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Abstract
The Golgi apparatus is a central membrane organelle for trafficking and
post-translational modifications of proteins and lipids in cells. In mammalian
cells, it is organized in the form of stacks of tightly aligned flattened cisternae,
and dozens of stacks are often linked laterally into a ribbon-like structure
located in the perinuclear region of the cell. Proper Golgi functionality requires
an intact architecture, yet Golgi structure is dynamically regulated during the
cell cycle and under disease conditions. In this review, we summarize our
current understanding of the relationship between Golgi structure formation,
function, and regulation, with focus on how post-translational modifications
including phosphorylation and ubiquitination regulate Golgi structure and on
how Golgi unstacking affects its functions, in particular, protein trafficking,
glycosylation, and sorting in mammalian cells.
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Overview of Golgi structure and dynamics during the 
cell cycle
The Golgi apparatus is a central membrane organelle that func-
tions as the post-translational modification factory and trafficking  
hub for proteins and lipids in the cell. Newly synthesized pro-
teins and membrane lipids enter the endoplasmic reticulum (ER) 
for proper folding and initial N- and O-glycosylation and are then  
transported to the Golgi for trafficking, glycan maturation, and  
sorting. Each Golgi stack is formed by five to eight tightly aligned 
flattened cisternae, which can be classified as three separate 
modules: the cis-Golgi network, which is close to the ER and  
receives the ER output, the stacked cis-, medial-, and trans- 
Golgi cisternae that contain glycosylation enzymes and process 
cargo proteins and lipids, and the trans-Golgi network (TGN) 
that is facing the plasma membrane and sorts cargo molecules for  
delivery to different destinations. In mammalian cells, multiple 
Golgi stacks are often laterally linked by tubular structures to form 
a Golgi ribbon.

The Golgi is highly dynamic during the cell cycle, with a unique 
process of disassembly in early mitosis and reassembly in late 
mitosis and early interphase1. At the onset of mitosis, the Golgi is  
sequentially disassembled by ribbon unlinking, cisternae unstack-
ing, and vesiculation, producing vesicles and tubular structures 

that are dispersed in the cytoplasm2. This is expected to facilitate 
equal partitioning of the Golgi membranes into the two daugh-
ter cells, where the Golgi fragments are reassembled into new 
cisternae, stacks, and ribbons in late mitosis2. Many proteins, 
including mitotic kinases and phosphatases, vesicle budding and 
fusion machineries, Golgi matrix and stacking proteins, soluble  
N-ethylmaleimide-sensitive factor (NSF) activating protein recep-
tors (SNAREs), and membrane fusion proteins, are involved in the  
Golgi disassembly and reassembly processes during the cell  
cycle3–11.

Our current understanding of the regulatory mechanisms of  
Golgi structure formation during the cell cycle has mostly ben-
efited from an in vitro reconstitution assay, which replicates the 
Golgi disassembly and reassembly processes in the test tube12. 
By sequential treatment of Golgi membranes purified from rat 
liver with mitotic cytosol and interphase cytosol prepared from  
HeLa cells, the Golgi membranes can be disassembled to mitotic 
Golgi fragments (MGFs) and reassembled into intact Golgi  
stacks (Figure 1A–C)13,14. Subsequent substitution of cytosol with 
biochemically purified proteins allowed the identification of the 
minimal machineries and key components that control mitotic 
Golgi disassembly and post-mitotic Golgi reassembly15. Mitotic 
disassembly is mediated by cisternal unstacking and vesiculation. 

Figure 1. In vitro reconstitution of the Golgi disassembly and reassembly processes during the cell cycle. Shown are representative 
electron micrographs of Golgi membranes during the reactions. A–C: standard Golgi disassembly and reassembly assay. Purified rat liver 
Golgi stacks (RLG, A) disassembled when treated with mitotic cytosol (MC, B) and reassembled when further treated with interphase 
cytosol (IC, C). D–G: defined Golgi disassembly and reassembly assay. Purified Golgi stacks (D) were fragmented when incubated with 
cyclin-dependent kinase 1 (Cdk1) and polo-like kinase 1 (Plk1) kinases and ADP ribosylation factor (ARF)/coatomer (E). New Golgi stacks 
were reassembled from the fragments when further treated with purified proteins in either the N-ethylmaleimide-sensitive factor (NSF) (F) 
or valosin-containing protein (p97) pathway (G). Note that the ubiquitination system was not included in the reaction in (G) and so stacking 
appeared to be normal but membrane fusion was reduced. Adapted and modified from 6,14. PP2A, protein phosphatase 2A; SNAP, soluble 
N-ethylmaleimide-sensitive factor attachment protein.
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Mitotic kinases, including cyclin-dependent kinase 1 (Cdk1),  
polo-like kinase-1 (Plk1), and perhaps others, phosphorylate 
the Golgi stacking proteins, membrane tethers, and maybe other  
unidentified targets, leading to the Golgi reassembly stacking  
protein of 65 kDa (GRASP65) deoligomerization and Golgi 
unstacking5,7,8,16–19. ADP-ribosylation factor 1 (ARF1)-GTP and 
coatomer vesiculate the cisternae through coat protein I (COPI)  
vesicle budding6,20. Treatment of Golgi membranes with a com-
bination of kinases and coat proteins results in complete Golgi  
fragmentation (Figure 1D and 1E)14,15. Post-mitotic Golgi reassem-
bly involves membrane fusion to generate single cisternae, which 
subsequently form stacks. Fusion is mediated by two ATPases  
associated with diverse cellular activities (AAAs), NSF and  
p97 (valosin-containing protein [VCP]; Cdc48 in yeast), each with 
specific adaptor proteins (Figure 1F and 1G)10,11,21–27. Restack-
ing occurs through GRASP65 dephosphorylation by the protein  
phosphatase PP2A15. This in vitro reconstitution assay revealed 
that reversible post-translational modifications, such as phospho-
rylation and ubiquitination, play essential roles in regulating Golgi  
membrane dynamics in the mammalian cell cycle25,26,28–33, as  
discussed below.

Regulation of Golgi membrane dynamics by 
phosphorylation during the cell cycle
Phosphorylation regulates Golgi stack formation through Golgi 
stacking proteins. Two peripheral membrane proteins, Golgi reas-
sembly stacking protein of 55 kDa (GRASP55) and GRASP65, 
share similar domain structures and overlapping functions34,35.  
They form mitotically regulated trans-oligomers that act as an 

adhesive “glue” to stick adjacent Golgi cisternae into a stack 
(Figure 2)7,16. GRASP65 is predominantly concentrated in the 
cis-Golgi, while GRASP55 is localized in the medial-trans- 
cisternae35. Inhibition of GRASP65 or GRASP55 on MGFs by  
antibodies reduces post-mitotic stacking of newly formed  
cisternae in the in vitro Golgi reassembly assay34,35. Microinjec-
tion of antibodies against GRASP65 or GRASP55 into mitotic 
cells inhibits Golgi reassembly in newly divided daughter  
cells7,36. Depletion of either GRASP65 or GRASP55 by RNA  
interference (RNAi) reduces the number of cisternae per stack, 
while simultaneous depletion of both GRASPs results in com-
plete disassembly of the Golgi8,37. The role of GRASP55/
GRASP65 in Golgi stacking has been confirmed in cells in which  
GRASP55 and/or GRASP65 are knocked out by the clustered 
regularly interspaced short palindromic repeats (CRISPR)/cas9  
genome editing technique38. Double knockout of GRASP pro-
teins disperses the Golgi stack into single cisternae and tubulove-
sicular structures38. In another report39, simultaneous depletion of  
both GRASPs and their interacting golgins, golgin-45 and  
GM130, is required for complete destruction of the Golgi stack, 
suggesting that other proteins, such as golgins, may also contribute 
to Golgi stack formation.

In addition to stacking, GRASP55 and GRASP65 have also been 
shown to link Golgi stacks into a ribbon38,40–42. RNAi-mediated 
depletion of GRASP65 or GRASP55 also resulted in Golgi rib-
bon unlinking40,41,43, suggesting a possibility that GRASPs may  
function in both Golgi stacking and ribbon linking by forming 
trans-oligomers. Given that the gaps between Golgi stacks are 

Figure 2. Golgi reassembly stacking protein of 65 kDa (GRASP65) domain structure (A), function, and regulation by phosphorylation (B). 
A: GRASP65 domain structure. Indicated are the myristic acid (myr) for membrane association, the GRASP domain, the two PDZ domains 
within it for dimerization and oligomerization, and the serine/proline rich (SPR) domain with phosphorylation sites (*). The GM130-binding site 
is indicated in blue. B: GRASP oligomerization and Golgi stack formation. During interphase, GRASP65 homodimers from two neighboring 
cisternae trans-oligomerize through the GRASP domain to “glue” the adjacent cisternae into Golgi stacks. Based on the structure reported by 
Feng et al.54, GRASP trans-oligomerization is mediated by PDZ2–PDZ2 interactions, while PDZ1 may interact with the C-terminal unstructured 
region. In mitosis, GRASP65 is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and polo-like kinase 1 (Plk1) on multiple phosphorylation 
sites in the SPR domain, which leads to the disassembly of GRASP65 oligomers to homodimers and subsequent Golgi stack disassembly. 
In late mitosis, GRASP65 is dephosphorylated by protein phosphatase PP2A, reforms oligomers, and restacks Golgi cisternae. Adapted and 
modified from 33,46,51,54.
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much larger and more heterogeneous (tens to hundreds of nanom-
eters) than the distance between cisternae within each stack44, 
it is possible that other bridging proteins may help GRASPs in  
ribbon linking. Indeed, a number of GRASP-interacting proteins 
have been recently identified and characterized; many of them are 
involved in Golgi structure formation. One example is the actin 
elongation factor Mena45. Mena interacts with GRASP65 and thus 
is recruited onto the Golgi membranes. Knockdown of Mena or 
disruption of actin polymerization leads to Golgi fragmentation. 
In cells, Mena and actin are required for Golgi ribbon formation 
after nocodazole washout; in vitro, Mena and microfilaments 
enhance GRASP65 oligomerization and Golgi membrane fusion.  
Therefore, Mena’s interaction with GRASP65 promotes local 
actin polymerization, which in turn enables Golgi ribbon  
linking45. Taken together, these results demonstrate that GRASP 
proteins play important roles in Golgi structure formation.

Each GRASP protein comprises an N-terminal GRASP domain 
that forms dimers and oligomers and a C-terminal serine/proline-
rich (SPR) domain that contains multiple phosphorylation sites  
(Figure 2A)46. GRASP proteins form trans-oligomers through the 
GRASP domain, which is regulated by phosphorylation in the  
C-terminal SPR domain (Figure 2B)16. In mitosis, GRASP65 is 
phosphorylated by mitotic kinases Cdk1 and Plk1 on multiple  
phosphorylation sites in the SPR domain, which leads to the dis-
assembly of GRASP65 oligomers and subsequent disassembly 
of the Golgi stack29,47. In late mitosis, GRASP65 is dephosphor-
ylated by PP2A, reforms oligomers, and restacks Golgi cisternae  
(Figure 2)15. Similarly, GRASP55 oligomerization and function 
are also regulated by phosphorylation, as GRASP55 is phos-
phorylated by MEK1/ERK kinases during mitosis; however, the 
phosphatase that dephosphorylates GRASP55 in later mitosis 
is unknown8,48. Expression of non-phosphorylatable mutants 
of GRASP55/GRASP65 increases the number of cisternae per  
stack in interphase and inhibits Golgi disassembly in mitosis8,16,37. 
Golgi ribbon linking by GRASPs is also regulated by mitotic 
phosphorylation. It has been shown that phosphorylation of  
GRASP55 by ERK blocks Golgi ribbon linking41, while in 
another report GRASP65 phosphorylation by Plk1 on Ser189 is 
required for Golgi ribbon unlinking in mitosis49. In summary, the  
reversible phosphorylation of Golgi stacking proteins is a key  
regulatory mechanism of mitotic Golgi disassembly and post-
mitotic Golgi reassembly.

The GRASP domain of GRASP55 and GRASP65 contains two  
PDZ domains, whose interactions enable the homo-dimeriza-
tion and oligomerization of the GRASP proteins (Figure 2)37,50,51. 
Details on the PDZ interactions as well as GRASP dimerization 
and oligomerization have been revealed by the crystal struc-
tures of GRASP55 and GRASP65; however, there are some  
discrepancies in the GRASP structures reported by three dif-
ferent research groups51. In the structure reported by Truschel  
et al.52,53, GRASPs form antiparallel trans-oligomers through 
PDZ1–PDZ2 interactions. In the structure reported by Feng 
et al.54, GRASP trans-oligomerization is mediated by PDZ2– 
PDZ2 interactions, while PDZ1 may interact with the C-terminal 
unstructured region of the molecule (Figure 2). A third structure 
by Shi and coworkers revealed the interaction between GRASPs 

and their interacting golgins, e.g. GRASP55 with a Golgin-45  
peptide55 and GRASP65 with a GM130 peptide56, and the  
structure is largely consistent with the structure reported by 
Feng et al.54. The discrepancies in the reported structures of the  
GRASP proteins can be possibly explained by the fact that  
GRASPs are intrinsically disordered proteins, as revealed by bio-
informatic and biophysical analysis of the GRASP55/GRASP65 
homologue in Cryptococcus neoformans (CnGRASP)57. Perhaps 
such a property with variable conformations may allow GRASPs 
to perform a large array of functions by forming homodimers and 
oligomers and by interacting with multiple interacting partners.  
It is worth mentioning that oligomerization of GRASP65 is  
regulated by mitotic phosphorylation of the C-terminal SPR 
domain, while dimerization is not7,16; however, none of the 
reported crystal structures contain the unstructured C-terminal half  
of the GRASP molecules, and thus the structural basis for  
phosphorylation-mediated regulation of GRASP oligomerization is 
currently unavailable.

Phosphorylation also regulates Golgi disassembly and reassembly 
through modulating membrane tethering and fusion. The Golgi is 
the trafficking center in the vesicular trafficking pathway. Vesic-
ular transport includes three steps: vesicle budding from a donor 
membrane, vesicle transport and tethering, and vesicle fusion with 
the target membrane. In interphase, COPI vesicles bud from the 
Golgi membranes and fuse with the acceptor membranes for retro-
grade intra-Golgi and Golgi-to-ER trafficking58. COPI vesicle teth-
ering on the targeting membranes is facilitated by the interaction 
between cis-Golgi matrix protein GM130 and the tethering factor 
p115, which facilitates vesicle fusion with the targeting membranes 
mediated by SNARE proteins4. During mitosis, GM130 is phos-
phorylated by Cdk1, which prevents GM130–p115 interaction and 
thus inhibits vesicle tethering and subsequent membrane fusion4,9,28. 
Consequently, the Golgi is fragmented in mitosis because of contin-
uous budding of COPI vesicles while membrane fusion is inhibited. 
At the end of mitosis, GM130 is dephosphorylated by PP2A, which 
restores the GM130–p115 interaction and membrane fusion9. Sev-
eral other golgins, including golgin-6759, golgin-8460, golgin-16061, 
and p11562, may also be regulated by phosphorylation in a similar 
manner as GM13063,64.

The exact role of mitotic Golgi disassembly is so far not fully 
understood. In addition to facilitating equal partitioning of Golgi 
membranes into the two daughter cells65, it may also function 
as a cell cycle checkpoint to allow mitotic progression36,66–74.  
Mechanistically, Golgi disassembly is required for proper  
assembly of mitotic spindle73. Spindle assembly is regulated by 
the spindle assembly factor TPX2, which is normally sequestered  
by the interaction with importin α. At the onset of mitosis,  
GM130 binds and sequesters importin α to the Golgi membranes, 
releasing the activity of TPX2 for spindle assembly in the vicin-
ity of Golgi membranes. GM130 then captures the nascent  
microtubules and thus couples the Golgi membranes to the form-
ing spindle73. Emerging evidence shows that GM130 is also 
involved in autophagy. Under growth conditions, GM130 tethers  
GABARAP to the Golgi and inhibits autophagy. Upon amino acid 
starvation, another GM130-interacting protein, WAC, interacts 
with GM130 and suppresses the binding of GABARAP to GM130.  

Page 5 of 13

F1000Research 2017, 6(F1000 Faculty Rev):2050 Last updated: 27 NOV 2017



This allows the relocalization of GABARAP to centrosomes, 
which facilitates autophagosome formation75. So far, it is not 
known whether phosphorylation regulates GM130 in mitotic 
spindle assembly and autophagy. In summary, phosphorylation 
regulates Golgi membrane dynamics during cell division: mitotic 
phosphorylation of GRASP proteins impairs GRASP oligomeriza-
tion and causes Golgi ribbon unlinking and cisternal unstacking,  
while phosphorylation of membrane tethers results in vesicula-
tion of Golgi membranes. Further studies will determine whether  
phosphorylation also regulates GRASP-interacting proteins.

Regulation of Golgi membrane dynamics by 
monoubiquitination during the cell cycle
In addition to phosphorylation, monoubiquitination also regulates 
Golgi membrane dynamics through modulating membrane fusion. 
Membrane fusion is a key factor that determines Golgi disassem-
bly and reassembly during the cell cycle. All membrane fusion 
events in the intracellular trafficking pathways and biogenesis of 
membranous organelles in the endomembrane system are medi-
ated by SNARE proteins76–78. SNARE proteins are characterized by  
an evolutionarily conserved coiled-coil SNARE domain of about 
60 to 70 amino acids. Most SNARE proteins are anchored on 
membranes by a C-terminal transmembrane domain76. To mediate 
membrane fusion, one v-SNARE from the vesicle membrane and  
three t-SNAREs from the target membrane bundle through the  
α helices of the SNARE domain and zipper up to form a trans-
SNARE complex that pulls the opposing membranes to close 
proximity for fusion79. After membrane fusion, the trans-SNARE 
complex transits to cis-SNARE complex, which is subsequently 
disassembled by the AAA ATPase, NSF, powered by ATP hydrol-
ysis. NSF and its cofactors, α/γ-SNAPs (soluble NSF attachment 
proteins), are required for membrane fusion by mediating SNARE 
complex disassembly and SNARE protein dissociation to recy-
cle SNARE proteins for the next round of membrane fusion80.  
Post-mitotic Golgi membrane fusion requires two AAA ATPases, 
NSF and p97, as described above. NSF-mediated post-mitotic 
Golgi membrane fusion requires the Golgi t-SNARE syntaxin  
5 and its cognate v-SNARE GS2811. The other AAA ATPase, p97, 
and its adaptor protein, p47, promote post-mitotic Golgi membrane 
fusion independently and non-additively to NSF-mediated post-
mitotic membrane fusion. The p97/p47 pathway does not require 
the tethering factor p115 or the v-SNARE GS28 but shares a com-
mon Golgi t-SNARE, syntaxin 5, with the NSF/SNAP pathway11.

A major difference between p97/p47- and NSF/SNAP-mediated 
post-mitotic membrane fusion is the involvement of ubiquitin 
in the p97/p47 pathway31. Initially, the lack of membrane fusion  
activity in the in vitro Golgi reassembly reaction with purified  
p97/p47 (Figure 1G) prompted us to look into the involved pro-
teins more carefully. The first hint that ubiquitin is involved in  
p97/p47-mediated fusion is that p47 contains a ubiquitin- 
associated (UBA) domain, which preferably binds to monoubiq-
uitin over polyubiquitin31. Interruption of the interaction between  
p47 and ubiquitin inhibits p97/p47-mediated post-mitotic Golgi 
membrane fusion. Monoubiquitin binds the UBA domain of 
p47 and recruits the p97/p47 membrane fusion machinery to the  
MGFs31. Proteasome activity is not involved in either Golgi  
disassembly or reassembly26. These results indicate that monou-
biquitin is involved in p97/p47-mediated membrane fusion.  

The E3 ligase and the deubiquitinase involved in Golgi disas-
sembly and reassembly were then identified. Ubiquitination is  
mediated by a Golgi-localized E3 ligase HACE1 (the HECT 
domain and ankyrin repeat containing E3 ubiquitin protein ligase 
1), which occurs during the Golgi disassembly process in mito-
sis but is required for the subsequent Golgi reassembly25. The  
p97/p47-binding protein VCIP135 (VCP [p97]/p47 complex- 
interacting protein, p135) functions as a deubiquitinating enzyme 
whose activity is required for post-mitotic Golgi reassembly26. The 
deubiquitinase activity of VCIP135 is inactivated in metaphase by 
Cdk1-mediated phosphorylation on the S130 residue and reacti-
vated in telophase upon dephosphorylation30,81,82.

Recently, the ubiquitination substrate on the Golgi membranes  
for HACE1 and VCIP135 has been identified as the Golgi  
t-SNARE syntaxin 5. Syntaxin 5 is monoubiquitinated in early 
mitosis by HACE1 on lysine 270 within the SNARE domain, which  
prevents the interaction between syntaxin 5 and Bet1 and blocks 
SNARE complex formation and membrane fusion, resulting in 
Golgi fragmentation in mitosis. On the other hand, ubiquitin 
on syntaxin 5 recruits the p97/p47 membrane fusion machinery 
to the mitotic Golgi membranes and facilitates post-mitotic  
Golgi membrane fusion32. In late mitosis, VCIP135 deubiqui-
tinase activity is reactivated, which removes the monoubiqui-
tin on syntaxin 5 and promotes SNARE complex formation and 
post-mitotic Golgi membrane fusion32. These results reveal that 
cycles of addition and removal of ubiquitin to and from substrates  
regulate Golgi membrane dynamics during cell division (Figure 3).  
Together with reversible phosphorylation in mitosis, reversible 
monoubiquitination regulates Golgi disassembly and reassem-
bly during the cell cycle by blocking membrane fusion in mitosis  
and facilitating membrane fusion at mitotic exit.

Golgi defects in diseases
Golgi structural defects have been observed in many diseases such 
as Smith-McCort dysplasia83, MACS (macrocephaly, alopecia, 
cutis laxa, and scoliosis) syndrome84,85, Alzheimer’s disease  
(AD)86–88, Parkinson’s disease (PD)89, Huntington’s disease (HD)90, 
and amyotrophic lateral sclerosis (ALS)91–93. Golgi dysfunction 
and protein trafficking defects have been reported in Pelizaeus- 
Merzbacher disease94, proximal spinal muscular atrophy95, and 
dyschromatosis universalis hereditaria96. In addition, Golgi gly-
cosylation defects have been linked to Angelman syndrome97 
and cutis laxa type II and wrinkly skin syndrome98,99. Defects in 
the conserved oligomeric Golgi (COG) complex, a membrane 
tether involved in retrograde trafficking of Golgi glycosylation  
enzymes, have been reported to cause human Congenital  
Disorders of Glycosylation (CDG), which are rare genetic  
diseases with defective N-glycan and O-glycan biosynthesis100. 
Glycosylation defects have been linked to the pathogenesis of  
diabetes101, cancer102, and cystic fibrosis103,104.

Because of the broad functions that glycans and glycoproteins 
play, it is important that glycosylation is reliable and accurate. 
However, compared to that of protein and DNA, the synthesis 
of glycan polymers follows no template, and an estimated 700 
proteins are required for producing the varied glycan structures 
with high fidelity, including glycosyltransferases (addition of 
sugars), glycosidases (removal of sugars), and nucleotide sugar  
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Figure 3. Monoubiquitination of syntaxin 5 regulates p97/p47-mediated post-mitotic Golgi membrane fusion during the cell cycle. 
A: Interphase Golgi stacks are disassembled by cisternal unstacking and vesiculation. Mitotic kinases phosphorylate the stacking proteins, 
leading to Golgi reassembly stacking protein (GRASP) deoligomerization and Golgi unstacking. ADP-ribosylation factor 1 (ARF1)-GTP and 
coatomer vesiculate the cisternae through COPI vesicle budding. Post-mitotic Golgi reassembly involves membrane fusion to generate single 
cisternae that subsequently form stacks. Membrane fusion is mediated by two AAA ATPases, N-ethylmaleimide-sensitive factor (NSF) and 
valosin-containing protein (p97), with their adaptor proteins. B. Monoubiquitination of syntaxin 5 (Syn5) regulates p97-mediated post-mitotic 
Golgi membrane fusion. In early mitosis, Syn5 is monoubiquitinated by an E3 ligase, the HECT domain and ankyrin repeat containing E3 
ubiquitin protein ligase 1 (HACE1), on the Golgi membranes, while the deubiquitinase p97/p47 complex-interacting protein, p135 (VCIP135) 
is inactivated by mitotic phosphorylation (1). Ubiquitinated Syn5 recruits the p97/p47 complex through the ubiquitin-associated (UBA) domain 
of p47 to the Golgi membranes (2). In late mitosis, Syn5 is deubiquitinated by VCIP135 that is reactivated by dephosphorylation, which 
enables Syn5–Bet1 soluble NSF activating protein receptor (SNARE) complex formation and thus membrane fusion by p97 at mitotic exit (3). 
Adapted and modified from 32. PP2A, protein phosphatase 2A, Ub, ubiquitin.

transporters (supply of sugar substrates)105. Therefore, the proc-
ess of protein glycosylation needs to be highly organized and  
sequential. As the main station of sugar chain maturation, the 
Golgi must use every element to safeguard this highly efficient  
enzymatic event, and, undoubtedly, Golgi defects may lead to 
diseases by affecting the accuracy of glycosylation. The exact  
mechanisms that cause Golgi defects and the contribution of  
Golgi defects to disease development are largely unexplored and 
may vary between diseases but have started to draw the attention of 
Golgi cell biologists.

One example of such a study is on Golgi defects in AD. Using  
mouse and cell models that express the human Swedish mutant 
of the amyloid precursor protein (APPswe, KM 593/594 NL) and  
the exon 9 deletion mutant of human presenilin-1 (PS1ΔE9), 

Joshi et al.88 revealed that the accumulation of amyloid beta 
(Aβ) peptides leads to Golgi fragmentation. Mechanistically, 
Aβ accumulation triggers Cdk5 activation, which phosphor-
ylates GRASP65 and causes Golgi fragmentation. Subsequently,  
Golgi fragmentation accelerates APP trafficking and increases  
Aβ production88. Significantly, rescuing Golgi structure by  
suppressing Cdk5 activation and thus inhibiting GRASP65 phos-
phorylation, or by expressing nonphosphorylatable GRASP65 
mutants, both reduce Aβ secretion by elevating α-cleavage of 
APP88. Given the important roles of the Golgi in protein trafficking 
and processing, Golgi defects may perturb the proper trafficking 
and processing of many essential neuronal proteins, resulting in 
compromised neuronal function and neuronal death. Alternatively, 
GRASP65 may directly regulate APP trafficking and processing, 
as GRASP65 has been reported to directly control the trafficking  
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of several transmembrane proteins including TGF-α, CD8-α, and 
p24 cargo receptor family proteins106–108. A common feature of 
these proteins, as discussed below, is that they all contain a valine 
residue at the C-terminal cytoplasmic tail, which is critical for their 
interaction with GRASP proteins. However, APP does not contain a  
C-terminal valine, and so far no evidence has been provided 
to support a direct role for GRASP55/GRASP65 in APP  
trafficking. Overall, this study provides a molecular mechanism 
for Golgi fragmentation and its effects on APP trafficking and 
processing in AD, suggesting the Golgi as a potential drug target  
for AD treatment88,109,110. Similar mechanisms may apply to some 
other neurodegenerative diseases with Golgi defects.

Consequence of Golgi defects on trafficking, sorting, 
and glycosylation
Golgi cisternae do not usually form stacks in the budding yeast  
Saccharomyces cerevisiae, implying that stacking is not necessary 
for cell survival. However, Golgi stacking is a prominent feature 
in all metazoans and many unicellular eukaryotes, suggesting  
that it has important effects on Golgi function. It has been known 
for decades that the Golgi membranes form a stacked structure; 
however, it has been a mystery why Golgi structure formation is 
essential for its function in protein trafficking and processing. This 
was largely owing to the lack of molecular tools that can be used 
to modulate Golgi structure formation. The identification of the  
Golgi stacking proteins GRASP55 and GRASP65 allowed the 
manipulation of Golgi stack formation and thus the determina-
tion of the biological significance of Golgi structure formation. 
As expected, double knockdown or knockout of GRASP55 and 
GRASP65 leads to the disassembly of the Golgi stack but does 
not cause cell death; rather, it impairs Golgi functions in protein  
trafficking, sorting, and glycosylation38,111, as discussed below.

Destruction of the Golgi stacks by GRASP inhibition acceler-
ates protein trafficking but causes protein missorting. The Golgi 
is the transit center for protein trafficking and sorting for delivery 
to different destinations, including incorporation into membrane 
organelles, secretion to extracellular space, or degradation in  
lysosomes. Hypothetically, the close spatial arrangement of  
cisternae in stacks minimizes the distance that molecules must 
travel. Local tethering proteins facilitate vesicle fusion with Golgi  
membranes112; therefore, stacking should enhance protein  
trafficking. However, experimentally, disruption of Golgi stack 
formation by inhibiting GRASP functions resulted in the oppo-
site effects. Inhibition of Golgi stack formation by microinjection 
of GRASP65 antibodies accelerates CD8 trafficking5,39. Deple-
tion of both GRASPs leads to the destruction of the entire Golgi  
architecture and enhances trafficking of the cell adhesion protein 
integrin, the vesicular stomatitis virus G glycoprotein (VSVG),  
and the lysosomal enzyme cathepsin D38,111. Golgi destruc-
tion increases the rate and efficiency of COPI vesicle formation  
in vitro5 and membrane association of coat proteins in cells111.  
Golgi destruction also causes missorting of the cathepsin D pre-
cursor to the extracellular space111, suggesting that stacking may  
ensure that sorting occurs only when cargo molecules reach the 
TGN but not in earlier subcompartments of the Golgi.

It is worth mentioning that GRASPs have been implicated in 
the transport of specific cargo proteins, such as TGFα106, p24108,  
CD83113, CD8α, and Frizzled4107. These proteins contain a  
C-terminal hydrophobic cytoplasmic tail in which a critical valine 
residue interacts with the PDZ domain of the GRASP proteins. 
Here, GRASPs function as cargo receptors or chaperones for 
these transmembrane proteins. Therefore, depending on the type 
of cargo, GRASP depletion may have different effects. For the 
transmembrane proteins with a C-terminal valine, knockdown of 
GRASP proteins may slow down trafficking, whereas for other 
cargo proteins without such a signature, such as VSV-G, integrin, 
and cathepsin D, an opposite effect is expected5,39,111. GRASPs are 
also involved in unconventional secretion, a pathway that bypasses 
the Golgi, as extensively discussed elsewhere114–116.

Golgi destruction also impairs accurate protein glycosylation. 
Glycosylation in the Golgi lumen can be divided into two types:  
N-linked glycosylation, by which the oligosaccharides are linked 
to the amide nitrogen of asparagine, and O-linked glycosylation, 
by which the oligosaccharides are linked to the hydroxyl group 
of serine, threonine, hydroxylysine, or tyrosine. The Golgi is the 
main station for protein oligosaccharide processing and maturation, 
and it harbors various glycosyltransferases and glycosidases in  
different subcompartments; an ordered structure is likely required 
to carry out precise, sequential modifications as cargo proteins pass 
between cisternae117–119. In budding yeast, N-glycosylation in the 
Golgi mainly involves the addition of mannoses120. In multicellu-
lar organisms, N-glycosylation of membrane and secretory proteins 
is more complex and critical. Accurate glycosylation is essential 
for their cellular functions, including cell adhesion and migra-
tion, cell–cell communication, and immunity121. In polarized cells,  
for example neurons and epithelial cells, N- and O-linked  
glycans function as apical sorting signals122, which could be the  
reason why stacking is not necessary in yeast but is crucial for life 
in higher-order organisms.

In mammalian cells, Golgi destruction by GRASP depletion 
decreases glycoprotein glycosylation and glycan complexity 
without impacting the expression level and localization of Golgi 
enzymes. A reasonable explanation for the decrease in glycopro-
tein glycan complexity is that as cargo moves more rapidly through 
unstacked Golgi compartments induced by GRASP depletion, 
resident enzymes have less time to recognize and modify their 
substrates111,123. As a result, glycoproteins contain more trimmed 
high-mannose glycans and fewer complex glycan structures in 
the GRASP knockdown cells. This effect was not due to Golgi 
ribbon unlinking, as suggested by some other studies40, and was 
also proven by the fact that the induction of Golgi ribbon unlinking 
by the depletion of golgin-8460 and by nocodazole treatment124,125 
did not result in the same effect as GRASP depletion111. Double  
knockdown or knockout of GRASPs decreases N-linked  
oligosaccharides on the cell surface, with a reduction in both high- 
mannose and complex-type glycans38,111. These results demon-
strate an intimate link between the structure and function of the  
Golgi46,123. Interestingly, GRASP depletion decreased not only  
N-linked glycan complexity but also global N-linked glycoprotein  
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glycosylation111. It is not immediately obvious why the total  
N-linked glycan amount should be reduced in GRASP knockdown 
cells. Since N-linked glycoprotein glycosylation is initiated in 
the ER, we speculate a feedback pathway exists to monitor Golgi 
processing and adjust the flux of protein trafficking and processing 
through early secretory compartments such as the ER. In summary, 
the Golgi stack is an indispensable structure to ensure a proper  
flux for protein trafficking and accurate glycosylation.

Concluding remarks
Golgi is the central organelle for the glycosylation, trafficking, 
and sorting of secretory and membrane proteins and lipids. To per-
form these complex functions, the Golgi membranes need to form  
a unique stacked structure and, subsequently, a linked ribbon. 
This structure undergoes morphological changes under physi-
ological conditions such as during cell cycle progression and 
under stress conditions such as in diseases. In the last decade or so, 
much progress has been made in understanding the mechanism of  
Golgi structure and function. First, the identification of GRASP 
trans-oligomers provides a plausible explanation of how Golgi 
membranes form stacks and ribbons. GRASPs are the major targets 
for phosphorylation regulation during the cell cycle and in AD. To 
better understand GRASP functions and regulation, it is necessary 
to identify and characterize GRASP-interacting proteins. Second, 
it is now better known that the Golgi disassembly and reassembly  
processes during cell division are regulated by reversible protein 
post-translational modifications, in particular, protein phospho-
rylation that regulates cisternal stacking through GRASPs and  
membrane tethering through golgins, and monoubiquitination of 
the Golgi t-SNARE syntaxin 5 that controls p97/p47-mediated 
membrane fusion. So far, the cognate SNAREs of syntaxin 5 in 
post-mitotic Golgi membrane fusion still need to be identified. 
More work is also needed to figure out whether p97/p47 medi-
ates homotypic or heterotypic membrane fusion of MGFs. Third, 
we now have a better idea of why Golgi structure formation is 
required for its function. Golgi structure serves as a quality control  
mechanism to ensure accurate protein glycosylation and sorting 

by slowing down protein trafficking. It is generally believed that  
Golgi structure formation and its morphological changes are 
adjusted to best perform its functions. More work needs to be 
done to investigate how Golgi adapts its structure to best fulfill its  
function under different conditions and what roles GRASPs play 
in these responses. This is interesting, as it may help understand  
how Golgi defects contribute to the pathogenesis of diseases.
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