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Abstract

Purpose of Review—An important component of the Food and Drug Administration’s Sentinel 

Initiative is the active post-market risk identification and analysis (ARIA) system, which utilizes 

semi-automated, parameterized computer programs to implement propensity-score adjusted and 

self-controlled risk interval designs to conduct targeted surveillance of medical products in the 

Sentinel Distributed Database. In this manuscript, we review literature relevant to the development 

of these programs and describe their application within the Sentinel Initiative.

Recent Findings—These quality-checked and publicly available tools have been successfully 

used to conduct rapid, replicable, and targeted safety analyses of several medical products. In 

addition to speed and reproducibility, use of semi-automated tools allows investigators to focus on 
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decisions regarding key methodological parameters. We also identified challenges associated with 

the use of these methods in distributed and prospective datasets like the Sentinel Distributed 

Database, namely uncertainty regarding the optimal approach to estimating propensity scores in 

dynamic data among data partners of heterogeneous size.

Summary—Future research should focus on the methodological challenges raised by these 

applications as well as developing new modular programs for targeted surveillance of medical 

products.
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Introduction

Targeted surveillance using multiple large databases is an increasingly important part of 

post-market medical product safety in the United States [1, 2]. Such active, semi-automated 

surveillance is characterized by evaluation of specific exposure-outcome relations of interest 

in longitudinal, routinely-collected healthcare data, and provides safety information that 

complements passive surveillance or spontaneous reporting systems. Spontaneous reporting 

systems -- the Vaccine Adverse Event Reporting System (VAERS) and the Food and Drug 

Administration (FDA) Adverse Event Reporting System (FAERS) for vaccines and drugs, 

respectively -- have traditionally been the backbone of medical product safety monitoring, 

but they are limited by selective reporting [3]. Further, and most importantly, they lack 

denominator data to allow for accurate quantification of the magnitude of associations of 

interest.

Longitudinal databases that capture routinely-collected healthcare utilization information 

have long been available to evaluate pharmacoepidemiologic questions of interest. However, 

single databases often lack the needed sample size to identify rare safety issues that also 

elude detection in relatively small clinical trial populations, necessitating multi-database 

studies in the post-market setting. Traditionally, multi-database or multi-site studies required 

data use agreements to be signed among all participating databases to allow their data to be 

centralized for analysis.

A newer model has emerged – the distributed data network [4, 5] – in which multi-site, 

routinely-collected, longitudinal observational data are used without requiring databases to 

share patient-level data with each other. One of the first distributed surveillance systems for 

medical products in the United States was the Vaccine Safety Datalink (VSD), initiated in 

1990 [6–9]. The Centers for Disease Control and Prevention (CDC) partnered with four 

health maintenance organizations across the country who agreed to provide de-identified 

information on vaccine usage, basic demographic characteristics, and medical records to the 

CDC, but did not share their data with other databases. That model would go on to be 

replicated in other national networks.

In 2008, the FDA launched the Sentinel Initiative to create a national, actively-monitored, 

and distributed data system to evaluate the safety of regulated medical products in the United 
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States [10•, 11]. The Sentinel Infrastructure, a component of the Sentinel Initiative (see 

Figure 1), uses a common data model to facilitate distributed analyses across multiple data 

partners who might otherwise format data differently [12]. The distributed data network 

includes 17 observational databases that cover 223 million lives with 43 million patients 

currently accruing new data [10, 13, 14]. Data in the Sentinel Infrastructure can also support 

analyses performed with customized programming according to fully developed protocols, 

including large observational analyses [15, 16] and cluster randomized trials [17].

Contained within the Sentinel Initiative is the congressionally-mandated active post-market 

risk identification and analysis (ARIA) system [18]. While the same underlying electronic 

data model supports both the ARIA system and the greater Sentinel Infrastructure, the 

distinguishing feature of ARIA is that it is limited to pre-programmed, reusable, quality-

controlled and parameterized computer programs or queries. Thus, ARIA can rapidly 

support public health safety surveillance, as no de novo programming is required.

In brief, these queries or computer programs work by executing on each participating data 

partner's data that have been formatted into the Sentinel Common Data Model behind their 

firewalls, and then returning non-identifiable aggregate information to a central analysis 

center for final synthesis [19••]. In addition to leveraging the interoperability of electronic 

health information in a multi-site setting, such a public-private partnership allows data 

partners to maintain control of their data and protect patient privacy [4, 5].

Here, we focus on two programs used within ARIA for assessing associations between 

medical products and health outcomes of interest: the propensity-score (PS) adjusted active 

comparator analysis and the self-controlled risk interval design. We first discuss prior work 

leading to their development as pre-programmed analysis tools before moving on to 

describing their applications within the Sentinel System, highlighting unique challenges 

associated with their use in conducting safety surveillance across distributed databases.

Propensity Score Adjusted Analyses

In this section, we describe literature relevant to the development of the PS adjusted active 

comparator analysis tool in ARIA. Summary scores have a long history as a confounding 

adjustment technique in observational designs because they summarize patient 

characteristics into a single number [20–24], enabling efficient adjustment for a large 

number of potential confounders while preserving patient privacy and limiting transfer of 

patient-level data. Two types of summary scores are currently used: PSs, [25], which model 

the relationship between potential confounders and the exposure, and disease risk scores 

(DRSs) [26], which model the relationship between potential confounders and the outcome.

Both scores can be advantageous in the setting of newly marketed medications [27, 28]. A 

DRS-based approach may be preferable in the very early post-market period when there are 

too few exposed patients or too few outcomes to support PS modeling or traditional outcome 

regression models [22]. In particular, a DRS can be developed in an historical cohort of 

comparator patients and the resultant coefficients can be used to adjust for confounding in 

the analysis cohort without the need for fitting a statistical model in this group. When PS 
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models can be fit in the analysis cohort, they tend to perform at least as well as DRS-based 

approaches [29]. PS approaches have the additional benefit that covariate balance after 

adjustment is easily displayed in a traditional baseline covariate characteristics table. For 

these reasons, PS based methods were implemented as a parameterized ARIA targeted 

surveillance tool.

Adjusting for a large number of covariates in a PS potentially allows an investigator to 

partially control for important confounders that are unmeasured or incompletely captured in 

electronic healthcare databases, such as frailty, through proxy adjustment. For example, 

variables that might not be direct risk factors of an outcome, such as oxygen tank usage, may 

in fact be correlated with underlying frailty and worth including in a PS model. Such proxy 

adjustment is central to the high-dimensional propensity score (hd-PS) approach, which is an 

algorithm that empirically identifies large numbers of potential confounding variables for 

inclusion in a PS model by ranking them based on their potential to cause bias [30].

Propensity scores in small samples

In the early post-market period, it is in the interest of patients and regulators to detect safety 

issues as soon as possible. However, in this period there will typically be few outcomes and 

few users of the new medical product relative to a comparator. Few new users of the target 

medical product can be problematic for PS methods, and especially for hd-PS, which 

typically includes hundreds of potential confounders in the PS model. To address this 

concern, the performance of hd-PS in settings where there are few exposed patients or 

outcome events was evaluated by re-sampling from four new user cohorts identified in 

administrative claims data to create increasingly smaller cohorts [31]. In these down-

sampled cohorts, the authors examined the performance of hd-PS and sought to define the 

optimal number of empirically identified covariates to include. When there were greater than 

50 exposed patients with an event, the hd-PS algorithm that ranked potential confounders by 

their relationships with both exposure and outcome, termed the bias-based algorithm, 

performed well in terms of confounding adjustment. When there were fewer than 50 

exposed events, ranking covariates for inclusion based only on their association with 

exposure yielded better performance.

Propensity scores in distributed data settings

Compared with analyses in single databases, performing analyses in multiple databases 

improves statistical power, which can enable more rapid identification of potential medical 

product safety issues. A challenge of the distributed data setting is attaining confounding 

control while simultaneously minimizing or eliminating sharing of patient-level data. Three 

recent studies compared various methods for achieving this goal, which included comparing 

full patient-level data sharing, cell-aggregated sharing, distributed regression analysis, meta-

analysis, and PS-based methods [27, 32, 33]. These evaluations concluded that PS methods 

provided adequate flexibility, confidentiality, and analytic integrity in distributed data 

settings. There are several ways of employing PS-based methods in distributed 

environments. In its simplest form, individual data partners estimate a PS within their own 

data and share only the patient-level PS, along with a randomly generated patient identifier, 

exposure and outcome status, and relevant subgroup indicators with a central analysis hub 
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like the Sentinel Operations Center. The feasibility of this patient-level PS-sharing approach 

was demonstrated in a cohort of new users of clopidogrel and proton pump inhibitors versus 

new users of clopidogrel alone monitored for risk of myocardial infarction. Data were shared 

among four data partners without compromising patient privacy by using PSs [32]. Since the 

development of the ARIA targeted surveillance program for PS adjustment, further 

adaptations of the program have employed a risk set-based [34] approach that enables a PS-

adjusted analysis in a distributed setting without sharing patient-level PSs [35]. The risk-set 

based approach has been shown to provide statistically equivalent results to a pooled 

analysis and has been recently applied to actual safety assessments in the Sentinel 

Distributed Database [15, 16].

Propensity scores in prospective analyses

While PS methods have demonstrated utility in distributed data, prospective analyses, where 

data periodically update over time, provide a unique set of challenges. To assess PS 

performance in prospective data, a recent study developed an approach to prospective, 

targeted safety monitoring and evaluated it using three drug-outcome pairs with known or 

suspected safety issues: paroxetine and severe upper gastrointestinal bleed, lisinopril and 

angioedema, and ciprofloxacin and Achilles tendon rupture [36]. The authors divided a 

single dataset into sequential monitoring periods to mimic the prospective accumulation of 

data, and 1:1 matched new users of the study drugs within each monitoring period on a PS 

estimated only among those new users in each period. Two alerting algorithms were 

compared: a maximized sequential probability ratio test [37] and a method that generated an 

alert if the effect estimate exceeded a predefined threshold for more than 3 consecutive 

monitoring periods. Alerts were generated by at least one of the alerting algorithms in each 

example over the follow-up period, demonstrating the feasibility of such a PS-matched 

prospective monitoring system to quickly identify adverse events. It is important to note that 

while this assessment emulated prospective analyses, the dataset was static and therefore did 

not account for issues related to changing data over time that can occur when using dynamic 

datasets in the Sentinel Distributed Database.

Propensity scores in both distributed settings and prospective analyses

Given the success of PS methods in both distributed data and prospective analyses 

separately, the next step was to assess PS methods in distributed, prospective data 

simultaneously. One of the concerns regarding automated safety surveillance systems in 

multiple databases is the opportunity for many false positives or false negatives [38]. As a 

first step in evaluating these concerns, a PS-based semi-automated safety monitoring 

approach was utilized to assess the safety of three medications across three claims databases 

[39]. Data from each database were divided into three-month intervals to mimic prospective 

accumulation of data, and new users of the three study drugs were 1:1 PS matched to new 

users of comparator products within each interval. The three drug-outcome relationships 

were rosuvastatin and rhabdomyolysis, rosuvastatin and diabetes mellitus, and telithromycin 

and hepatotoxicity. As expected based on prior research, none of these three examples 

generated a safety alert, providing some reassurance about the system's robustness against 

false positives. By sharing only PSs with a central data analysis center, confounding was 

mitigated without compromising patient privacy.
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This semi-automated program served as the precursor program to the PS-adjusted active 

comparator analysis tool utilized in ARIA, and a subsequent paper described the program in 

more detail and discussed the steps required to conduct prospective semi-automated 

surveillance using PS matching in distributed databases [19••]. The PS adjustment tool has 

several functions and includes each of the features noted above. When tested on 

retrospective data for nine drug-outcome pairs, which included positive and negative 

controls, the tool generated results consistent in direction and magnitude with expectations 

for each. Alerts were generated for all positive controls when power was adequate, which 

included the three known positive associations described above. These findings further 

demonstrated the ability of the system to avoid generating false positives and negatives.

The PS adjustment precursor program was also applied to a true prospective safety 

monitoring scenario in which data accumulated in real time to evaluate the risk of 

hemorrhagic and ischemic events in patients taking prasugrel versus clopidogrel during the 

first two years of prasugrel's market availability in the US [40•]. Using the prototype, 

patients were matched on hd-PS and followed for outcomes using dynamic data that were 

updated on a bi-monthly basis. In general, results were consistent with those from 

randomized trials. While the first monitoring period had to be lengthened to accumulate 

enough users to validly estimate the hd-PS, the tool performed well and demonstrated the 

feasibility of this type of analysis in a prospective, distributed database setting like Sentinel. 

In light of these successful applications, the semi-automated PS adjusted active comparator 

design tool was officially implemented into the Sentinel Initiative as part of ARIA [41, 42].

Applications within the Sentinel Distributed Database

The PS adjustment tool in use by ARIA in the Sentinel Initiative can perform propensity 

score matching (both 1:1 and 1:n) and propensity score stratification [43]. It has been used to 

perform both retrospective safety assessments as well as prospective safety assessments 

within the Sentinel Distributed Database. Retrospective safety assessments are one-time 

analyses in which the analysis is performed using all existing data. Retrospective safety 

assessments included the following drug-outcome pairs: angiotensin converting enzyme 

inhibitors (ACEIs) vs. beta blockers on angioedema [44•], clindamycin vs. penicillin on risk 

of C. difficile infection, glyburide vs. glipizide on hypoglycemia [45], warfarin vs. statins on 

bleeding, dabigatran vs. warfarin on bleeding/acute myocardial infarction, apixaban vs. 

warfarin on gastrointestinal hemorrhage and stroke, niacin vs. fenofibrate on bleeding and 

stroke, and levetiracetam vs. topiramate or lamotrigine on agranulocytosis. The ACEI, 

clindamycin, glyburide, and warfarin vs. statins assessments were all test cases in which 

elevated outcome risk associated with the primary exposure was expected. These 

assessments were performed as empirical test cases as opposed to novel regulatory questions 

or considerations.

The PS adjustment tool has also been used for one prospective safety assessment, in which 

data regularly accumulate in real time and are re-analyzed after each update. The prospective 

queries targeted rivaroxaban vs. warfarin on gastrointestinal hemorrhage and stroke risk. A 

full description of each retrospective and prospective query has been provided elsewhere 

[46••]. A high-level summary of each query is available in Table 1.
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Self-Controlled Risk Interval Design

The self-controlled risk interval design is a specific application of the self-controlled case 

series design in which eligible patients are those exposed to a medical product of interest 

and are indexed on exposure. This contrasts with a case-crossover study, in which eligible 

patients are indexed upon occurrence of the outcome. However, both types of self-controlled 

designs control for all time-invariant confounding so most complicating factors in self-

controlled designs involve adding additional model terms to account for time-varying 

confounding [47]. While the self-controlled case series design has been used extensively in 

epidemiological research [48–51], the self-controlled risk interval design was first used in 

the VSD and the Post-licensure Immunization Safety Monitoring system [52] for vaccine 

safety studies [53–60]. In this design, an exposed person acts as his or her own control and 

the comparison occurs between a period when the person is thought to be at heightened risk 

for experiencing a health outcome of interest (i.e., the risk window) and a period without 

heightened risk (i.e., the comparison window). Post-exposure comparison windows (as 

compared to pre-exposure comparison windows) are typically used because experiencing the 

outcome is often presumed to affect the person’s likelihood of receiving a subsequent 

vaccination (i.e., the healthy vaccinee effect) [61, 62]. This design was also used in the 

Sentinel System before it was standardized into a pre-parameterized usable program for use 

in ARIA [63•–65]. Of these prior uses, two were retrospective analyses and one was 

prospective sequential surveillance. Like the PS adjusted tool described above, a prototype 

of the pre-parameterized program was tested in a dynamic data setting to ensure its 

performance with a known association between an exposure-outcome pair [66].

Since the conversion of the self-controlled risk interval design into a semi-automated 

program, it has been planned to prospectively monitor the safety of nine-valent human 

papilloma virus vaccine [67] and has been used retrospectively to assess seizures following 

ranolazine exposure [68].

Discussion

We described applications of semi-automated, targeted evaluations of particular exposure-

outcome pairs of interest in the Sentinel Distributed Databases using one of two quality-

checked, parameterized computer programs: the PS adjustment tool and the self-controlled 

risk interval design tool. Both of these epidemiologic designs were well-studied in single 

database settings and were adapted for multi-site distributed database uses when minimizing 

transfer of patient-level data is of paramount importance. When these programs have been 

piloted on known medical product-outcome associations, they have correctly generated 

safety alerts and avoided false positives while maintaining patient privacy. The successful 

performance of the program allowed investigators to confidently apply it to true safety 

analyses to support post-market medical product regulatory decisions.

The successful development and application of pre-written, semi-automated surveillance 

programs for both drugs and vaccines has highlighted several of their strengths. The primary 

advantage of converting these commonly used study designs into semi-automated, pre-

written programs is that safety analyses can be performed more quickly than if these designs 
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had to be repeatedly programmed de novo. In the immediate post-approval setting, where 

important adverse effects may be unknown due to their rarity or differences in patient 

populations from the pre-market trials, rapidly identifying adverse events is critical to patient 

safety. Another strength of pre-programmed tools is that by automating programming, 

investigators have more time to spend considering key clinical and epidemiological decision 

points such as the relevant confounders and statistical analysis plan. Pre-programmed tools 

also ensure results are consistent and reproducible by preventing coding errors that can 

occur from ad hoc programming.

The applications described above have also identified certain challenges when conducting 

targeted surveillance in distributed databases. First, the constituent databases of the Sentinel 

Distributed Database are of heterogeneous size. When performing PS estimation, the model 

may fail to converge at a subset of smaller databases as a result of small sample size. The 

best approach for estimating PSs in small data partners within distributed data networks is 

still unknown, and such problems may be an inherent limitation of distributed databases like 

Sentinel, if small data partners are included. An alternative in such situations could be to 

instead use a DRS for confounding adjustment, especially if the outcome of interest is more 

common than new use of the target therapy. In settings where outcomes are also rare, use of 

historical data from the time period immediately prior to the introduction of the target 

therapy may be preferable for DRS development [22]. Databases of heterogeneous size are 

not as challenging to deal with when using a self-controlled risk interval design, however 

only databases with recorded outcomes are informative to the analysis.

Second, sequential analyses of prospectively accumulating data present a distinct set of 

methodological challenges. The Sentinel Distributed Database is a dynamic database and 

data are continually refreshed over time. Claims adjustments and late-arriving data can result 

in changes to a patient’s exposure, outcome, or covariate status over time. For example, a 

patient who experiences the outcome of interest in the first monitoring period may not be 

classified as such until the second monitoring period. However, sequential statistical 

analyses, first used in the clinical trial setting, depend (or are anchored on) data in prior 

monitoring periods remaining stable and constant [69]. Historically, in the VSD, follow-up 

time for prospectively monitored patients was limited to a pre-defined and short 

observational window. Because of this, data were allowed to stabilize following the 

completion of the observational window before they were ready for analysis. A notable 

exception to this stabilization occurs with influenza vaccine safety surveillance when 

partially-accrued data must be analyzed in order to have actionable information during the 

ongoing influenza season [54, 60, 65, 69].

In the pre-parameterized self-controlled risk interval design tool in ARIA, patients are 

ascertained in the analytic dataset only after they have had the opportunity to complete their 

full observation window. Thus, a patient’s relevant data are contained within a single 

snapshot of the dynamic dataset. However, outcomes that have longer time-to-onset (on the 

order of months) and that further require an investigator to follow the same patient over 

multiple data refresh periods are particularly challenging. In PS adjusted analyses, follow-up 

time is often “as treated,” i.e., as long as the patient is actively exposed to the medical 

product. Therefore, it is not feasible to prospectively monitor a patient’s entire relevant 
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follow-up in a single snapshot of the dynamic dataset. Adapting sequential statistical 

analyses to cope with dynamic data over multiple data refreshes in an observational database 

is the subject of ongoing methods work.

While PS-based methods have been successful, alternative methods for analyzing distributed 

data networks while maintaining patient privacy are available. The PS adjustment tool 

utilizes matching and stratification, but in theory could be extended to allow for inverse 

probability of treatment weighting. The tool could also be extended to alternative summary 

scores such as the DRS, which would offer advantages in situations where outcomes are 

more common than new initiators of the medical product of interest as discussed above [22].

A distinct method which does not rely on covariate summary scores is distributed regression 

analysis, in which data partners run regression models locally and then share only 

intermediate summary statistics with a central analysis hub. Distributed regression has been 

proven to provide identical results as a fully pooled analysis [27, 70, 71]. Like the other 

programs developed in Sentinel, distributed regression requires a common data model and 

shares only aggregated information that preserves patient privacy. Efforts to automate this 

methodology in the Sentinel System are underway.

Conclusions

In conclusion, the development of semi-automated, parameterized computer programs that 

perform inferential analyses in multi-site distributed databases continues to evolve, allowing 

for timely and reproducible evaluations of particular exposure-outcome pairs. These 

programs are quality-checked and available to the public. They are also currently in routine 

in use as part of the FDA’s ARIA system. Future research should focus on the 

methodological challenges raised by these applications, as well as on developing new 

modular programs for targeted surveillance of medical products.
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Key Points

• Semi-automated, pre-programmed tools for implementing propensity score-

adjusted active comparator and self-controlled risk interval designs have been 

successfully applied to multiple prospective safety analyses in the Sentinel 

Distributed Database

• Public availability of these tools enables rapid and consistent analyses across 

multiple data sites

• Future research should focus on addressing challenges to implementing these 

designs in distributed, prospective databases like Sentinel
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Figure 1. Schematic of the Food and Drug Administration’s Sentinel Initiativea

This figure outlines the hierarchy of the Sentinel Initiative, which contains a Sentinel 

Infrastructure comprised of the Sentinel System (the focus of this manuscript) as well as the 

FDA-Catalyst.
aReprinted from https://www.sentinelinitiative.org/sentinel/about
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Table 1

Tabular Summary of Queries Using the Propensity-score Adjustment Tool within Sentinel

Query Outcomes #DPs Returned/
Sent

Query Period1

Test cases of known associations

ACEI vs. beta-blockers Angioedema 13/17 01/01/2001–09/30/2013

Clindamycin vs. oral penicillins C.Difficile infection 13/14 01/01/2006–12/31/2013

Glyburide vs. Glipizide Hypoglycemia 7/13 01/01/2008–12/31/2014

Warfarin vs. statins Bleed 14/14 01/01/2012 – 09/30/2015

One-time drug safety assessments

Dabigatran vs. warfarin ICH 4/4 11/01/2010–12/31/2013

GI Bleed

Ischemic Stroke

AMI

Apixaban vs. warfarin GI Bleed 4/4 02/01/2013–05/31/2015

ICH

Stroke

Niacin vs. fenofibrate GI Bleed 4/4 01/01/2007–05/31/2013

ICH

Stroke

Levetiracetam vs. lamotrigine/topiramate Agranulocytosis 10/17 01/01/2000–10/31/2013

Prospective drug safety assessments

Rivaroxaban vs. warfarin Ischemic Stroke 4/4 11/01/2011–4/30/2015

ICH

GI Bleed

ACEI – Angiotensin-Converting Enzyme Inhibitor; AMI - Acute Myocardial Infarction; DP – Data Partner; GI - Gastrointestinal; ICH - 
Intracranial hemorrhage

1
Query period represents available data across all Data Partners included in that query
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