as with a variety of pathological condi-
tions, including muscular dystrophy and cardiomyopathy.
Mitochondria are linked directly or indirectly to microfil-
aments, microtubules, and—of most interest here—IFs
(Rappaport et al. 1998). The first findings on the interplay
between the desmin IF cytoskeleton and mitochondria
came from studies with desmin-deficient mice (Milner
et al. 2000; Capetanaki 2002). The absence of desmin leads
to mitochondrial defects, followed by cardiomyocyte
death, inflammation, fibrosis, and calcification, all leading
to extensive myocardial degeneration, dilated cardiomyop-
athy, and heart failure (Li et al. 1996; Milner et al. 1996; Kay
et al. 1997; Milner et al. 1999; Milner et al. 2000; Mavroidis
and Capetanaki 2002; Psarras et al. 2012; Mavroidis et al.

2015). Mitochondrial abnormalities seem to be the earliest
detected defects in desmin-null myocytes and include loss
of proper morphology, cristae structure, respiratory func-
tion, abnormal mitochondrial permeability transition
pore (mPTP) activation, and dissipation of mitochondrial
membrane potential (Dc) (Milner et al. 2000; Diokmetzi-
dou et al. 2016). This is consistent with the observation that
mitochondrial abnormalities are ameliorated by overex-
pressing Bcl2, an antiapoptotic protein located at the mi-
tochondrial contact sites and known to regulate mPTP
function (Weisleder et al. 2004). A link between mitochon-
drial Dc and vimentin has also been reported (Chernoiva-
nenko et al. 2015). The observed loss of mitochondrial
positioning could be a secondary effect, at least in cardio-
myocytes, given that overexpression of Bcl2 in the desmin-
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Figure 2. Localization of desmin and its associated protein myospryn in cardiac striated muscle. (I) Electron-
microscopic ultrastructural view of the mouse myocardium showing intercalated disks (ID), Z-disks (Z), and
mitochondria (m). (II) Colocalization of desmin (red) and myospryn (green) by immunofluorescence microscopy.
IDs and Z-disks (Z) are indicated in panel I and the middle figure of panel IIA2; IDs are also indicated in panel IIA3
(middle) by arrowheads. (B1, B2) In contrast to ID and costameres, myospryn (green) is not detectable at the internal
sarcomeric Z-discs.a-actinin (red) is used as positive Z-disc marker. Not shown here, desmin is also localized at the
costameres. Scale bars, 1mm (I), 20mm (IIA2, IIB1, IIB2), and 50mm (IIA1, IIA3). (II, Adapted from Kouloumenta
et al. 2007.)
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null heart corrects this defect (Weisleder et al. 2004). Sim-
ilar mitochondrial abnormalities have been observed in
patients with mutations in desmin (Clemen et al. 2013;
Capetanaki et al. 2015), as well as in other IF proteins,
including neurofilament NF-L (Brownlees et al. 2002)
and keratins K5 and K14 (Uttam et al. 1996), causing neu-
ronal and epithelial disorders, respectively.

How can the desmin IF cytoskeleton influence mito-
chondria behavior and function? Desmin IFs could stabi-
lize mitochondria near other organelles required for their
functional cross talk, such as endoplasmic reticulum/sar-
coplasmic reticulum (ER/SR) (Capetanaki et al. 2007).
They might also directly influence mitochondrial mem-
brane behavior either by supporting proper protein and
lipid targeting to the right compartments or by stabilizing
properly targeted functional complexes, as initially suggest-
ed by mitochondrial proteome comparisons between wild-
type and desmin-null hearts (Fountoulakis et al. 2005).

Indeed, very recently it was shown that desmin is localized
at the contact sites between SR and mitochondria (MAMs,
mitochondria-associated membranes), established sites for
multiple cellular processes, including Ca2+ and metabolite
transfer, lipid metabolism, mitochondrial shape regula-
tion, and autophagosome and inflammasome formation
(Diokmetzidou et al. 2016). This association could be me-
diated through VDAC (voltage-dependent anion channel),
which was also found to associate with desmin. In addition,
desmin associates with different members of the MICOS
(contact site and cristae organizing system) complex and
ATP synthase, consistent with the cristae defects, the de-
creased levels of mitofilin (Mic60), other mitochondrial
proteins, and ATP levels in desmin-deficient cardiomyo-
cytes (Diokmetzidou et al. 2016). As discussed below, of
great interest is the finding that the desmin-associated
chaperone aB-crystallin was also found to associate with
the same mitochondrial proteins and, when overexpressed
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in desmin-deficient hearts, all mitochondrial defects were
ameliorated (Diokmetzidou et al. 2016).

Desmin links to lysosome-related organelles. It was re-
cently suggested that desmin is potentially involved in ves-
icle trafficking and lysosome-related organelle biogenesis
through its associated protein myospryn (Kouloumenta
et al. 2007). Desmin is essential for the proper positioning
of lysosomes, suggesting a potential role for desmin IFs and
associated proteins in the control of the endo/lysosomal
compartments and proper lysosome biogenesis and distri-
bution in cardiomyocytes (Holen et al. 1992; Blankson
et al. 1995).

2.3 Desmin Interactome

Investigations with desmin have revealed that, as expected,
this multifunctional protein forms a very complex interac-
tome. Desmin interacts directly with more than 15 proteins
and indirectly, most possibly, with the entire muscle mech-
anochemical interactome. IFs, in general, and desmin, in
particular, have also been suggested to interact with DNA
(Traub 1995). Here, we will mainly focus on putative direct
interactions. These interactions (Fig. 3) can be operation-
ally divided into interactions with (1) other members of the
IF family, (2) proteins of the contractile apparatus, (3)
proteins linking to the costameres, (4) proteins linking to
the intercalated disks, (5) proteins linking to the nucleus,
(6) proteins linking to mitochondria, (7) proteins linking
to lysosomes, (8) chaperone proteins linking to multiple
sites, and (9) others.

IF partners. Four cytoplasmic IF proteins interact with
desmin, one type III IF protein, vimentin, and three type
IV, synemin, and syncoilin, at the Z-disk and costamere
levels (Poon et al. 2002), and nestin. Desmin also interacts
with nuclear lamin B (Georgatos and Blobel 1987; Cetin et
al. 2013). Desmin can form heteropolymers with vimentin
and nestin (not with its avian ortholog paranemin) but
not with synemin and syncoilin (Clemen et al. 2013).

Proteins comprising the contractile apparatus. At the level
of Z-disks of the myofibrils, desmin associates with the
plectin isoform 1d (Konieczny et al. 2008), nebulin (Bang
et al. 2002; Conover and Gregorio 2011), and nebulette
(Hernandez et al. 2016).

Proteins linking to the costameres. In addition to syne-
min and syncoilin, desmin associates with costameres
through linkages to different proteins, including the plectin
isoform 1f (Konieczny et al. 2008), spectrin (Langley, Jr.
and Cohen 1986), and potentially ankyrin (Georgatos and
Blobel 1987). As mentioned above, desmin also associates
with the novel TRIM (tripartite motif family)-like protein
myospryn (Kouloumenta et al. 2007; Tsoupri and Capeta-
naki 2013), which also localizes at the costameres and in-

teracts with the dystrophin complex through dysbindin–
dystrobrevin (Fig. 2; Benson et al. 2004; Kouloumenta et al.
2007). There is evidence that both caveolin 3 (Mermelstein
et al. 2007) and the nicotinic acetylcholine receptor located
at the motor end plate (Mitsui et al. 2000) also interact with
desmin.

Proteins linking to the intercalated disks. At the level
of intercalated disks, desmin associates with desmoplakin
(Kartenbeck et al. 1983; Lapouge et al. 2006) and myospryn
(Fig. 2; Kouloumenta et al. 2007) through its tail and head
domain, respectively.

Proteins linking to the nucleus. As discussed above, plec-
tin, through its interactions with nesprin 3 and lamins, is
involved in the association between desmin IF and the
nucleus. The established localization of myospryn around
the nucleus requires desmin (Kouloumenta et al. 2007).
Therefore, myospryn does not seem to mediate the associ-
ation of desmin IFs to the nucleus. In contrast, myospryn,
either as an A-kinase anchoring protein (AKAP) or as a
calcineurin modulator, seems to regulate calcineurin-de-
pendent transcriptional activity and regeneration (Kielbasa
et al. 2011; Tsoupri and Capetanaki 2013). Although there
is no evidence yet, this phenomenon could be linked to the
direct nuclear actions of desmin described above (Fuchs
et al. 2016).

Proteins linking to mitochondria. One of the proteins
that mediates the association of desmin IFs to mitochon-
dria is plectin isoform 1b, but how plectin associates with
mitochondria is unknown. It should be mentioned that
trichoplein, a novel keratin-binding protein with some ho-
mology with plectin, associates with the outer mitochon-
drial membrane and reduces mitochondrial motility
(Cerqua et al. 2010). Myotubularin is a more recently iden-
tified desmin-associated protein, and mutations responsi-
ble for loss of this association are linked to mitochondrial
defects and X-linked centronuclear myopathy (Hnia et al.
2011). As mentioned above, several mitochondrial proteins
have been found to associate directly or indirectly with
desmin (Diokmetzidou et al. 2016); these include VDAC,
the MICOS complex members Mic60, Mic19, and Mic27,
the OMM Sam50, involved in protein transport, and OPA1,
involved in fusion, and ATP synthase b. At least the inter-
action with VDAC is direct and takes place between the
desmin carboxyl terminus and the VDAC amino terminus.
Whether VDAC is the mediator of the interaction of desmin
with MICOS remains elusive. In addition to all the trans-
port processes mentioned above, the desmin-mediated
connection of sarcomeres to all these mitochondrial pro-
teins could facilitate signal transmission of the muscle en-
ergy demands directly to mitochondria, thus coupling
mechanochemical signaling to metabolism and controlling
life-and-death decisions.

E.M. Hol and Y. Capetanaki
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Proteins linking to lysosomes. As discussed above, des-
min associates with the biogenesis of lysosome-related or-
ganelles complex 1 (BLOC-1), which is involved in protein
trafficking and organelle biogenesis through myospryn
(Kouloumenta et al. 2007), the muscle-specific partner of
dysbindin, a component of BLOC-1 (Benson et al. 2004).

Chaperone protein links at multiple sites. Desmin asso-
ciates with the small heat-shock proteins hsp25/27 andaB-
crystallin (Bennardini et al. 1992; reviewed in Wettstein
et al. 2012), and colocalizes with them at multiple sites.
This association seems to be of great importance for both
partners and reflects a very interesting mito- and cardio-
protective interplay between them (Diokmetzidou et al.
2016). As has been shown recently, overexpression of
aB-crystallin in desmin-deficient hearts ameliorates all mi-
tochondrial defects and improves cardiac function signifi-
cantly. Given that aB-crystallin was also found to interact
with all mitochondrial proteins found to interact with
desmin, this extensive cardioprotection is linked to these
associations, proper mitochondrial-SR cross talk, proper
mitochondrial protein levels, inhibition of abnormal
mPTP activation, and maintenance of Dc (Diokmetzidou
et al. 2016).

Others. Desmin associates with calponin, a calmodulin-
and tropomyosin-binding protein, at least in smooth mus-
cle (Fujii et al. 2000). Finally, surfactant protein A (SP-A), a
member of the collectin family that regulates innate immu-
nity, associates with desmin and vimentin and regulates
their polymerization (Garcia-Verdugo et al. 2008).

2.4 Desmin in Disease

Mutations in the desmin gene (DES) or abnormal post-
translational modifications cause cardiac and skeletal my-
opathies, collectively called desmin-related myopathies
(DRMs) or desminopathies (Goldfarb and Dalakas 2009;
Capetanaki et al. 2015). Nearly 70 human DES mutations
associated with desminopathy have been reported so far,
most of them localized within coil 2B, which is an impor-
tant domain for IF assembly (Clemen et al. 2013; Herr-
mann and Aebi 2016). Indeed, the majority of desmin
mutants cannot form a de novo desmin IF network—in-
stead, they form non-IF structures and protein aggregates,
leading to loss of function of both desmin and its binding
partners, as well as potential toxic effects of the formed
aggregates. The most common desmin-related heart dis-
ease was recently suggested to be tumor necrosis factor
alpha (TNF-a)-induced heart failure (Panagopoulou
et al. 2008). TNF-a increase is the hallmark of all heart
failure models. Activation of caspases by TNF-a leads to
desmin cleavage and aggregate formation both in mouse
and human (Panagopoulou et al. 2008; Papathanasiou

et al. 2015), intercalated disk destabilization, mitochondri-
al defects, cell death, and heart failure. It is important
to note that, so far, two transgenic strategies have amelio-
rated desmin-related disease, one by overexpression of
Bcl2 (Weisleder et al. 2004) and the other by overexpression
of aB-crystallin (Diokmetzidou et al. 2016). In both
cases, rescue of the mitochondrial defects is the hallmark,
with aB-crystallin showing an unexpected superior rescue,
resembling a wild-type heart. Finally, of great interest is
the recent finding that TNF-a-induced ectopic expression
of keratins K8 and K18 in the desmin-deficient myocardi-
um and other heart failure models rescues both mitochon-
drial and intercalated disk disease defects (Papathanasiou
et al. 2015).

3 GFAP

GFAP was originally discovered in brain tissue of multiple
sclerosis patients (Eng et al. 1971). In 1984, Lewis and
colleagues were the first to isolate a nearly complete
cDNA clone for mouse GFAP, marking a new era of molec-
ular studies related to the GFAP gene (Lewis et al. 1984). A
few years later, the human GFAP gene was cloned (Reeves
et al. 1989) and, in time, sequences of other species became
available. GFAP is the signature IF of astrocytes, a specific
type of glia, which are a class of nonneuronal cells in the
central nervous system (CNS). GFAP messenger RNA
(mRNA) and protein are tightly regulated during develop-
ment, marking the maturation of astrocytes, and GFAP is
up-regulated in reactive astrocytes in disease (Eng et al.
2000; Middeldorp and Hol 2011). Figure 4 shows GFAP
IFs in human astrocytes, the human GFAPa IF network
formed in mouse embryonic fibroblasts (MEF vim2/2),
and human GFAPa integrated in the endogenous IF net-
work in mouse primary astrocytes.

3.1 GFAP in Development of the Nervous System

3.1.1 Expression in CNS, Peripheral Nervous System,
and Enteric Nervous System

GFAP is considered to be a marker for fully differentiated
astrocytes in the nervous system, but is also expressed in
fetal and adult neural stem cells. The expression of GFAP
mRNA and protein starts early in development in the radial
glia, the neural stem cells of the developing CNS. In mouse
brains, GFAP is expressed as of embryonic day E9.5 (Fox
et al. 2004) and in human radial glia at approximately
gestational week 13 (Middeldorp et al. 2010). In human
myenteric ganglion cells, GFAP protein has been reported
as early as gestational week 10 (Fekete et al. 1999). In the
adult nervous system, GFAP is expressed in mature astro-
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cytes in the gray and white matter, in Müller glia in the
retina, in Bergmann glia in the cerebellum, and in the adult
neural stem cells in the subventricular zone (SVZ) and the
subgranular zone (Middeldorp and Hol 2011). In addition,
GFAP can also be expressed by Schwann cells in the periph-
eral nervous system, by mature glial cells in the gut, and in
nonneural cells (Middeldorp and Hol 2011; Clairembault
et al. 2014).

The precise function of GFAP is still not fully under-
stood. GFAP has been implicated in cell migration, mo-
tility, and mitosis, which is relevant for the role of GFAP
in the developing CNS and in glioma. Furthermore,
GFAP contributes to the mechanical integrity of cells
and is involved in cell signaling (Hol and Pekny 2015).
GFAP-null mice are viable and can show changes in white
matter instability emerging at old age or in neuronal
plasticity (Middeldorp and Hol 2011). Expression profil-
ing of GFAP-null astrocytes shows that several genes in-
volved in interactions with the membrane or extracellular
matrix are changed, supporting a role for GFAP in trans-
ducing signals from the exterior of the cell (Kamphuis
et al. 2015). Overexpression of GFAP leads to formation
of aggregates in astrocytes, resulting in a severe neurode-
generative phenotype, which is reminiscent of Alexander
disease (Messing et al. 1998).

3.1.2 GFAP Protein and GFAP Isoforms

The GFAP gene consists of nine exons and, to date, 10
splice-isoforms of GFAP are known to be expressed in the
mouse (Kamphuis et al. 2012) and human nervous system
(Middeldorp and Hol 2011; Kamphuis et al. 2012; Kam-
phuis et al. 2014). In mouse brain, GFAPa,b, g, d, z, k, and
Dexon 7 are expressed, and, in human brain, GFAPa, b, d,
z, k, D135, D164, Dexon6, and Dexon 7 are expressed
(Hol and Pekny 2015). The mRNAs and proteins of the

isoforms are shown in Figure 5. The most abundantly ex-
pressed isoform is GFAPa, and the majority of the pub-
lished studies most likely describe GFAPa mRNA and
protein expression.

GFAPa can self-assemble in a cell-free system (Perng
et al. 2008), but, in astrocytes, the protein needs vimentin
to coassemble into normal IFs (Eliasson et al. 1999). GFAP
also forms heterodimers with the IF proteins nestin and
synemin. The GFAP assembly in the cell cytoplasm is reg-
ulated by phosphorylation, and there is a constant ex-
change between soluble monomeric protein, short unit-
length fragments, and the fully assembled GFAP network.
Posttranslational modifications are phosphorylation, gly-
cosylation, and ubiquitination (Middeldorp and Hol
2011; Hol and Pekny 2015), and the protein has a half-
life of �1 month (Price et al. 2010). The head, rod, and
tail domains are important for proper assembly into fila-
ments of thickness 10 nm. The splice isoforms mainly vary
in the carboxy-terminal protein sequences, resulting in
GFAP proteins that are not able to form homodimers.
Many interacting proteins have been identified, such as
plectin, 14-3-3 proteins, aB-crystallin, Hsp27, presenilin,
Lamp-2A, EF1a, other IFs, protein kinase N, periplakin,
and endoplakin (Nielsen and Jorgensen 2004; Middeldorp
and Hol 2011; Hol and Pekny 2015). Recently, it was
shown that the endocytosis of the Notch ligand jagged1
and Notch signaling from astrocytes to neurons is depen-
dent on GFAP and vimentin (Wilhelmsson et al. 2012). It
should be noted that most knowledge about the biologi-
cal, biochemical, and biophysical properties of GFAP is
based on experimental data obtained with the canonical
GFAPa isoform. The effects of the recently discovered
GFAP isoforms on GFAP assembly are only just beginning
to be elucidated. The main isoforms studied are GFAPa
and GFAPd. A high expression of GFAPd leads to a col-
lapse of the cellular IF network. Normally, the ratio of

A B C

Figure 4. Expression of the intermediate filament (IF) protein glial fibrillary acidic protein (GFAP) in different cells.
(A) GFAP (green) in astrocytes of the human frontal cortex; vimentin (red) stains the blood vessels. (B) Human
GFAPa forms an IF network in vimentin-null mouse embryonic fibroblasts. (C) Human GFAPa (white) integrates
into the endogenous IF network of mouse primary astrocytes. Scale bar, 20 mm (A), 5 mm (B), 10 mm (C).
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GFAPd/GFAPa is 10/90 (Roelofs et al. 2005). A change in
this ratio by an increased expression of GFAPd or a de-
crease in GFAPa results in a change in expression of lam-
inin and plectin, affecting cell adhesion and migration
(Moeton et al. 2014; Moeton et al. 2016).

In specific areas in the human brain, GFAPd is predom-
inantly expressed, such as in the SVZ astrocytes and subpial
astrocytes (Roelofs et al. 2005). The SVZ GFAPd-immuno-
positive cells are the neural stem cells of the adult human
brain (van Strien et al. 2014). Interestingly in human en-
teric glial cells, GFAPk is the main isoform (Clairembault
et al. 2014). In contrast, in the mouse CNS, all astrocytes
seem to express similar levels of the different splice iso-

forms. Early studies showed that the stoichiometry between
the different GFAP isoforms is of significance for proper
GFAP IF formation and can change cell motility and ex-
pression of the extracellular matrix protein laminin and the
cytoskeletal linker protein plectin (Roelofs et al. 2005;
Perng et al. 2008; Kamphuis et al. 2012; Kamphuis et al.
2014; Moeton et al. 2014).

3.2 GFAP in Brain Disease

3.2.1 GFAP Mutations and Alexander Disease

De novo mutations in the GFAP gene cause Alexander
disease, which is a progressive and fatal neurodegenerative
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Figure 5. Schematic representation of the different mouse glial fibrillary acidic protein (GFAP) isoforms (modified
from Kamphuis et al. 2012 and Hol and Pekny 2015). The scheme illustrates the differential splicing routes resulting
in 10 different Gfap transcript isoforms (left). The size of the depicted exons is to scale except for exons 1 and 9,
indicated by breaks. The sequences of Gfapa and Gfapd have been determined by full-length cloning; for the other
sequences, the exact 5′ sequence and the start codon are not known. The head, rod, and tail domains of the GFAP
protein isoforms are indicated (right). The GFAP isoforms differ in the length of the rod domain and the sequence
of the tail. The domains that are similar in each protein have the same shape and color. GFAPa and GFAPD135 have
an identical carboxyl terminus (green), as do GFAPDexon 7, D164, and Dexon6 (dark purple). GFAPd and GFAPk
have unique carboxyl termini. No protein sequence for GFAPb, GFAPg, and GFAPz can be deducted from the
mRNA sequences. Please note that Gfapd in some papers is designated as Gfap1; however, these are exactly the same
proteins.
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disease. The disease is extremely rare, and it has been esti-
mated to occur in 1 in 2.7 million people in Japan (Yoshida
et al. 2011). Alexander patients suffer from seizures and
severe cognitive disabilities in the more aggressive juvenile
form and from problems with coordination, speech, and
swallowing in the late-onset cases (Quinlan et al. 2007).
The mutations are scattered over the full length of the
GFAP protein, with two hotspots in the rod domain: R79
and R239. Most of the mutations result in a coding change
of one amino acid or in a deletion or insertion of one or a
few amino acids. Recently, frameshift mutations and an
intronic splice-site mutation have been described (Flint
et al. 2012). These mutations all result in abnormal IF
networks in the cell and a propensity for the GFAP protein
to form aggregates. The consequences for GFAP isoform
expression are not known yet. The neuropathological hall-
mark of this disease is the presence of Rosental fibers in
astrocytes, which are aggregates of ubiquitinated GFAP
proteins, aB-crystallin, and HSP27 (Quinlan et al. 2007).
Such aggregates can also be induced by an overexpression of
wild-type GFAP. How the changes in IF properties and the
GFAP aggregates affect astrocyte function is not known.

Astrocytes are important players in neurodevelopment
and synaptogenesis. In the adult brain, they control the level
of neurotransmitters, water, and ions and thus are essential
for optimal neuronal communication. More importantly,
astrocytes are part of the tripartite synapse and are an active
player in synaptic transmission. Therefore, dysfunctional
astrocytes arising from mutations in GFAP can cause a
neurodevelopmental phenotype or affect neuronal com-
munication in the adult brain (Hol and Pekny 2015).

3.2.2 GFAP in Reactive Gliosis

Astrocytes become reactive during a neurological disease
and upon brain damage. An increase in GFAP is observed
in brains in patients suffering from neurodegenerative dis-
eases (Alzheimer’s, Parkinson’s, and Huntington’s), acute
brain injuries (traumatic brain injury, ischemic and hem-
orrhagic stroke), epilepsy, and lower-grade astrocytoma. A
characteristic of reactive gliosis is an increase in astrocytic
IF proteins, GFAP, vimentin, synemin, and nestin. This
leads to thicker IF bundles in the astrocytic processes
(Hol and Pekny 2015). Reactive gliosis has many different
faces—it can be a slow but chronic response such as in
Alzheimer’s disease, or it can be acute such as in brain
trauma. In both instances, GFAP is up-regulated, but the
exact changes in the IF network and the contribution of
other IFs and the GFAP isoforms need further elucidation.

In Alzheimer’s mouse models and human Alzheimer’s
brain tissue, many of the GFAP isoforms are up-regulated
(Kamphuis et al. 2012; Kamphuis et al. 2014). In the human

brain, the number of astrocytes expressing a frameshifted
GFAP variant (GFAP+1) is highly correlated with Alz-
heimer’s pathology. As these cells are very sparse, it has
been difficult to determine which mRNA isoform leads to
this variant. Three different mRNAs can code for this var-
iant, GFAPD164, Dexon6, and Dexon 7, and all of these are
expressed in Alzheimer’s brains (at a low level) and show a
trend to be up-regulated with increased pathology (Kam-
phuis et al. 2014). Changes in the IF network are likely to
contribute to functional changes in reactive astrocytes. Sev-
eral studies have been performed on mice with a deficiency
in GFAP alone or in GFAP and vimentin (Pekny 2001).
These experiments revealed that a loss of the IF network
leads to a weakened reactive gliosis response, a larger area of
brain damage and synaptic loss after trauma, and less re-
sistance to mechanical stress (Pekny 2001; Hol and Pekny
2015). A recent study revealed changes in the transcriptome
of reactive astrocytes with different IF networks acutely
isolated from Alzheimer’s mice. Astrocytes with a defi-
ciency in GFAP or GFAP–vimentin showed a more pro-
nounced increase in pro- and anti-inflammatory genes
and a rescue of the decrease in the expression of neuronal
support genes that occurs in Alzheimer’s mice with a nor-
mal IF network (Kamphuis et al. 2015). More research is
needed to link these changes in gene expression to func-
tional changes.

3.2.3 GFAP in Brain Tumors

Astrocytic brain tumors (glioma) and astrocytoma cell
lines express four IF proteins: GFAP, vimentin, synemin,
and nestin (Hol and Pekny 2015). The expression of nestin
and vimentin indicates an undifferentiated, more stem-
cell-like state of these cells. Astrocytoma cells also express
the GFAP isoforms GFAPa and GFAPd. In these cells,
GFAP splicing is tightly regulated, and a change in the
splice-pattern leads to a collapse of the IF network (Kanski
et al. 2014), which is reminiscent of Rosenthal fibers that
can occur in astrocytoma. A modulation of the IF network
leads to a change in morphology, focal adhesion size, and,
in some instances, motility of astrocytoma cells, and this
coincides with a change in integrin, laminin, and plectin
expression (Moeton et al. 2014, Moeton et al. 2016). The
exact IF composition of a glioma is not well characterized,
but it does appear in general that the GFAP levels decline
with a higher glioma grade and that the markers for im-
mature glia (nestin and vimentin) increase. However,
GFAPd, a marker for adult neural stem cells, has been
associated with tumor grade (Brehar et al. 2015). This
likely reflects an increase in the GFAPd/a ratio in high-
er-grade astrocytoma. In conclusion, both the IF compo-
sition and the stoichiometry of the GFAP splice variants
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seem to be important determinants of the final cellular
behavior.

4 PERIPHERIN

4.1 Expression in the Developing and Adult
Nervous System

Peripherin is a 58-kDa IF protein first described in 1983
(Portier et al. 1983) and cloned in 1988 (Leonard et al.
1988). The protein is highly homologous to the other
type III IFs and can assemble by itself in a filamentous
network in SW13 cells (Zhao and Liem 2016). The expres-
sion of peripherin is restricted to neurons of the peripheral
nervous system and the CNS that have peripheral axons. In
the developing CNS, peripherin is already clearly expressed
at the 34-somite stage (E17–E18) but not yet at the 25-
somite (E12.5) rat embryo. Peripherin immunoreactivity is
restricted to autonomic and sensory neurons and spinal
motor neurons during development (Escurat et al. 1990)
and in the adult brain (Brody et al. 1989). The peripherin
protein interacts with neurofilament subunits (Parysek
et al. 1991). Four main isoforms of peripherin are expressed
in the mouse: the 58-kDa variant is the dominant isoform
(Per 58), and differential splicing leads to Per 45, Per 56,
and Per 61 (Landon et al. 1989; McLean et al. 2008). Per 45
is the result of an inframe downstream initiation codon, Per
56 is an out-of-frame variant that is the result of a cryptic
splice site in exon 9, and Per 61 contains an additional 32
amino acids within the rod region caused by retention of
intron 4. Per 61 cannot occur in human as the intron 4
retention in this case will lead to a truncated frameshifted
protein of 32 kDa. However, in human, an even shorter
peripherin is expressed, Per 28, which is the result of an
intron 3 and intron 4 retention, leading to a stop codon in
intron 3 (Xiao et al. 2008). Per 28 and Per 61 cannot self-
assemble into filaments in SW13 cells and form aggregates
(Zhao and Liem 2016).

The high expression level of peripherin during develop-
ment and the increase of the level of peripherin on the out-
growth of axons (Xiao et al. 2006) suggest a role for
peripherin in axonal guidance and regeneration. However,
the exact function of peripherin and its isoforms is still
elusive. Peripherin-deficient mice do not display a clear
phenotype, but the levels of the type IV a-internexin in-
creased, and a significant reduction of unmyelinated sen-
sory axons was observed (Lariviere et al. 2002). These data
suggest a role for peripherin in the development of a subset
of sensory neurons. Recently, Per 61 interactors have been
identified, and the interaction with synaptosomal-associat-
ed protein 25 (SNAP 25) interacting protein (SIP30) sug-
gests a role for peripherin in vesicle trafficking (Gentil et al.
2014).

4.2 Role in Brain Disease

Peripherin is up-regulated on injury of axons (Wong and
Oblinger 1990). It is suggested that an up-regulation of
peripherin is a regenerative response, but complex post-
translational processing can push the regenerative response
toward a pathological process (McLean et al. 2010). By
analogy with GFAP, an overexpression of peripherin is det-
rimental for cells as it induces neurodegeneration and even-
tually neuronal death (Liem and Messing 2009). Peripherin
neuropathological inclusions, which also contain neuro-
filaments, have been observed in motor neurons of spora-
dic and familial amyotrophic lateral sclerosis (ALS)
patients (Xiao et al. 2006). ALS is a devastating motor
neuron disease, characterized by a loss of motor neurons
in the cortex, brain stem, and spinal cord. Peripherin ex-
pression is increased in ALS cases, potentially contributing
to an expansion in the number of intraneuronal aggregates.
Furthermore, a frameshift deletion in the gene encoding
peripherin has been associated with ALS (Lepinoux-
Chambaud and Eyer 2013).

Peripherin splice variants have been implicated in ALS.
In the SOD1G37R mouse model of ALS, the expression of
the mouse-specific splice variant Per 61 is induced. This
variant is not observed in controls. The expression of this
variant leads to peripherin and neurofilament inclusions
and causes neurotoxicity in vitro (Robertson et al. 2003). In
human ALS cases, a novel peripherin variant was discov-
ered, Per 28, which is present in motor neuron inclusions
and is only expressed in ALS cases (Xiao et al. 2008). Per 28
expression in motor neurons induces inclusion bodies. Pe-
ripherin isoform expression has been profiled in the ner-
vous tissue of mouse models for trauma (sciatic nerve
crush), stroke (middle cerebral artery occlusion), and
ALS (SOD-1G93A), and in human control and ALS spinal
cords. These studies showed specific peripherin biochem-
ical signatures for each condition (McLean et al. 2010).

5 VIMENTIN

5.1 Vimentin as a Potential Regulator of Growth
and Differentiation

Vimentin was the first member of the type III IF protein
coding genes to be cloned (Capetanaki et al. 1983; Zehner
and Paterson 1983). Vimentin is mainly expressed in un-
differentiated and proliferative cells of mesenchymal origin
and, on differentiation, is replaced by the corresponding
cell type–specific IF protein (Tapscott et al. 1981; Capeta-
naki et al. 1984; Olson and Capetanaki 1989). Vimentin is
also expressed in fully differentiated cells, such as blood
and lens cells. Its expression is regulated by growth factors,
and it belongs to the early-response-competence gene fam-
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ily (Rittling et al. 1985; Ferrari et al. 1986). Several inves-
tigations have suggested the involvement of vimentin in
growth and differentiation of different systems, including
muscle (Olson and Capetanaki 1989), lens (Capetanaki
et al. 1989; Mou et al. 2010), and osteoblasts (Lian et al.
2009). In all these cases, overexpression of vimentin, ec-
topic or owing to the absence of its repressor HSF4 (Mou
et al. 2010), inhibits differentiation. The mechanism of this
inhibition has been further revealed in the case of osteo-
blasts in which differentiation is suppressed through direct
binding of the vimentin first leucine zipper (LZ) domain
to the osteoblast-specific LZ-containing transcription fac-
tor ATF-4 (Lian et al. 2009). This is in agreement with the
previously reported structural similarities between the leu-
cine-rich domains of vimentin and the LZ motif of several
other LZ-containing transcription regulators, including
fos, jun, and cAMP response element-binding protein
(CREB) (Capetanaki et al. 1990), which have allowed the
prediction of potential interactions of these proteins with
vimentin through their leucine-rich amphipathic helices.

All the above observations are also consistent with the
fact that vimentin is expressed in almost all cancer cells, and
its expression levels have been linked to metastasis and poor
prognosis (see, also, the review by Cheng and Eriksson
2016). The common growth-regulated expression and the
above-discussed intriguing structural similarity (50%–
70%) of vimentin with the nuclear proto-oncogene prod-
ucts c-fos, its related antigen fra-1, c-jun, as well as the
amino-terminal activation domain tpr of the oncogenic
raf (Capetanaki et al. 1990) and the v-mos oncogene prod-
uct (Bai et al. 1993) have long since raised the question of a
potentially active role of vimentin in tumorigenesis, per-
haps by interactions that could influence their function,
along with its general role as a brake on differentiation.
Of further interest is the finding that overexpression of c-
mos in the lens of transgenic mice inhibits lens cell differ-
entiation in a fashion similar to that of vimentin (Khillan
et al. 1987). Most importantly, vimentin seems to be a
central molecule in the epithelial–mesenchymal transition
(EMT), known for its crucial role in malignant transfor-
mation and metastatic spread (for review, see Ivaska 2011
and Kidd et al. 2014).

5.2 Vimentin IFs as a Signaling and Trafficking
Facilitator Scaffold

Studies with the vimentin-null mice (Colucci-Guyon et al.
1994) showed, initially, a mild phenotype but when extend-
ed later showed, as initially expected, several defects, in-
cluding compromised motility and directional migration
that affected wound healing (Eckes et al. 2000), mechano-
transduction of shear stress (Henrion et al. 1997) and lym-

phocyte adhesion, and transcellular migration (Nieminen
et al. 2006). These functions of vimentin are reviewed by
Cheng and Eriksson (2016).

The function of vimentin as a cell-signaling scaffold/
organizer has been amply shown (Ivaska et al. 2007; Hyder
et al. 2008; Eriksson et al. 2009), and its dynamic assembly/
disassembly properties through posttranslational modifi-
cations by phosphorylation and glycosylation have been
linked to the regulatory function of vimentin in the signal-
ing of its corresponding kinase modifiers.

Vimentin has also been implicated in the protein kinase
C epsilon (PKCe)-mediated trafficking of integrins to the
plasma membrane and, thus, is considered an important
organizer of integrins (Ivaska et al. 2005). In addition, vi-
mentin has been linked to membrane trafficking through
adaptor protein AP-3 association (Styers et al. 2004). Sim-
ilar to desmin described above, vimentin and peripherin
are also important for lysosome (Styers et al. 2005) and
lysosome-related organelle behavior (Chang et al. 2009)
and, potentially through proper BLOC-1/AP-3 coexistence,
they support proper cellular trafficking. The type III IF pro-
tein, GFAP, has also been linked to lysosomes and, more
specifically, was found to associate with lysosome-asso-
ciated membrane protein type 2A (LAMP-2A) and modu-
late chaperone-mediated autophagy (Bandyopadhyay et al.
2010). Furthermore, the formation of the autophagosome
intermediate organelle, which converges with lysosomes
during the autophagic process, requires intact cytokeratin
and vimentin IFs (Holen et al. 1992; Blankson et al. 1995).
Vimentin also interacts with the Golgi complex (Gao et al.
2002) and has been linked to maturation of glycosphingo-
lipids (Gillard et al. 1994) and steroidogenesis (Shen et al.
2012). More recent studies have shown the importance of
vimentin (and GFAP, as discussed above) in endocytosis of
the Notch ligand Jagged1 in astrocytes (Wilhelmsson et al.
2012). Furthermore, vimentin, like desmin, is linked to mi-
tochondrial behavior and function (Chernoivanenko et al.
2015). Additionally, it has been established that vimentin
intermediate filaments can establish mitotic polarity and
mediate the asymmetric partitioning of damaged proteins
(Ogrodnik et al. 2014). Finally, it has recently been shown
that vimentin interacts with components of the NLRP3 in-
flammasome and regulates its activation (dos Santos et al.
2015).

6 CONCLUSION

All types of IF proteins, including type III, form versatile IF
networks that can interact with different cellular compo-
nents and cell-signaling molecules. These interactions fa-
cilitate the proper integration of cell type–specific structure
and function, and play a central role in the regulation of the
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corresponding tissue development and homeostasis. This
IF-dependent integration includes mechanochemical sig-
naling, interaction with the extracellular matrix, organelle
cross talk, and transcriptional processes, with important
consequences for the regulation of differentiation, metab-
olism, and cell survival. Dysregulation of this structure–
function integration leads to chronic disease. Therefore,
future studies must focus on further understanding of
the molecular mechanisms underlying the interactions of
IF proteins with different organelles, cellular components,
and signaling molecules, and how its disturbance influenc-
es mechanochemical coupling, both in signaling and traf-
ficking processes, as well as in cellular organelle biogenesis
and cross talk. Given that modulation of the expression
level of IF proteins and the exact composition of the differ-
ent IFs and their isoforms in the network are all factors that
are involved in cell type–specific functional changes, fur-
ther understanding of the generation of this complexity and
its importance is mandatory.
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