
Journal of Radiation Research, Vol. 58, No. 6, 2017, pp. 827–833
doi: 10.1093/jrr/rrx041
Advance Access Publication: 10 August 2017

NFAT3/c4-mediated excitotoxicity in hippocampal
apoptosis during radiation-induced brain injury

Meiling Xu1,†, Qiuhong Fan2,†, Junjun Zhang3,†, Yanfang Chen1, Ruizhe Xu2,
Liesong Chen1, Peifeng Zhao1 and Ye Tian1,*

1Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055,
Suzhou, Jiangsu 215004, China

2Institute of Radiotherapy & Oncology, Soochow University
3Suzhou Key Laboratory for Radiation Oncology, San Xiang Road No. 1055, Suzhou 215004, China.

*Corresponding author. Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University,
San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China. Tel.: +86-512-6778-3430; Fax: +86-512-6828-4303; E-mail: dryetian@126.com

†These authors contributed equally to this work.
Received March 1, 2017; Revised May 12, 2017; Editorial Decision June 27, 2017

ABSTRACT

Whole brain irradiation (WBI) has become an indispensible tool in the treatment of head and neck cancer, and it
has greatly improved patient survival rate and total survival time. In addition, prophylactic cranial irradiation (PCI)
has dramatically decreased the incidence of brain metastatic carcinoma. However, WBI may induce temporary func-
tional deficits or even progressive, irreversible cognitive dysfunction that compromises the quality of life for survivors.
Unfortunately, the exact molecular mechanisms for cognitive damage remain elusive, and no treatment or preventa-
tive measures are available for use in the clinic. In the present study, the nuclear factor of activated T cells isoform
4 (NFAT3/c4) was found to play a vital role in excitotoxic hippocampus cell apoptosis induced by radiation.
Sprague–Dawley (SD) rats received 20 Gy WBI, after which we detected NFAT3/c4-mediated excitotoxicity. We
found that radiation caused hippocampus excitotoxicity, resulting from overactivation of the N-methyl-D-aspartate
receptor (NMDAR) and always accompanied by subsequent elevation of the intracellular calcium level and activa-
tion of calcineurin (CaN). P-NFAT3/c4 was the principal downstream target of CaN, including regulation of its
nuclear translocation as well as transcriptional activities. Radiation recruited NMDAR/NFAT3/c4 activation and
subsequent Bax induction in hippocampus cells. Once treated with the NFAT3/c4 inhibitor 11R-VIVIT peptide
pre-irradiation, hippocampal proliferation and neuron survival (dentate gyrus cells in particular) were protected from
radiation-induced injury, resulting in inhibition of the apoptosis marker Bax. Our principal aim was to illuminate the
role of NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury. This
study is the first time that radiation-induced activation of NFAT3/c4 has been recorded, and our results suggest that
NFAT3/c4 may be a novel target for prevention and treatment of radiation-induced brain injury.
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INTRODUCTION
Radiation therapy (RT), especially whole brain irradiation (WBI),
has become an essential treatment method for primary and meta-
static brain tumors. With the rapid development of modern irradi-
ation techniques, many patients receive WBI each year, and the
survival of patients has increased. However, the normal brain tissue
damage that may inevitably occur is often accompanied by neuro-
logical complications, such as temporary brain functional deficits, or

even progressive, irreversible cognitive dysfunction [1]. These dys-
functions seriously affect the quality of life for survivors [2]. The
exact mechanisms of radiation-induced cognitive decline have not
been completely characterized. It was hypothesized that injury to
hippocampal proliferation and neuronal survival may be central to
the pathogenesis of radiation-induced cognitive decline [3, 4].

The N-methyl-D-aspartate receptor (NMDAR) is widespread in
the CNS and is associated with multiple physiological and pathological
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processes [5–7], especially the occurrence of excitotoxic neuronal cell
death and receptor overactivation [8, 9]. The main downstream events
of NMDAR overactivation are calcium influx and calcineurin (CaN)
activation [10, 11]. CaN subsequently mediates NFAT3/c4 nuclear
translocation and its transcriptional activities.

The transcription factor NFAT3/c4 has been shown to be active
in neurogenic brain regions such as the hippocampus [12]. Previous
studies have shown that the NFATc4/3-mediated pathway plays an
important role in long-term changes in neuronal function [13].
Cognitive decline in Alzheimer’s disease and traumatic brain injury
have been associated with selective changes in CaN/NFAT signal-
ing [14, 15]. Upon stimulation of CaN, NFAT3/c4 is dephosphory-
lated and then translocated from the cytosol into the nucleus,
whereas it is highly phosphorylated in the cytoplasm of resting cells.
The re-phosphorylation and subsequent export of NFAT3/c4 from
the nucleus is mediated by several kinases, such as GSK- 3β.

In this study, our data show that the NMDAR/CaN/NFAT3/c4
pathway initiates induction of the neuronal apoptosis marker Bax
and hippocampal cell apoptosis. Such results are validated by den-
tate gyrus (DG) cell injuries, which improved after treatment with
NFAT3/c4 inhibitor 11R-VIVIT peptide pre-irradiation.

MATERIALS AND METHODS
Animals

A total of 120 male Sprague–Dawley rats (21 days old) weighing
~50–60 g were purchased from the Experimental Animal Center of
Soochow University (Suzhou, China). The experimental animals were
raised in temperature- and humidity-controlled conditions with a 12 h/
12 h light/dark cycle (lights on at 7 AM) at 22 ± 2°C and free access
to food and water ad libitum prior to the experiment. All the rules and
regulations involving the care and protection of animals complied with
the Soochow University Animal Care and Ethics Guidelines, which
agree with national laboratory animal care standards.

The animals were divided into four groups: (i) the sham group
(Sham), (ii) the sham with 11R-VIVIT peptide injection group
(Sham +11R-VIVIT peptide), (iii) the irradiation group (IR), and
(iv) the irradiation and 11R-VIVIT peptide injection group
(IR +11R-VIVIT peptide) (n = 30 per group).

Irradiation
The rats were anesthetized with 3.6% chloral hydrate (360 mg/kg)
via intraperitoneal injection. WBI treatments were administered with
a single dose of 0 (control) or 20 Gy using a 4MeV electron beam
and a linear accelerator (Philips SL-18, UK) at room temperature.

Brain and body weight reduction
Six rats were randomly selected at 2 months post irradiation to be
weighed and sacrificed. Their brains were collected and weighed.
Brain and body weight reductions were calculated.

Drug treatment
The 11R-VIVIT peptide (RRRRR-GGG-MAGPHPVIVITGPHEE)
was purchased from Sigma Genosys (Woodlands, TX). The dosage of
the 11R-VIVIT peptide used for each rat was 100 μg/kg. Both the
second group and the fourth group were injected intraperitoneally with

11R-VIVIT peptide for 3 days before radiation. Then, the first group
of animals was sacrificed and hippocampus tissues were collected for
western blot assays. The second group of animals were treated with
11R-VIVIT peptide for 3 days post irradiation and then sacrificed for
immunofluorescence staining of hippocampus-proliferating cells. The
third group of animals were treated with 11R-VIVIT peptide for 7 days
post irradiation and were sacrificed for immunofluorescence staining of
mature hippocampal neurons eight weeks after irradiation (n = 3 per
group per time point).

5-Bromodeoxyuridine (BrdU) labeling and
immunofluorescence staining

BrdU (Sigma, St Louis, MO, USA) at 50 mg/kg/day was adminis-
tered intraperitoneally (i.p.) for 7 consecutive days (twice a day) to
animals 24 h before they were sacrificed at 3 days post irradiation.
The rats were perfused with cold PBS and 4% paraformaldehyde,
followed by incubation in the paraformaldehyde for 24 h at 4°C.
The tissue was dehydrated in 15% and 30% sucrose for 48 h.
Frozen serial sections of the brains were cut (30 μm thick) through
the entire hippocampus using a microtome.

The tissue slices were treated with 2M HCl at 45°C for 30min
to denature the DNA, and then the reaction was neutralized in 0.1M
borate buffer (pH 8.5) for 10 min. The sections were incubated in
buffer (10% bovine serum albumin and 0.5% Triton X-100 in PBS)
to block non-specific binding for 2 h at room temperature. The slices
were incubated overnight at 4°C with a primary antibody. The tissues
were washed in PBS and incubated with a secondary antibody for 1.5 h,
and we used an Olympus microscope equipped with a digital camera
(Olympus) to analyze the sections. The total number of BrdU+ or
NeuN+ cells was counted on every ninth section throughout the
hippocampus (seven sections per animal). The number of positives
per DG of the hippocampus was obtained by multiplying the value
by 9. In addition, we had three people perform the counts independ-
ently and calculated the mean value as the ultimate result. The anti-
bodies were purchased and diluted as follows: rat anti-body BrdU
(1:500, Biolegend), NeuN (1:500, Abcam), Alexa Fluor 488 donkey
anti-goat, Alexa Fluor 555 goat anti-rat, and Alexa Fluor 405 mouse
anti-rabbit (1:500, Jackson ImmunoResearch, USA).

Western blot
Four groups of rat hippocampus tissues were used to extract the total
protein, and NFAT3/c4 protein was extracted using a Nuclear and
Cytoplasmic Extraction Kit (Cwbio, China). All the experiments were
conducted on ice. Protein concentration measurements were collected
using the BCA (Biomiga, China) method. The samples were incubated
at 99°C for 10min. Then, 30 μg of total protein were was separated by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The separated
proteins were transferred to PVDF membranes (Millipore, Billerica,
MA, USA). The membranes were blocked with 5% non-fat milk in
TBST for 2 h at room temperature and were incubated overnight at
4°C with the proper primary antibodies. The antibodies were pur-
chased and diluted as follows: rabbit anti-calcineurin (1:10 000,
Abcam), rabbit anti-NMDAR (1:1000, Abcam), rabbit anti-NFAT3/c4
(1:500, Sigma), rabbit anti-GSK-3β (1:1000, Cell Signal), rabbit anti-
Bax (1:1000, Cell Signal), rabbit anti- Bcl-2 (1:1000, Cell Signal), rabbit
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anti-GAPDH (1:1000, Goodhere), rabbit anti-Histon3 (1:500, Sigma).
The membranes were then incubated with an HRP-conjugated second-
ary antibody (Beyotime, Nantong, China) for 1.5 h at room tempera-
ture. The membranes were immunolabeled. After washing the samples
with TBST buffer, the membranes were subsequently assayed using
the Thermo Scientific Pierce Femto ECL (Rockford, IL, USA).

Statistical analysis
Data were expressed as the mean ± SD and analyzed with a two-tiered
Student’s t test or one-way ANOVA in GraphPad Prism (version 5.0;
GraphPad, La Jolla, USA). A value of P < 0.05 was considered to be
statistically significant.

RESULTS
Body weight and brain weight measurements

Obvious depilation was observed in the irradiated rats at 2–3 weeks
post irradiation, which gradually disappeared and was absent 2
months later (Fig. 1A). Compared with the average body weight of
the sham group, that of the irradiation group declined (P < 0.05,
Fig. 1B), and the same trend was observed for average brain weight
(P < 0.05, Fig. 1C). The 11R-VIVIT peptide had no impact on
either body weight or brain weight (P > 0.05, Fig. 1B–C).

Cognitive deficits were produced after whole-brain
irradiation

Our previous study demonstrated that 20 Gy of WBI resulted in cog-
nitive damage in the surviving rats at 2 months post irradiation [16].

Whole-brain radiation activated the NMDAR/NFAT3/
c4/Bax pathway and induced apoptosis

WBI significantly elevated NMDAR subunit expression (NR2A, not
NR1 or NR2B) in the hippocampus at 6 h post irradiation com-
pared with that of the sham group (P < 0.05, Fig. 2A).

The expression level of CaN and GSK-3β experienced only mild
enhancement (P > 0.05, Fig. 2D), but these molecules were signifi-
cantly activated, as demonstrated by the translocation of NFAT3/c4
between the nuclei and cytoplasm. With radiation stress, NFAT3/c4
rapidly accumulated in the nuclei after dephosphorylation of
p-NFAT3/c4 (P < 0.05, Fig. 2B). The transcriptional activities of

NFAT3/c4 promoted expression of the apoptosis marker Bax (P <
0.05, Fig. 2C).

The 11R-VIVIT peptide rescued the activation of
NFAT3/c4-dependent apoptosis after radiation

Treatment with the 11R-VIVIT peptide did not have any impact on
the expression of the NMDAR subunits (NR1, NR2A or NR2B)
(P > 0.05, Fig. 3A). However, the 11R-VIVIT peptide prevented
nuclear translocation of NFAT3/c4 and abolished its nuclear accu-
mulation (P < 0.05, Fig. 3B). Subsequently, the expression of the
apoptosis marker Bax was inhibited. (P < 0.05, Fig. 3C).

The 11R-VIVIT peptide alleviated the decline in the DG
proliferating cells and mature neurons

The protective effects of the 11R-VIVIT peptide on radiation-
induced brain injury were assessed by analysis of BrdU proliferation
cell assay and NeuN immunofluorescence staining. Our data
showed that the IR+11R-VIVIT peptide promoted an increase in
BrdU+ cells in the DG at 3 days post irradiation compared with the
levels in the irradiated group (P < 0.05, Fig. 4A). Similarly, we
found that the total number of NeuN+ mature neurons in the IR+
11R-VIVIT peptide group increased compared with the number in
the IR group at 8 weeks post irradiation (P < 0.05, Fig. 4B).

DISCUSSION
In the present study, we investigated hippocampus cell apoptosis in
a model of radiation-induced brain injury that was characterized by
cognitive dysfunction. We also evaluated the potential mechanisms
of NFAT3/c4-mediated excitotoxicity. A single-dose exposure of
20 Gy WBI was chosen to establish the model of radiation-induced
brain injury in rats. We showed that: (i) WBI significantly induced
hippocampus cell apoptosis and reduction of DG proliferating cells
as well as mature neurons; (ii) WBI activated the NMDAR/
NFAT3/c4/Bax pathway; (iii) 11R-VIVIT peptide, an NFAT3/c4
inhibitor, abolished the nuclear translocation of NFAT3/c4 and the
induction of Bax; and (iv) the 11R-VIVIT peptide reversed the
decline in the number of DG proliferating cells and mature neurons
by protecting hippocampal proliferation and neuron survival.

An animal model for radiation-induced brain injury has not yet
been clearly defined. Wong-Goodrich et al. employed a single dose

Fig. 1. The observation of the rats’ skin reaction and the measurement of body weight and brain weight after WBI (20 Gy).
We observed the representative infield depilation at 2–3 weeks post irradiation (A). Ironizing radiation induced a significant
decrease in the body weight of rats, and 11R-VIVIT had no remarkable effect (B). Similarly, we observed a conspicuous
decrease in the brain weight of irradiated rats, and 11R-VIVIT caused no remarkable changes with respect to this (C). Data
are expressed as mean ± SD, *P < 0.05 vs sham group, #P < 0.05 vs irradiation group.
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of 5 Gy to produce cognitive dysfunction in C57BL/J6 male mice [17],
while Conner et al. selected a total dose of 40 Gy/8 fractions
to establish a model of radiation-induced brain injury with Fischer
344 rats [18]. A large single-dose exposure was more damaging
than fractionated irradiation because the former lead to strong reac-
tion in the tissue. Our preliminary work indicated that it was appro-
priate to apply a single-dose exposure of 20 Gy to establish the
model [16], which is what we employed in this study to develop
our animal model. Adolescent rats (21 days old) were selected in

our study, mainly because adolescent rats are more sensitive to ion-
izing radiation and suffer greater damage than adult rats, so it is eas-
ier to establish a model of radiation-induced brain injury. We
selected time-points of 3 days and 2 months after exposure to detect
the reduction of DG proliferating cells and mature neurons, respect-
ively. Both time-points demonstrated radiation-induced brain injury.

Previous studies have suggested that apoptosis of hippocampus
cells, especially DG proliferating cells and immature neurons, plays
a key role in radiation-induced cognitive damage [19, 20]. DG

Fig. 2. WBI activated the NMDAR/NFAT3/c4/Bax pathway and induced apoptosis. WBI significantly elevated the expression
of: NMDAR subunits (NR2A, not NR1 or NR2B) (A), NFAT3/c4 in the nucleus (C), the apoptosis marker Bax (D)
compared with in the sham group. In contrast, the expression of CaN and GSK-3β showed only mild enhancement compared
with in the sham group (B). Data are expressed as mean ± SD, *P < 0.05 vs sham group, #P < 0.05 vs irradiation group.
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proliferating cells were capable of generating new neurons, astro-
cytes and oligodendrocytes, which are associated with brain self-
recovery function [21–23]. A radiation-induced decrease in prolifer-
ating cells was accompanied by a reduction in new neurons [24, 25].
The significant decrease in mature neurons induced by radiation
has been associated with hippocampal-dependent spatial learning
and memory dysfunction [26, 27]. Single whole-brain irradiation
(2–10 Gy) caused a sharp elevation in apoptosis in the hippocam-
pal DG [28, 29]. Apoptosis was accompanied by a subsequent
decrease in both proliferating cells and neurons [27, 30, 31]. In
the present study, we found a significantly elevated expression of
the apoptosis marker Bax accompanied by a steep decrease in
hippocampus cells. In addition, the 11R-VIVIT peptide, an
NFAT3/c4 inhibitor, inhibited the appearance of apoptosis and
reversed the decline in the number of DG proliferating cells and
mature neurons.

DNA damage was the most common effect of radiation injury,
and DNA transcription and protein synthesis were simultaneously
disrupted. Numerous potential mechanisms of radiation-induced
apoptosis were present [32–34]. The radiation-induced perturba-
tions of extracellular-signal-regulated kinase (ERK1/ERK2) and down-
stream signaling pathways severely affected neuronal survival [35].
The secretion of TRAIL by irradiated neural stem cells (NSCs)
induced a death-signaling cascade in non-targeted NSCs [32].
Regarding these potential mechanisms, a recent NMDAR-mediated

non-conventional apoptotic response to radiation has been reported, so
we investigated the excitotoxic effects of overactivated NMDAR [36].
We observed that overexpression of NMDAR caused nuclear transloca-
tion and activation of the transcriptional factor NFAT3/c4, which
regulates the expression of numerous proteins. Its transcriptional activ-
ities promoted the elevation of Bax. Together, our results suggested a
hitherto unknown vital role of NFAT3/c4 in the study of radiation-
induced brain injury.

Some limitations of this study need mentioning. First, radiation-
induced apoptosis requires more extensive study to clarify the
mechanisms underlying it and how it develops, including TUNEL
assays and Bax immunofluorescence assays. Second, we would now
like to use an NFAT3/c4 knock-out rat model to further demon-
strate the important role of NFAT3/c4 in radiation-induced brain
injury. Third, NFAT3/c4 acts as a powerful transcriptional factor,
and the rest of its apoptotic targets need further investigation.
Finally, we need to explore further the pathological changes in brain
morphology and structure post irradiation with H&E staining.
Exploration of the changes in synapse morphology and structure
with Golgi–Cox staining is our next goal.

In summary, our present study showed for the first time that
NFAT3/c4 mediated excitotoxicity in apoptosis of hippocampus
cells in radiation-induced brain injury. Moreover, the results from
the inhibitor 11R-VIVIT peptide supported a regulatory role for
NFAT3/c4. In addition, we clarified the potential mechanisms of an

Fig. 3. 11R-VIVIT peptide relieved apoptosis induced by the activation of NFAT3/c4 after irradiation. Treatment with 11R-
VIVIT peptide didn’t have any impact on the expression of NMDAR subunits (NR1, NR2A or NR2B) (A). 11R-VIVIT
peptide prevented nuclear translocation of NFAT3/c4 and appearance of Bax (B–C). Data are expressed as mean ± SD, *P <
0.05 vs sham group, #P < 0.05 vs irradiation group, ^P > 0.05.
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NMDAR-mediated non-conventional apoptotic response to radi-
ation. Finally, our results highlighted the importance of the
NMDAR/NFAT3/c4/Bax pathway and provided evidence of its use
in a potential therapeutic intervention.
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