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Abstract

There has been extensive discussion in the literature about the extent to which cortical 

representations can be described as localist or distributed. Here we discuss a simple null model 

that encompasses a family of related architectures describing the transformation of signals 

throughout the parts of the visual system involved in object recognition. This family of models 

constitutes a rigorous first approximation to explain the neurophysiological properties of ventral 

visual cortex. This null model contains both distributed and local representations throughout the 

entire hierarchy of computations and the responses of individual units are meaningful and 

interpretable when encoding is adequately defined for each computational stage.

How does the brain represent information? A cartoonish answer was entertainingly and 

endearingly depicted in a recent Pixar film, Inside Out, where we get to peek inside the mind 

of a young girl, and find five characters, each representing basic emotions: Joy, Sadness, 

Fear, Disgust and Anger. The notion of a little character inside the brain to represent each 

emotion could easily be extended by adding more and more characters to represent other 

sensations, thoughts, actions, decisions, even grandmothers. There could be one character 

that gets activated whenever we see a chair, another one for grandma, another one whenever 

we listen to Beethoven, another one whenever we are hungry and another one when we raise 

our right arm. Despite the seemingly naïve nature of this scheme, after replacing 

“characters” by “neurons”, this idea seems to be at the heart of how lay people and many 

Cognitive Scientists and Neuroscientists think about brain representations.

I argue here that this cartoon version of cortical representations is neither completely wrong 

nor completely right. We need to dig deeper into what we mean by representations and 

translate those definitions into the biophysical language of neurons. What emerges is an even 

simpler, and yet far more wonderful and elegant biologically plausible description of how 

brains store information, a null model for cortical representations. I will focus the discussion 

here on visual information, specifically on how we see and recognize shapes, objects and 

faces. I restrict the discussion to visual objects because we know more about the visual 

system and the transformation of inputs along the visual hierarchy than about any other 

modality or any other aspect of cognition. This should not be interpreted to imply that we 

fully understand visual object processing; there remain fundamental unanswered questions 

the field. Despite these lacunae, we are beginning to develop biologically inspired 

computational models that provide a reasonable approximation and first sketch of visual 

processing.
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I will argue that the term “grandmother cell” and several derivatives and synonyms have not 
been well defined (Gross, 2002). In the Cognitive Science literature, the question about 

information representation has elicited significant discussion between so called “localist” 

representations (McClelland & Rumelhart, 1981) and “distributed” representations 

(McClelland, Rumelhart, & Group, 1986); see (Bowers, 2009) for a clear and detailed 

review and discussion of the literature. It seems clear to most investigators that there is no 

one-to-one map between a single neuron and perception (i.e. it cannot be the case that there 

is only one neuron in the entire brain that responds to a given photograph of grandma and it 

cannot be the case that a given neuron responds only to one particular photograph of 

grandma and to no other possible photograph of grandma or other stimuli). Once we 

abandon the idea of a one-to-one map, one formulation of the question about how 

information is represented in the brain asks whether single neurons store “meaningful 

things” or not. For example, it could be argued that the word grandmother constitutes a 

meaningful thing and we can ask whether there are neurons that respond selectively to 

grandmother and not to other stimuli. Toy computational models have been built where there 

are units that represent letters or words. Yet, when discussing real brains, this apparently 

simple question is not sufficiently well defined. Do we mean to imply that there is a single 

neuron in the entire brain that responds to grandmother? What do we mean by “neuronal 

response”? How selective does the neuron need to be in this definition? Do we mean to 

imply that the neuron(s) would respond to grandmother above baseline and to no other 

possible stimulus in the world? Would the neuron(s) respond to the word “grandma” and the 

misspelled word “grandmotter”? Would the neuron respond to a picture of grandma, to any 

picture of grandma, to any grandma, to grandma's clothes, to her gait, her voice, her accent, 

etc.? The universe of related questions is infinite and so is the list of discussions that can be 

generated around such poor definitions. Instead, I will provide a brief, and admittedly 

incomplete, description of the cascade of processes that lead to representing visual 

information, arguing that this involves both implicit and explicit representations and that 

ultimately defining these operations is the crux of the problem to understand cortical 

representations.

Basic tenets of representation

The basic requirements for representing information in the brain have been lucidly 

articulated by several authors before (e.g. (Barlow, 1972; Crick & Koch, 2003; Parker & 

Newsome, 1998) among others). To constrain the discussion here, we consider an 

experiment where a visual stimulus is presented (e.g. a picture of grandma), the subject 

reports his/her perception (e.g. indicating yes/no whether he/she recognized grandma), and 

we scrutinize the responses of multiple neurons. I will re-state the main postulates by 

copying, expanding, rephrasing and adding examples to the ideas in Parker and Newsome 

(Parker & Newsome, 1998), to define the basic tenets of representation of visual information 

in cortex:

1. Reflection of perception. The neuronal responses elicited by presentation of the 

stimulus should be directly comparable to perception and behavior as reported by 

the subject in terms of magnitude, timing, duration and specificity. Even though 

we obviously cannot see grandma without a retina, this tenet implies that the 
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retinal ganglion cells are not part of the explicit visual representation of 

grandma.

2. Timing. The neuronal responses should occur before or at the moment of 
perception (and not afterwards). This is a basic and fundamental definition of 

causality and has implications for how neuronal responses are defined, analyzed 

and interpreted. Visual recognition of an object flashed on the screen takes place 

within approximately 150 ms of stimulus onset (Kirchner & Thorpe, 2006; Potter 

& Levy, 1969; Thorpe, Fize, & Marlot, 1996) and therefore the neuronal 

responses should occur within this time frame.

3. Selectivity. The neurons in question should signal relevant and selective 
information when and only when the organism perceives the stimulus (in the 

scenario described here, a two-alternative forced choice discrimination of 

whether grandma is present). There are abundant studies documenting selective 

responses to stimuli throughout visual cortex, e.g. in primary visual cortex 

(Hubel & Wiesel, 1962), area MT (Baker, Petersen, Newsome, & Allman, 1981) 

and inferior temporal cortex (Desimone, Albright, Gross, & Bruce, 1984). 

Throughout the brain, neurons fire spontaneously even in the absence of their 

preferred stimuli. Here we focus on elevated responses beyond this baseline 

firing.

4. Stability. The neuronal representation should be stable over prolonged periods of 
time. The representation of grandma should be the same today and a month from 

now. This is not to say that the brain cannot acquire or forget information. 

Plasticity is a fundamental property of cortical circuits but there should exist a 

stable representation of information in cortex. Recent studies have shown that the 

representation of visually selective information can be very stable, e.g. (Bansal et 

al., 2012; Bondar, Leopold, Richmond, Victor, & Logothesis, 2009; McMahon, 

Jones, Bondar, & Leopold, 2014; Tolias et al., 2007).

5. Single trial interpretability. Differences in the firing patterns of the candidate 

neurons (or a subset thereof) to different external stimuli should be sufficiently 

reliable in a statistical sense to account for, and be reconciled with, the precision 

of the organism's responses in single trials. In other words, we should be able to 

reliably read out information about the stimulus from the neuronal responses, in 

single trials, and with a linear read-out mechanism. The imposition of linearity 

here is important; the retina contains all the information about the picture of 

grandma but it cannot be linearly read out. Machine learning techniques have 

been extensively used to extract selective visual information in single trials, e.g. 

(Hung, Kreiman, Poggio, & DiCarlo, 2005). The imposition of single trials 

interpretability is critical: the brain cannot average across trials to make a 

decision (the question of noise in neuronal responses is further elaborated upon 

in the Discussion).

6. Predictive of perceptual fluctuations. Fluctuations in the firing of some set of the 

candidate neurons to the repeated presentation of identical external stimuli 

should be predictive of the observer's judgment on individual stimulus 
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presentations including errors and other behavioral changes, e.g. (Newsome, 

Britten, & Movshon, 1989). For example, in the context of bistable perception, 

an observer's subjective report for the presence or absence of the stimulus should 

correlate with the neuronal responses, as observed in inferior temporal cortex 

(Sheinberg & Logothetis, 1997) but not in primary visual cortex (Leopold & 

Logothetis, 1996).

7. Invariance. The representation should be robust to certain transformations of the 

input. For example, in the context of recognizing an object, recognition is 

essentially unaffected by a wide range of changes in the object's size, 

illumination, rotation and other transformations. Robustness is not complete: it is 

possible to disrupt recognition if the image transformation is sufficiently large. 

Yet, recognition is remarkably robust to image changes and the neuronal 

representation should reflect this degree of invariance (e.g. (Deco & Rolls, 2004; 

DiCarlo, Zoccolan, & Rust, 2012; Ito, Tamura, Fujita, & Tanaka, 1995; 

Riesenhuber & Poggio, 1999; Sary, Vogels, & Orban, 1993)).

8. Task independence. The firing patterns of the neurons in question should not be 

affected by how behavior is reported. Grandma is grandma, regardless of whether 

we ask subjects to indicate yes/no by pressing buttons, to verbally report her 

name or to passively view the picture. There are of course plenty of neurons in 

cortex that are strongly modulated by the task demands, but there should exist a 

stable representation that is task-independent. For example, to a first 

approximation, neurons in inferior temporal cortex carry information about 

object shapes that is conveyed to pre-frontal cortex where investigators have 

described strong modulation depending on the task demands (Freedman, 

Riesenhuber, Poggio, & Miller, 2001; Meyers, Freedman, Kreiman, Miller, & 

Poggio, 2008). Task demands can modulate the representation (e.g. visual 

attention can significantly enhance neuronal activity throughout visual cortex 

(Reynolds & Chelazzi, 2004)) but it should still be possible to decode the 

information about grandma in a task-invariant manner.

9. Susceptibility to stimulation. Direct interference with the firing patterns of some 

set of the candidate neurons (e.g. by electrical, chemical or optogenetic 

stimulation) should lead to measurable changes at the perceptual level. These 

perceptual changes should be contingent on the spatial and temporal specificity 

of the external manipulation. Current injection has been shown to bias behavioral 

responses in monkeys in a content-specific fashion in different parts of visual 

cortex, e.g. (Afraz, Kiani, & Esteky, 2006; Salzman, Britten, & Newsome, 1990).

10. Susceptibility to lesions. Susceptible to Temporary or permanent removal of all 

or part of the candidate set of neurons should lead to a measurable perceptual 

deficit, e.g. (Afraz, Boyden, & DiCarlo, 2015; Dean, 1976; Holmes, 1918).

Starting from the very beginning

When photons impinge on the eyes, retinal ganglion cells (RGC) respond vigorously when 

there is a change in luminosity within their receptive fields. To get right to the point: is this a 
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grandmother-like representation or a distributed one? The question is never even discussed 

among retinal physiologists and hardly makes sense. We have a rather elaborate 

understanding of how photons are transformed into electrical signals and we are beginning 

to elucidate the circuitry that leads to RGC firing at a very fine level of detail (e.g. (Field et 

al., 2010)). The picture of grandma is implicitly represented by the activity of a large 

number of RGCs; one could rephrase this statement to argue that the information about a 

complex visual stimulus such as grandma is distributed over multiple RGCs. At the same 

time, the representation of light changes in a specific location is explicitly represented by 

RGCs. The RGCs therefore behave like grandmother cells in terms of explicitly representing 

changes in luminosity within their receptive field. Coarsely speaking, we can represent the 

firing rate r of a given RGC as , where g is a non-linearity (e.g. a threshold), 

wi denote the synaptic weights of the N units that project onto the RGC, and xi denote the 

activities of the N inputs. Although admittedly oversimplified, this formulation forms the 

foundation of the basic intuition of how neurons integrate information and remains at the 

heart of models of network activity (Dayan & Abbott, 2001).

RGCs project to neurons in the lateral geniculate nucleus (LGN), and these cells in turn 

project to primary visual cortex (V1). Neurons in primary visual cortex respond vigorously 

and selectively to oriented bars presented within their receptive field. Neurons in primary 

visual cortex do not respond uniquely to a single orientation. A neuron that shows maximal 

response to a bar of, say, 45-degree orientation will also respond to bars of 44-degree and 

46-degree orientation. There is a tuning curve with a certain width that describes how 

selective the neuron is for different orientations. Investigators have described simple and 

complex cells in V1, the latter pooling information from multiple simple cells to achieve 

robustness: whereas the responses of a simple cell are sensitive to the exact location of the 

oriented bar within its receptive field, a complex cell will yield approximately the same 

response when the bar is translated to different positions within the receptive field. Again, in 

the study of primary visual cortex the discussion about grandmother cell-like representations 

is notably absent. There are multiple computational models that provide a reasonable 

account of how orientation tuning emerges in V1, e.g. (Carandini et al., 2005; Hubel & 

Wiesel, 1962; Olshausen & Field, 1996; Priebe & Ferster, 2012). The fundamental questions 

to completely understand the responses of neurons in layer 4 of primary visual cortex 

involve fully elucidating the activity of the relevant inputs (xi in the formulation above), the 

strength of the relevant connections (wi in the formulation above) and the specific nature of 

the computations including thresholds, time constants, synaptic adaptation, synaptic 

depression and dendritic non-linearities. Information about grandma remains distributed 

over a large number of V1 cells. We cannot linearly decode the presence of grandma from an 

ensemble of V1 neurons. However, the presence of an oriented bar at a specific location can 

be linearly and robustly decoded in single trials from the activity of a small number of V1 

neurons.

In sum, in the pathway from the retina to V1, information is represented both in a distributed 

way and in a grandmother-like way. If we define neuronal response as an enhanced firing 

rate beyond baseline firing and we define a “meaningful thing” as a stimulus with the right 
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contrast, color, orientation and spatial frequency localized within the receptive field of a 

given V1 neuron, then this neuron behaves like a grandmother cell. The representation is 

redundant because there are multiple similar neurons and is achieved by virtue of integrating 

the activity over a distributed representation of the same stimulus at the level of the LGN.

The ventral visual cortex

Ascending through the visual hierarchy, we have a decent idea of the structures and 

anatomical pathways that transform visual information along the so-called what pathway 

involved in object recognition in macaque monkeys (Connor, Brincat, & Pasupathy, 2007; 

Felleman & Van Essen, 1991; Markov et al., 2012). Yet, we understand much less about the 

details of the computations that transform information from one visual area to the next.

The ventral visual stream can be described by an approximate hierarchy: V1 neurons project 

to area V2, V2 neurons in turn project to area V4, V4 neurons project to inferior temporal 

cortex (ITC). In addition to these projections there are abundant horizontal connections 

within each area and top-down connections (e.g. V2 projects back to V1). Moving from V1 

to ITC, there is a progressive increase in the size of the receptive fields, in the degree of 

complexity of the type of features represented at each stage and also in the degree of 

tolerance to image transformations. For example, some neurons in V4 are particularly 

sensitive to the extent and type of curvature of the visual stimulus (Pasupathy & Connor, 

2002). Although the specific circuits that give rise to selectivity along the ventral stream are 

not clearly understood, it is possible to approximate the type of selective responses to 

different shapes using the same type of ideas articulated above by non-linearly pooling 

inputs from simpler responses (Cadieu et al., 2007).

Inferior temporal cortex constitutes a vast expanse of the ventral stream. Lesions in inferior 

temporal cortex typically lead to specific deficits in visual object recognition (e.g. (Afraz, 

Boyden, & DiCarlo, 2015; Benton & Wav Allen, 1972; Dean, 1976)). Neurons in inferior 

temporal cortex respond to complex shapes including abstract ones like folded paperclips or 

fractal patterns and real world objects including faces (Desimone, Albright, Gross, & Bruce, 

1984; Logothetis, Pauls, & Poggio, 1995; Logothetis & Sheinberg, 1996; Naya, Sakai, & 

Miyashita, 1996; Tanaka, 1996; Tsao, Freiwald, Tootell, & Livingstone, 2006). Their 

responses also show a significant degree of robustness to a large number of stimulus 

transformations including changes in preferred stimulus position within the receptive field, 

scale, illumination, rotation, and many others (Ito, Tamura, Fujita, & Tanaka, 1995; 

Logothetis, Pauls, & Poggio, 1995; Sary, Vogels, & Orban, 1993; Tovee, Rolls, & 

Azzopardi, 1994). It is possible to linearly decode in single trials the identity of objects from 

the activity of small ensembles of ITC neurons (Hung, Kreiman, Poggio, & DiCarlo, 2005).

Consider an ITC neuron that responds selectively to a complex shape, say a face. To be 

clear, what we mean in practice is that the investigator records the activity of this neuron and 

counts the number of spikes in a given time window in response to presentation of a battery 

of multiple stimuli, say on the order of several hundred different shapes. The stimuli that 

contain faces elicit not only a response above baseline but also a response that is statistically 

stronger than the responses to the other stimuli in the set. If we were able to trace the input 
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connections of this ITC neuron, and one day in the not too distant future we may be able to 

do this, we would likely observe that the inputs are distributed over multiple V4 cells. As a 

null hypothesis, we imagine the transformation of V4-like responses into ITC-like responses 

to obey the same principles that govern the transformation of multiple LGN inputs 

converging to give rise to orientation selectivity in V1. In other words, at each stage of 

processing, there is a transformation from a distributed representation to a grandmother-like 

representation. Each stage of processing thus connotes a distributed representation and also a 

localist one, depending on what particular aspects of the stimulus we are considering. Many 

of the discussions about localist versus distributed representations in the brain have centered 

on high-level “meaningful things” such as grandmothers, words, or the concept of love or 

fear. Unfortunately, for most of these high-level things, we still do not really understand the 

degree of selectivity and invariance of the relevant neurons, let alone the inputs that can give 

rise to such representations. In the context of visual information, the simplest null model is 

that we can build a representation of progressively more complex shapes by adequate 

pooling and filtering signals from the previous processing stage. This leads to an elegant null 

model for cortical representations, with grandmothers galore as long as we define what is 

represented at each stage and also with clearly distributed representations.

Computational models of visual recognition

The brief qualitative description of the transformation of visual inputs in the previous section 

has been formalized in the form of a theoretical framework and quantitatively instantiated 

into algorithms for visual recognition (DiCarlo, Zoccolan, & Rust, 2012; Fukushima, 1980; 

Mel, 1997; Olshausen, Anderson, & Van Essen, 1993; Perret, Oram, Hietanen, & Benson, 

1994; Riesenhuber & Poggio, 1999; Rolls, 1991; Serre et al., 2007). These biologically 

inspired algorithms are characterized by a bottom-up hierarchy of linear and non-linear 

computations that start at the pixel level and progressively build a complex representation of 

the visual inputs. Ascending through the visual hierarchy, units display larger receptive 

fields, selectivity to more complex visual features and increased tolerance to changes in 

those features. The specific implementation details vary across different models but the 

general principles are the ones articulated in the previous section: units pooling information 

from previous layers, weighted linear sums followed by thresholding, non-linearities that 

give rise to tolerance. As a reasonable first approximation, these models assume that “cortex 

is cortex” and hence that the same mathematical operations are performed at each level 

(except that each level operates on different inputs and therefore conveys different outputs).

There have been multiple implementations of this type of network architecture (e.g. (Miconi, 

Groomes, & Kreiman, 2015; Riesenhuber & Poggio, 1999; Serre et al., 2007; Wyatte, 

Curran, & O'Reilly, 2012; Yamins et al., 2014) among many others). These architectures 

also constitute the basic foundation of deep convolutional networks, which have been 

successful in many engineering applications, most notably in computer vision (e.g. 

(Krizhevsky, Sutskever, & Hinton, 2012)).

This family of models constitutes only a first order approximation to the complexities of the 

cortical circuitry; for example, most of these models involve exclusively feed-forward 

projections and it is well known that there are abundant horizontal and feedback connections 
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throughout neocortex (Douglas & Martin, 2004). Despite this and many other 

simplifications, these models have been shown to capture basic properties of neuronal 

responses throughout the ventral visual stream (Riesenhuber & Poggio, 1999; Serre et al., 

2007).

An attractive feature of computational models is that we can inspect the activity of every unit 

and we can explain with perfect accuracy all the inputs and outputs to any possible stimulus. 

The question of localist versus distributed representations has been discussed before in the 

context of certain computational models (e.g. (Bowers, 2009; McClelland & Rumelhart, 

1981; McClelland, Rumelhart, & Group, 1986)) but those computational models have not 

been directly linked to neurophysiological measurements. Is information in deep hierarchical 

architectures for visual recognition represented in a localist manner or a distributed one? 

Each unit in these models is selective and represents a meaningful thing. In the typical 

computational implementation of these models, every unit shows selectivity. The biological 

implementation could differ substantially: there is a large number of different types of 

neurons in every patch of cortex and we still lack a fundamental understanding of the 

functional properties of these neuronal types and whether all of them show the same type 

and degree of selectivity. Each unit is part of a small group of units (compared to the total 

number of units in each area) that codes for that meaningful thing, we can precisely pinpoint 

what that meaningful thing is for each unit, injecting current into those units leads to an 

enhanced representation of the features they encode and removing those units from the 

model leads to a visual scotoma for those features. In other words, every unit in the model is 

a grandmother unit, as long as we define grandmother in terms of the unit's specific 

preferences. At the same time, each unit is part of a large ensemble that projects onto the 

next stage to build a more complex feature. There is no real dichotomy between localist and 

distributed representations in these models. All the computations are clearly defined in terms 

of a few well-defined rules, a simple, yet beautiful null model for cortical representations.

Discussion

It does not make sense to discuss distributed versus localist representations in the brain 

without defining clearly the identity of the neurons in question and the specific type of 

information that is represented. Accepting the family of models succinctly described above 

as a plausible first-order description for the functions of ventral visual cortex, one could 

argue that we have only described the representation of visual features that range from 

luminance changes to oriented bars to more complex shapes but we have not specifically 

described how to represent chairs, dogs, grandmothers and other objects. However, these 

models provide a very explicit description of how to represent those shapes. Indeed, those 

models are routinely tested in object recognition tasks that involve dozens to millions such 

objects (e.g. (Krizhevsky, Sutskever, & Hinton, 2012; Serre et al., 2007)). In a typical 

scenario, a set of training images is presented to the models to simulate the activity of every 

unit in response to every image. Next, a machine learning approach is used to train the 

weights of a classifier to map the activity of units in one or more layers of the model to the 

image labels (e.g. label “grandmother” for the corresponding set of pictures that include 

grandma). Finally, the model is tested with a different set of images to evaluate how well it 

can label those new images. In many cases, a linear kernel is used for the classifier. In this 
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case, a given linear classifier unit takes the distributed input from several units in an earlier 

layer, multiplies the activity of those units by suitable weights and thresholds the results, 

finally deciding in a binary way whether the image should be labeled “grandmother” or not. 

These classifier units are localist par excellence; the inputs to those units contain a clearly 

distributed representation of visual information. This process is repeated once and again 

throughout the hierarchical model.

While in some instantiations of these models there may be a single classifier unit for each 

label, in the brain there is a significant degree of redundancy (Barlow, 1972). The notion of a 

localist representation does not depend on having a one-to-one map between units and 

meaningful things. This is a typical misconception of the definition of grandmother cells that 

has been cleared in multiple earlier discussions. In the original parable by Lettvin, there 

were 18,000 such cells that responded uniquely to “mother” (Gross, 2002). At no stage of 

processing do we have only one neuron representing information. There are multiple RGCs 

that represent luminance changes in a given point in space, multiple V1 neurons that respond 

to a certain orientation in a given location, and multiple ITC neurons that represent complex 

visual features at a given location.

There are many important nuances to the representation of information in the brain that 

deserve further discussion. Once we allow for the notion established in the previous 

paragraph that the map between neurons and meaningful things is not one-to-one, we may 

ask how many neurons are involved in representing each feature. Neurophysiological 

recordings typically show that representations tend to be sparse. Sparseness can be loosely 

defined as using only a small number of neurons out of the entire set of possible neurons to 

represent a particular feature (for a more formal definition, see equation 4 in (Olshausen & 

Field, 1996)). Sparseness can also be loosely defined by the related but distinct notion that a 

neuron responds to only a small fraction of all possible stimuli. In computational models, 

introducing sparseness as a constraint can alter the resulting representation and lead to the 

development of biologically plausible feature tuning properties. For example, there has been 

considerable discussion about the idea that information is sparsely represented in primary 

visual cortex (e.g. (Olshausen & Field, 1996)). Sparseness is an attractive property because it 

leads to a more efficient representation that is easier to decode in later stages by virtue of the 

independence of the inputs, and it may also have energetic efficiency implications (Laughlin, 

van Steveninck, & Anderson, 1998). Some investigators draw a sharp distinction between 

localist representations, sparse distributed representations and dense distributed 

representations (e.g. (Bowers, 2009)). In the null model outlined here, the distinction is 

merely a quantitative one. Each visual feature at each location is represented by a relatively 

small number of units (but more than one unit).

Two essential causal manipulations provide evidence that we are in the right track towards 

understanding the representation of visual information: disturbing the representation through 

small lesions or by injecting currents into local circuits. Lesions in V1 lead to localized 

scotomas in the visual field and lesions in higher visual areas lead to specific visual deficits 

such as the inability to detect color, motion or complex shapes (e.g. (Dean, 1976; Zeki, 

1990, 1991)). Eliminating a single neuron is unlikely to lead to clear behavioral 

manifestations, presumably due to the robustness and redundancy in the representation. We 
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currently do not have the technical ability to selectively lesion or inactivate all the neurons 

that respond to a specific feature. Yet, a recent study demonstrated that optogenetic silencing 

of a relatively small group of neurons in a patch of cortex containing neurons selective for 

face gender can lead to a small but significant impairment in gender discrimination (Afraz, 

Boyden, & DiCarlo, 2015). Advocates of distributed representations would be right to point 

out that a large number of neurons is removed in these lesion studies; future technological 

developments will allow a tighter titration of the behavioral consequences of eliminating 

specific types and different numbers of neurons from cortical circuits. The specificity of the 

ensuing effects in lesion studies supports the notion that there is a localized, interpretable 

representation of visual information in cortical circuits. This specificity in the consequences 

of local lesions is also consistent with the type of effects one would expect from silencing 

local groups of units in the computational models outlined in the previous section.

Another important causal manipulation that can shed light on the nature of the neural 

representations involves examining the effects of electrical stimulation. Injecting current 

through high-impedance microelectrodes placed extracellularly probably alters the activity 

of hundreds to several thousand neurons in the vicinity of the electrode, depending on the 

type of electrode, the current intensity, current injection pattern, brain area and tissue 

excitability (Logothetis et al., 2010; Tehovnik, 1996), in addition to indirect effects on other 

brain areas. Several studies have demonstrated that perceptual and behavioral effects can be 

elicited via current injection in this fashion. Stimulating V1 leads to perception of localized 

phosphenes (e.g. (Brindley & Donaldson, 1972; Dobelle & Mladejovsky, 1974; Tehovnik, 

Slocum, Smirnakis, & Tolias, 2009)). Similarly, stimulating other parts of visual cortex can 

lead to specific visually-triggered behaviors including motion detection enhancement upon 

stimulating area MT (Salzman, Britten, & Newsome, 1990) or face detection enhancement 

upon stimulating inferior temporal cortex (Afraz, Kiani, & Esteky, 2006). Recently, a series 

of elegant studies have advanced the possibility of stimulating individual neurons, albeit not 

in the visual system (e.g. (Brecht, Schneider, Sakmann, & Margrie, 2004), reviewed in 

(Doron & Brecht, 2015)). Rather surprisingly, these studies have demonstrated that 

stimulating single neurons can elicit both sensory percepts as well as motor outputs. For 

example, adding approximately 15 action potentials to baseline activity in the rat barrel 

cortex, which is involved in the representation of whisker tactile stimulation, led to 

significant and specific behavioral reports. The results of this type of experiment are 

typically weak and show a significant degree of variability. Furthermore, the mechanisms of 

cortical propagation in these so-called nanostimulation experiments are poorly understood; it 

has been suggested that the behavioral manifestations arise as a consequence of 

amplification via recurrent connections. Despite these considerations, it is difficult to argue 

that the activity of individual neurons is uninterpretable given the results of these micro and 

nanostimulation studies. Rather, the stimulation studies lend further support to the notion of 

local circuits with interpretable responses that can be activated via stimulation to elicit 

specific perceptual sensations or motor outputs. The results of these stimulation experiments 

are also consistent with the consequences of activating local groups of units in the type of 

computational models outlined in the previous section.

Information from the top layers of the ventral visual stream is conveyed to multiple brain 

areas, most notably the medial temporal lobe and frontal cortex. Neurophysiological 
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recordings in the human medial temporal lobe have described a plethora of interesting 

selective responses to places (Ekstrom et al., 2003), object categories (Kreiman, Koch, & 

Fried, 2000b; Mormann et al., 2011) and specific individuals or landmarks (Quian Quiroga, 

Reddy, Kreiman, Koch, & Fried, 2005). These responses could be interpreted as additional 

examples of a localist representation for high-level information. However, as fascinating as 

those signals are, the neuronal responses in the medial temporal lobe structures do not fulfill 

all the requirements outlined above required for a representation of visual information, most 

notably the fact that removing those neurons does not lead to visual impairments (Squire, 

Stark, & Clark, 2004). Rather, the medial temporal lobe structures play a fundamental role in 

interpreting the degree of familiarity and novelty of current stimuli, associating multi-modal 

information in the context of emotional valence and prior knowledge, to form and retrieve 

memories (Brown & Aggleton, 2001; Cameron, Yashar, Wilson, & Fried, 2001; 

Eichenbaum, 2004; Gelbard-Sagiv, Mukamel, Harel, Malach, & Fried, 2008; Kreiman, 

2007; Kreiman, Koch, & Fried, 2000a; Mormann et al., 2014; Rutishauser, Mamelak, & 

Schuman, 2006; Rutishauser, Schuman, & Mamelak, 2008; Squire, Stark, & Clark, 2004).

Information from the ventral visual cortex is not only conveyed to the medial temporal lobe 

but also to frontal cortex structures that play a critical role in interpreting the visual inputs in 

a task-dependent manner to make decisions leading to behavioral outputs (Miller & Cohen, 

2001). Neurons in pre-frontal cortex show dynamic tuning to task-dependent variables. 

Recently, it has been argued that each neuron in pre-frontal cortex is tuned to multiple 

different aspects of an object sequence memory task rather than a single one (Rigotti et al., 

2013). This so-called mixed-selectivity does not imply that the responses of individual units 

cannot be interpreted. This question goes back to the definition of “meaningful things”. If a 

neuron shows an increased firing rate during the presentation of a specific stimulus and also 

before a given motor response, it may be challenging to label the neuron as “purely visual” 

or “purely motor”. However, the inadequacy of these labels pre-defined by the investigators 

does not preclude from decoding the properties of neuronal responses. The neuron in 

question still shows a reproducible response that can be correlated to the sensory events, 

decisions and motor outputs during the task. The interpretational challenges arise only 

because of our attempt to force specific anthropomorphic descriptions based on language to 

the changes in firing rate. These language-based descriptions of neuronal preferences have 

been relatively successful in early sensory areas but it seems likely, and far more powerful, 

that we will require mathematically defined operations to explain the responses in higher 

parts of cognition. Even within the complex and fascinating realm of high-level cognitive 

information represented in frontal cortex, there is still hope for interpreting the activity of 

individual neurons.

The apparent “mixed” selectivity alluded to in the previous paragraph is not the only 

conceptual barrier to interpreting the activity of cortical neurons. Another important problem 

arises when we consider the response dynamics and the dependence on behavioral tasks. 

Neuronal responses throughout the visual system show complex temporal dynamics that 

evolve on scales of tens to hundreds of milliseconds (e.g. (Hung, Kreiman, Poggio, & 

DiCarlo, 2005; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008; Richmond, Optican, & 

Spitzer, 1990; Ringach, Hawken, & Shapley, 1997; Smith, Majaj, & Movshon, 2005; 

Woloszyn & Sheinberg, 2009)). Additionally, the responses throughout visual cortex can be 
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significantly modulated by task demands (e.g. (Bansal et al., 2014; Baylis & Rolls, 1987; 

Gilbert, Li, & Piech, 2009; Ramalingam, McManus, Li, & Gilbert, 2013; Rigotti et al., 2013; 

Vogels, Sary, & Orban, 1995; Woloszyn & Sheinberg, 2009)). The family of models 

described in the previous section does not really account for neural dynamics (other than the 

serial passing of signals from one layer to the next) nor does it clearly describe how the 

same neural representation can be used for multiple different tasks. Furthermore, if the 

interpretation of spike trains from a given neuron evolves over time due to internal dynamics 

and/or due to task demands, it is unclear how post-synaptic neurons can decode such time-

varying inputs. Changes over long temporal scales (e.g. due to learning) may be easier to 

decipher since they may be accompanied by concomitant modifications in the synaptic 

weights, yet we need to be able to also understand changes in the meaning of spike trains 

that occur within tens to hundreds of milliseconds. In the extreme version, the same firing 

rate of a given neuron could convey distinct types of information at two different time 

points. Understanding these dynamics and task-dependent effects opens the doors to 

interesting questions both for localist and distributed representations and will require 

significant extensions to the simplified family of models described here.

A prominent example of dynamics in neural network models is illustrated in attractor 

networks. Attractor networks constitute particularly interesting computational models that 

are rather distinct form the family of bottom-up architectures described in the previous 

section (e.g. (Hopfield, 1982)). Briefly, units are interconnected in an all-to-all fashion and 

the state of the network is defined by the activity of all units. Each unit participates in 

representing every possible input and every input is represented by all units. In some sense, 

each unit in this type of attractor network is not representing any meaningful thing in and of 

itself. This seems to be a major departure from the hierarchical feed-forward models 

described here as a null model. Even though there has not been clear compelling biological 

evidence for or against the possibility of an attractor network type of neocortical circuits, 

given the dense interconnectivity of cortical circuits, it is not inconceivable that these ideas 

may help us better understand the dynamics of computations in cortex. Still, these networks 

typically do not explicitly specify how and when information is read out from these models. 

Brains need a way of converting the representation of visual information into decisions and 

actions (e.g. to indicate that a particular image does or does not contain a picture of 

grandma). We need an additional step to peek inside the attractor network, examine its state 

and determine whether that state corresponds to one of the stored patterns. The simplest way 

to think about how this read-out mechanism could be implemented with biological circuits is 

to wire all of the units in the network to another set of units that are capable of 

discriminating different states. These read-out units would behave as localist units 

deciphering the distributed the representation in the attractor network.

Another important issue that should be discussed is the apparent unreliability of neuronal 

responses. Upon repeated presentation of an identical stimulus, neurons seem to respond 

capriciously, and the variance in the spike counts can be as high as the mean spike count. 

The high degree of trial-to-trial variability in the spike trains elicited in response to a given 

stimulus has puzzled neuroscientists trying to understand how neurons encode information 

for decades (Perkel, Gerstein, & Moore, 1967). This degree of variability seems to pose a 

challenge to a localist representation where the activity of each neuron in each trial matters 
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and should be interpretable. One possibility is that the activity of each neuron can be 

described as a localist representation only on average, but this seems like an artificial and 

convoluted argument; the brain must function in individual trials. A more attractive 

possibility is that the apparently high noise levels are a consequence of heterogeneity in the 

experimental conditions. Even when investigators think that the conditions are identical from 

one trial to the next, there exist multiple internal and small external variables that can be 

different. In support of this argument, cortical responses can show smaller degrees of trial-

to-trial variability when there is better control of experimental conditions (e.g. (Bair & Koch, 

1996; Churchland et al., 2010)). Furthermore, several studies examining responses in 

primary or early sensory neurons where there may be less fluctuation in internal conditions 

have demonstrated that variability can be very low, in some cases, as low as the theoretical 

limits imposed by the discrete nature of spikes (e.g. (Berry & Meister, 1998; Kreiman, 

Krahe, Metzner, Koch, & Gabbiani, 2000; van Steveninck, Lewen, Strong, Koberle, & 

Bialek, 1997)). Additionally, variability can also be significantly reduced in slice recordings 

(Holt, Softky, Koch, & Douglas, 1996; Mainen & Sejnowski, 1995; Stevens & Zador, 1998). 

In sum, under conditions where it is possible to exert better control over the experimental 

conditions, trial-to-trial variability is significantly reduced and the responses of individual 

neurons become more interpretable in single trials.

Even if we accept the rudimentary sketch proposed as a null model for the cortical 

representation of visual information, we still have very little to say about a myriad of high-

level and abstract ideas such as how the brain encodes “love”, or “I would like to talk to 

grandma today”, or “I miss grandma's delicious food”. In a completely speculative and 

admittedly naïve tone, we can imagine that evolution works by duplicating, copying, 

improving and refining existing circuits. Hence, the basic computational principles 

uncovered when scrutinizing the representation of visual information could well extrapolate 

to other aspects of cognition. Needless to say, there is a vast and fascinating uncharted 

territory awaiting for neuroscientists to probe the representation of high-level cognitive 

information.
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